

Explicit GL (XGL) Programming
Guide and API Reference
(Draft Proposal derived from
the Mantle API)

Version 0.1
API revision 0.1
July 1, 2014

Copyright 2014, AMD. All rights reserved. The material in this document constitutes an unpublished work
created in 2014. The use of this copyright notice is intended to provide notice that AMD owns a copyright in this

unpublished work. The copyright notice is not an admission that publication has occurred. This work contains

confidential, proprietary to the reader information of AMD. No part of this document may be used, reproduced,
or transmitted in any form or by any means without the prior written permission of AMD.

Explicit GL Proposal Khronos Group Confidential Page 2 of 112

Chapter I. Introduction ... 7

Motivation .. 7

Solution Overview ... 8

Developer Manifesto ... 9

Chapter II. Programming Overview .. 10

Software Infrastructure .. 10

Execution Model .. 13

Memory in Explicit GL ... 15

Objects in Explicit GL ... 16

Pipelines and Shaders .. 16

Window and Presentation Systems .. 17

Error Checking and Return Codes .. 17

Lost Explicit GL Devices ... 18

Debug and Validation Layer .. 18

Chapter III. Basic Explicit GL Operation .. 20

GPU Identification and Initialization .. 20

Device Creation ... 21

GPU Memory Heaps .. 22

GPU Memory Objects ... 23

GPU Memory Priority .. 24

CPU Access to GPU Memory Objects ... 25

Pinned Memory ... 25

Virtual Memory Remapping ... 26

Memory Allocation and Management Strategy .. 28

Generic Explicit GL API objects ... 30

API Object Destruction .. 30

Querying API Object Properties .. 31

API Object Memory Binding .. 31

Image Memory Binding .. 32

Queues and Command Buffers ... 33

Queues ... 33

Command Buffers ... 34

Command Buffer Building .. 35

Command Buffer Optimizations .. 36

Explicit GL Proposal Khronos Group Confidential Page 3 of 112

Command Buffer Submission .. 37

GPU Memory References ... 37

Read-only GPU Memory References .. 38

Compute Dispatch Operations .. 40

Indirect Dispatch ... 40

Rendering Operations .. 41

Indirect Rendering .. 41

Primitive Topology .. 42

Queries ... 42

Timestamps ... 44

Synchronization ... 45

Command Buffer Fences .. 45

Events ... 45

Queue Semaphores .. 46

Draining Queues ... 47

Queue Memory Atomics ... 47

Shader Atomic Counters .. 48

Chapter IV. Resource Objects and Views ... 49

Memory Views ... 49

Images .. 50

Image Organization and Subresources ... 51

Image Aspects ... 51

1D Images ... 52

2D Images ... 52

Cubemaps .. 53

3D Images ... 54

Image Tiling and Image Data Organization ... 54

Resource Formats and Capabilities .. 55

Compressed Images ... 55

Multisampled Images ... 56

Image Views .. 56

Framebuffer Attachments .. 60

Color Attachments .. 60

Depth-Stencil Framebuffer Attachments ... 60

Explicit GL Proposal Khronos Group Confidential Page 4 of 112

Target Binding ... 61

Read-only Depth-stencil Views ... 62

View Format Compatibility ... 62

Data Feedback Loop ... 62

Resource Aliasing .. 63

Invariant Image Data ... 64

Resource States and Preparation ... 64

Memory and Image States .. 64

State Preparations .. 67

Multisampled Image Preparation.. 68

Hazards ... 69

Resource Operations .. 71

Resource Copies .. 71

Resource Cloning .. 72

Immediate Memory Updates ... 73

Resource Upload Strategies .. 73

Memory Fill .. 74

Image Clears ... 74

Multisampled Image Resolves .. 75

Image Samplers .. 76

Resource Shader Binding ... 76

Descriptor Sets .. 76

Descriptor Set Updates .. 78

Chapter V. State, Shaders, and Pipelines ... 80

Explicit GL State Overview .. 80

Static vs. Dynamic State .. 80

Dynamic State Objects ... 81

Rasterizer State ... 82

Viewport and Scissor State.. 82

Color Blender State... 82

Depth-stencil State ... 83

Multisampling State .. 83

Default Sample Patterns .. 83

Shaders... 84

Explicit GL Proposal Khronos Group Confidential Page 5 of 112

Pipelines ... 84

Compute Pipelines .. 85

Graphics Pipelines ... 85

Graphics Pipeline Operation .. 88

Vertex Fetch in Graphics Pipeline ... 88

Graphics Pipeline State .. 89

Graphics Pipeline Shader Linking ... 91

Pipeline Serialization ... 91

Constant Based Pipeline Compilation .. 92

Pipeline Binding ... 92

Pipeline Deltas ... 93

Pipeline Resource Access ... 93

Pipeline Resource Mapping.. 93

Descriptor Set Binding ... 95

Dynamic Memory View .. 96

Chapter VI. Multi-device Operation ... 97

Overview .. 97

Multiple Devices .. 97

Image Quality Matching ... 98

Sharing Memory between GPUs ... 99

Discovery of Shareable Heaps .. 99

Shared Memory Creation ... 99

Shared Images .. 100

Queue Semaphore Sharing ... 100

Shared Semaphore Creation ... 100

Peer-to-peer Transfers ... 101

Opening Peer Memory ... 102

Opening Peer Images ... 102

Peer Transfer Execution ... 103

Compositing and Cross-device Presentation .. 103

Discovering Cross-device Display Capabilities .. 104

Cross-device Presentable Images .. 104

Cross-device Presentation ... 105

Chapter VII. Debugging and Validation Layer ... 106

Explicit GL Proposal Khronos Group Confidential Page 6 of 112

Debug Device Initialization .. 106

Validation Levels ... 107

Debugger Callback .. 107

Debug Message Filtering ... 108

Object Debug Data ... 108

Object Tagging .. 109

Internal Debug and Validation Information .. 109

Command Buffer Markers .. 109

Debug Infrastructure Settings .. 109

Chapter VIII. Feature Additions to Match OpenGL Needs .. 111

Features Supported by Current OpenGL ... 111

Point Sprites .. 111

Transform Feedback .. 111

Unsigned Byte Indices .. 112

Feature Modifications.. 112

Flexible Queue Types .. 112

Explicit GL Proposal AMD Confidential Page 7 of 112

Chapter I.

INTRODUCTION

 MOTIVATION
While existing platform programming models – OpenGL and DirectX® – have provided a

solid 3D graphics foundation for quite some time, they are not necessarily ideal solutions

in scenarios where developers want tighter control of the graphics system and require

lower execution overhead.

The proposed new programming model and API attempts to bridge PC, mobile and

consoles in terms of flexibility and performance, address efficiency problems, and provide

a forward-looking, system level foundation for graphics programming.

High Level Khronos Goals

The GL common working group at Khronos is driving the development of a new cross-

vendor standard. The stated primary goals are:

 Produce a split level API.

o The lower level API is close to the hardware and runs with very little validation.

This proposal addresses that need.

o The higher level API is more similar to traditional OpenGL with hazard tracking,

synchronization and other high level primitives. This proposal does not attempt

to address this.

Explicit GL Proposal Khronos Group Confidential Page 8 of 112

 Have the ability to implement core profile OpenGL on top of the lower level API.

 Ensure consistency, cleanliness, and unambiguity in the new API. Requirements

include:

o Type safety

o Extensibility

o Eliminate redundancy

 It is expected that debugging and validation be possible through opt-in layers.

 SOLUTION OVERVIEW
The proposed solution implements a lower system level programming model designed for

high performance graphics that makes the platform graphics programming environment

look a bit more like that found on gaming consoles. While allowing applications to build

hardware command buffers with very small operational overhead, Explicit GL provides a

reasonable level of abstraction in terms of the pipeline definition and programming model.

As a part of improving the programming model, the Explicit GL API removes some legacy

features found in other graphics APIs.

While the proposed programming model draws somewhat on the strengths of OpenGL

and DirectX®, it was based on the following main design concepts:

▼ Performance for both CPU and GPU is the primary goal.

▼ The solution is forward looking in terms of the abstraction and the programming
model.

▼ The solution supports multiple operating systems and platform configurations.

▼ The application is the arbiter of correct rendering and the sole handler of persistent
state. Analysis of current APIs indicates that an efficient small batch solution can only
be achieved when the driver is as stateless as possible.

▼ Where generic feature implementation have been proven to be too inefficient in other
APIs and driver models, the responsibility is shifted to the application. An application
generally has a better knowledge of the rendering context and can implement more
intelligent optimization strategies. As an example, video memory management
becomes an application responsibility in Explicit GL.

The Explicit GL API is not for everyone, due to its lower level control of memory and

synchronization features. Effectively using the API requires in-depth knowledge of 3D

graphics, familiarity with the underlying hardware architecture and capabilities of modern

GPUs, as well as an understanding of performance considerations. The proposed solution

is primarily targeted at advanced graphics programmers familiar with the game console

Explicit GL Proposal Khronos Group Confidential Page 9 of 112

programming environment. Despite some of its lower-level implementation features, the

expectation is that Explicit GL can still benefit a wide range of projects as specialized

higher-level middle-ware Explicit GL-based solutions and engines become available.

 DEVELOPER MANIFESTO
The Explicit GL API imposes a new set of rules upon platform graphics subsystem.

Because of the abstraction level in Explicit GL, which is different from other graphics API

solutions in the traditional OpenGL/DirectX space, some developer expectations need to

be adjusted accordingly.

Explicit GL attempts to close a gap between existing platforms and consoles in terms of

flexibility and performance by implementing a lower system-level programming model. In

achieving this, Explicit GL places a lot more responsibility in the hands of developers. Due

to the lower level of the API, there are many areas where the driver is no longer capable

of providing safety, performance improvements, and workarounds. The driver essentially

gets out of the developers' way as much as possible to allow applications to extract every

little bit of performance out of modern GPUs. The driver does not create extra CPU

threads behind the application's back, does not perform extensive validation on

performance critical paths, nor does it recompile shaders in the background or perform

other actions that application does not expect.

When using Explicit GL, developers need to take responsibility for their actions with

extensive validation: fixing all instances of incorrect API usage, doing things efficiently and

ensuring the implementation is forward looking to support future GPU architectures. The

reason for this is that in order for the driver to be as efficient as possible, these problems

can no longer be efficiently worked-around in the driver. This extra responsibility is the

cost developers have to pay to benefit from Explicit GL advantages.

Explicit GL is really only for those graphics developers who are willing to

accept this new level of responsibility.

Explicit GL Proposal Khronos Group Confidential Page 10 of 112

Chapter II.

PROGRAMMING OVERVIEW

 SOFTWARE INFRASTRUCTURE
Explicit GL provides a programming environment that takes advantage of the graphics and

compute capabilities of platforms equipped with one or more Explicit GL compatible GPUs.

The Explicit GL infrastructure includes the following components:

▼ a hardware platform with Explicit GL compatible GPUs

▼ an installable client driver (ICD) implementing:

▼ core Explicit GL API

▼ platform specific window system bindings

▼ Explicit GL API extensions

▼ API validation layer

▼ a generic ICD loader library with Explicit GL API interface

▼ optional extension interface libraries, either vendor-specific or shared

▼ optional helper libraries to simplify Explicit GL development

▼ optional shader compilers and translators.

The following diagram depicts the simplified conceptual view of Explicit GL software

infrastructure.

Explicit GL Proposal Khronos Group Confidential Page 11 of 112

The following static libraries are available:

Table 1. Statically Linked Explicit GL Libraries

Library file name Description

xgl32.lib 32-bit static Explicit GL core API library

xgl64.lib 64-bit static Explicit GL core API library

The corresponding dynamic libraries for Microsoft Windows are (other Operating Systems

will have similar solutions):

Figure 1. XGL Software Infrastructure

Explicit GL Proposal Khronos Group Confidential Page 12 of 112

Table 2. Dynamically Linked Explict GL Libraries

Library file name Description

xgl32.dll 32-bit Explicit GL loader and core API dynamic library

xgl64.dll 64-bit Explicit GL loader and core API dynamic library

The function entry points for API and extension libraries are declared in header files:

Table 3. Explicit GL header files

Header file name Description

xgl.h Explicit GL core API

xglExt.h Explicit GL extension interface

xglPlatform.h Platform specific definitions

xglDbg.h Explicit GL debug API

xglExtDbg.h Debug features for Explicit GL extensions

Since Explicit GL libraries might not be available on all systems, an application could use

delayed DLL loading. This would allow application to avoid loading issues on the systems

that do not have Explicit GL libraries installed. The following code snippet checks for

presence of 64-bit Explicit GL library and delay loads it.

Explicit GL Proposal Khronos Group Confidential Page 13 of 112

Listing 1. Example of Checking presence and delay load Explicit GL
library in an Operating system

// application is linked with /DELAYLOAD:XGL64.dll

XGL_RESULT InitXGL(

 const XGL_APPLICATION_INFO* pAppInfo,

 XGL_UINT* pGpuCount,

 XGL_PHYSICAL_GPU gpus[XGL_MAX_PHYSICAL_GPUS])

{

 // Check Explicit GL library presence by trying to load it

 HMODULE hModule = LoadLibrary(TEXT("XGL64.dll"));

 if (hModule == NULL) {

 // Explicit GL library is not found

 return XGL_ERROR_UNAVAILABLE;

 } else {

 // Decrement Explicit GL library reference count and unload

 FreeLibrary(hModule);

 // Implicitly load library and initialize Explicit GL

 return xglInitAndEnumerateGpus(pAppInfo, NULL, pGpuCount, gpus);

 }

}

An application should avoid talking to Explicit GL drivers directly by circumventing loader

and extension libraries.

 EXECUTION MODEL
Modern GPUs have a number of different engines capable of executing in parallel ―

graphics, compute, DMA, as well as various multimedia engines. The basic building block

for GPU work is a command buffer containing rendering, compute and other commands

targeting one of the GPU engines. Command buffers are generated by drivers and added

to an execution queue representing one of the GPU engines as shown in Figure 2. When

the GPU is ready, it picks the next available command buffer from the queue and executes

it. Explicit GL provides a thin abstraction of this execution model.

Explicit GL Proposal Khronos Group Confidential Page 14 of 112

An application in the Explicit GL programming environment controls the GPU devices by

constructing command buffers containing native GPU commands through the Explicit GL

API. The command buffer construction is extremely efficient ― the API commands are

directly translated to native GPU commands with minimal driver overhead, providing a

high performing solution. To achieve this performance, the driver’s core implementation

performs only minimal error checking while building command buffers in the release build

of an application. Developers are responsible for ensuring correct rendering during the

development process. To facilitate input validation, profiling, and debugging, a special

validation layer can be enabled on top of the core API that contains comprehensive state

checking that notifies the developer of errors (invalid rendering operations) and warnings

(potentially undefined rendering operations and performance concerns). Additional tools

and libraries can also be used to simplify debugging and performance profiling. To

improve performance on systems with multi-core CPU, an application can build

independent command buffers on multiple CPU threads in a thread-safe manner.

After command buffers are built, they can be executed one or more times by the GPU

device by submitting them to the appropriate queue. The Explicit GL programming model

uses a separate command queue for each of the engines so they can be controlled

independently. The command buffer execution within a queue is serialized, but different

queues could execute asynchronously. An application is responsible for using GPU

synchronization primitives to synchronize execution between the queues as necessary.

Command buffer execution happens asynchronously from the CPU. When a command

buffer is submitted to a queue, control is returned to an application before the command

buffer executes. There can be a large number of submitted command buffers queued up

at any time. The synchronization objects provided by the Explicit GL API are used to

determine completion of various GPU operations and to synchronize CPU and GPU

execution.

Figure 2.
Queue submission model

Explicit GL Proposal Khronos Group Confidential Page 15 of 112

In Explicit GL, an application explicitly manages GPU memory allocations and resources

required for rendering operations. At the time a command buffer is to be executed, the

system ensures all resources and memory referenced in the command buffer are available

to the GPU. If necessary, this is done by marshaling memory allocations according to the

application-provided memory object reference list. In the Explicit GL programming

environment it is an application’s responsibility to provide a complete list of memory

object references for each command buffer submission. Failure to specify an exhaustive

list of memory references used in command buffer might result in resources not being

paged in and a fault or incorrect rendering.

A system could include multiple Explicit GL capable GPUs, each of them exposed as a

separate physical GPU. The Explicit GL driver does not automatically distribute rendering

tasks to multiple physical GPUs present in the system; it is an application’s responsibility

to distribute rendering tasks between GPUs and synchronize operation as required. The

API provides functionality for an efficient implementation of multi-GPU rendering

techniques.

 MEMORY IN EXPLICIT GL
A Explicit GL device operates on data stored in GPU memory objects. Internally, memory

objects are referenced with a unique virtual address in a process address space. A Explicit

GL GPU operates in a virtual address space which is separate from the CPU address space.

Depending on the platform, a GPU device has a choice of different memory heaps with

different properties for memory object placement. These heaps might include local video

memory, remote (non-local) video memory, and other GPU accessible memory. Further,

the memory objects in remote memory heaps could be CPU cacheable or write-combined

as indicated by the heap properties. An application can control memory object placement

by indicating heap preferences and restricting the memory object placement to a specific

set of heaps. The operating system and Explicit GL driver are free to move memory

objects between heaps within the constraints specified by the application.

GPU memory is allocated on the block size boundary, which in most cases is equal to the

GPU page size. If an application needs smaller allocations, it sub-allocates from larger

memory blocks.

The GPU memory is not accessible by the CPU unless it is explicitly mapped into the CPU

address space. In some implementations, local video memory heaps might not be CPU

visible at all, therefore not all GPU memory objects can be directly mapped by the CPU.

An application should make no assumptions about direct memory visibility; instead it

should rely on heap properties reported by Explicit GL. In the case when a particular

memory heap cannot be directly accessed by a CPU, the data is loaded to a memory

Explicit GL Proposal Khronos Group Confidential Page 16 of 112

location using GPU copy operations from a CPU accessible memory object.

The memory objects do not automatically provide renaming functionality – employing

multiple copies of memory on discard type memory mapping operations. An application is

responsible for tracking memory object use in the queued command buffers, recycling

them when possible and allocating new memory objects for implementing renaming

functionality.

 OBJECTS IN EXPLICIT GL
The devices, queues, state objects and other entities in Explicit GL are represented by the

internal Explicit GL objects. At the API level, all objects are referenced by their appropriate

handles. Conceptually, all objects in Explicit GL can be grouped in the following broad

categories:

▼ Physical GPU objects

▼ Device management objects: devices and queues

▼ Memory objects

▼ Shader objects

▼ Generic API objects

Some of the objects might have requirements for binding GPU memory as described in

section API Object Memory Binding. These memory requirements are implementation

dependent.

The objects are created and destroyed through the Explicit GL API, though some of the

objects are destroyed implicitly by Explicit GL. It is an application’s responsibility to track

lifetime of the objects and only delete them once objects are no longer used by command

buffers that are queued for execution. Failure to properly track object lifetime causes

undefined results due to premature object deletion.

Explicit GL objects are associated with a particular device and cannot be directly shared

between devices in multi-GPU configurations. There are special mechanisms for sharing

some memory objects and synchronization primitives between capable GPUs. See Chapter

VI. Multi-device Operation for more details. It is an application’s responsibility to create

multiple sets of objects, per device, and use them accordingly.

 PIPELINES AND SHADERS
The GPU pipeline configuration defines the graphics or compute operations that a GPU

performs on the input data to generate an image or computation result. Pipelines provide

Explicit GL Proposal Khronos Group Confidential Page 17 of 112

a level of abstraction that supports existing graphics and compute operations, as well as

enable exposure of new pipeline configurations in the future, such as hybrid

graphics/compute pipelines. Depending on its type, a pipeline is composed of one or more

shaders and a portion of fixed function GPU state.

A compute pipeline includes a single compute shader while a graphics pipeline is

composed of several programmable shaders and fixed function stages, some optional,

connected in a predefined order. The capability of the graphics and compute pipelines is

similar to that of DirectX® 11 and OpenGL 4.4. In the future, more pipeline configurations

might be made available.

Compute queues support workloads performed by compute pipelines, while universal

queues support workloads performed by both graphics and compute pipelines. A universal

queue’s command buffer independently specifies graphics and compute pipelines along

with any associated state.

The pipelines are constructed from shaders. The Explicit GL API does not include any

high-level shader compilers, and shader creation takes a binary form of an intermediate

language (IL) shader representation as an input. The Explicit GL drivers could support

multiple IL choices and the API should generally be considered IL agnostic. At present, an

IL is based on a subset of XGL IL. Other options could be adopted in the future.

 WINDOW AND PRESENTATION SYSTEMS
In the most common case, an application has a user interface and displays rendering

results in a window. The integration of Explicit GL with a window system is performed

using a platform-specific Window System Interface (WSI) extension inter-operating with

core Explicit GL API.

It is also possible to use Explicit GL in a headless configuration that lacks a graphical user

interface. In this scenario, an application does not need to use the Window System

Interface API, and it could directly render to an off-screen surface.

 ERROR CHECKING AND RETURN CODES
Under normal operation, the Explicit GL driver detects only a small subset of potential

errors that are reported back to applications using error codes. Functions used for building

command buffers do not return any errors, and in case of an error silently fail the

recording of the operations in a command buffer. Submitting such command buffer results

in undefined behavior.

Explicit GL’s design philosophy is to avoid error checking as much as possible during

performance-critical paths such as command buffer and descriptor set building. Whenever

Explicit GL Proposal Khronos Group Confidential Page 18 of 112

possible, the driver is designed to result in an application crash as opposed to hung

hardware as the outcome of an invalid operation.

The return codes in Explicit GL are grouped in three categories:

▼ Successful completion code – XGL_SUCCESS is returned when no problems are
encountered.

▼ Alternative successful completion code – returned when function successfully
completes and needs to communicate an additional information to the application (for
example XGL_NOT_READY).

▼ Error code – returned when a function does not successfully complete due to error
condition.

Because the Explicit GL API exposes some lower level functionality with minimal error

checking, such as the ability to introduce an infinite wait in the queue, there is a higher

risk of encountering either a hang of the GPU engines or an appearance of a hang. It is

expected that a possibility of such occurrences is minimized by extensive debugging and

validation at development and testing time. The Explicit GL driver implementation relies

on system recovery mechanisms such as Timeout Detection and Recovery (TDR) in the OS

to detect GPU hang conditions and gracefully recover without a need to reboot the whole

system.

 LOST EXPLICIT GL DEVICES
An application is notified via XGL_ERROR_DEVICE_LOST error code that either the GPU

has been physically removed from the system or it is inoperable due to a hang and

recovery execution. When an application detects a lost device error, it quits submitting

command buffers, releases all memory and objects, re-enumerates devices by calling

xglInitAndEnumerateGpus(), and re-initializes all necessary devices objects. Failing to correctly

respond to this error code results in incorrect or missing rendering and compute

operations.

 DEBUG AND VALIDATION LAYER
To facilitate debugging, a special validation layer can be optionally enabled at execution

time. It is capable of detecting and reporting many more errors and dangerous conditions

at the expense of performance. The debug error messages can be logged to the debug

output or reported to an application through the debugger callback functionality as

described in Chapter VII. Debugging and Validation Layer.

Explicit GL Proposal Khronos Group Confidential Page 19 of 112

Applications that are not completely error and warning free with the comprehensive error

checking in the validation layer might not execute correctly on some Explicit GL compatible
platforms. Failure to address the warnings or errors could result in intermittent rendering

or any other problems, even if the application might seem to perform correctly on some
system configurations.

Explicit GL Proposal Khronos Group Confidential Page 20 of 112

Chapter III.

BASIC EXPLICIT GL

OPERATION

 GPU IDENTIFICATION AND INITIALIZATION
Each Explicit GL capable GPU in a system is represented by a physical GPU object

referenced with a XGL_PHYSICAL_GPU object handle. There could be multiple physical GPUs

visible to a Explicit GL application, such as in a case of multi-GPU graphics boards. A

device represents a logical view or a context of an individual physical GPU and provides

associations of memory allocations, pipelines, states, and other objects with that GPU

context. Explicit GL API objects cannot be shared across different devices. At any given

time there can only be a single Explicit GL device per physical GPU per process.

To use Explicit GL, an application first needs to initialize and enumerate available physical

GPU devices by calling xglInitAndEnumerateGpus(), which retrieves the number of

physical GPUs and their object handles. If no Explicit GL capable GPUs are found in the

system, xglInitAndEnumerateGpus() returns a GPU count of zero. In multi-GPU

configurations, each physical GPU is reported separately in arbitrary order. See Chapter VI.

Multi-device Operation for more information about multi-device configurations in Explicit

GL. xglInitAndEnumerateGpus() can be called multiple times. Calling it more than once

forces driver reinitialization.

Explicit GL requires applications to identify themselves to the driver at initialization time.

This identification helps the driver to reliably implement API versioning and application

Explicit GL Proposal Khronos Group Confidential Page 21 of 112

specific driver strategies. The XGL_MAKE_VERSION macro is used to encode the API version,

application, and engine versions provided on initialization in the XGL_APPLICATION_INFO

structure. The application and engine identification is optional, but the API version used

by the application is mandatory. Additionally, an application can provide optional pfnAlloc

and pfnFree function callbacks for system memory management of memory used

internally by the Explicit GL driver. If system memory allocation callbacks are not provided,

the driver uses its own memory allocation scheme. The ICD loader does not use these

allocation callbacks.

These allocation callback functions are called whenever the driver needs to allocate or free

a block of system memory. On allocation, the driver requests memory of a certain size and

alignment requirement. The alignment of zero is the equivalent of 1 byte or no alignment.

To fine-tune allocation strategy, the driver provides a reason for allocation, which is

indicated by XGL_SYSTEM_ALLOC_TYPE type. When xglInitAndEnumerateGpus() is called

multiple times, the same callbacks have to be provided on each invocation. Changing the

callbacks on subsequent calls to xglInitAndEnumerateGpus() causes it to fail with

XGL_ERROR_INVALID_POINTER error.

To make a selection of GPU devices suitable for an application's purpose, an application

can retrieve GPU properties by using the xglGetGpuInfo() function. Basic physical GPU

properties are retrieved with information type parameter set to

XGL_INFO_TYPE_PHYSICAL_GPU_PROPERTIES, which are returned in

XGL_PHYSICAL_GPU_PROPERTIES structure. GPU performance characteristics could be

obtained with the information type parameter set to

XGL_INFO_TYPE_PHYSICAL_GPU_PERFORMANCE, which returns performance properties

in XGL_PHYSICAL_GPU_PERFORMANCE structure.

 DEVICE CREATION
A device object in Explicit GL is referenced by the XGL_DEVICE handle and can be created

using the xglCreateDevice() function for a given physical GPU device. Attempts to create

multiple devices for the same physical GPU fail with

XGL_ERROR_DEVICE_ALREADY_CREATED error code.

At device creation time an application requests what queues should be available on the

device. An application should only request queues that are available for the given physical

GPU. A list of available queue types and number of queues supported can be queried by

using the xglGetGpuInfo() function with information type parameter set to

XGL_INFO_TYPE_PHYSICAL_GPU_QUEUE_PROPERTIES.

To access advanced or platform-specific Explicit GL features, an application can use the

extension mechanism. Before creating a device, an application should determine if a

Explicit GL Proposal Khronos Group Confidential Page 22 of 112

desired extension is supported. If so, it can be requested at device creation time by

adding the extension name to the table of enabled extensions in the device creation

parameters. Extensions that are not explicitly requested at device creation time are not

available for use.

An application might optionally request creation of a device that implements debug

infrastructure for validation of various aspects of GPU operation and consistency of

command buffer data. Refer to Chapter VII. Debugging and Validation Layer for more

information.

Once an application finishes rendering and no longer needs a device, it is destroyed by

calling xglDestroyDevice(). To avoid memory leaks, an application must completely drain

all command queues and destroy all objects associated with a device before its

destruction.

 GPU MEMORY HEAPS
The GPU operates on data stored in GPU accessible memory. The GPU memory is

represented by a variety of video memory heaps available in a system. The choice of

heaps and their properties are platform dependent and the application queries memory

heap properties to derive the best allocation strategy. On a typical platform with a discrete

GPU, there would generally be one or more local video memory heaps and one or more

non-local, or remote heaps. Other platforms might have different heap configurations.

While heap identities are provided, the GPU proximity and strategy for managing heap

priorities should be inferred from heap performance characteristics and other properties.

The reported heap sizes are approximate and do not account for the amount of memory

already allocated. An application might not be able to allocate as much memory as there

is in a heap due to other running processes and system constraints.

It is a good idea to avoid oversubscribing memory. The reported heap size gives a

reasonable upper bound estimate on how much memory could be used.

To get the number of available memory heaps a device supports, an application calls

xglGetMemoryHeapCount(). The returned number of heaps is guaranteed to be at least

one or greater.

Heaps are identified by a heap ID ranging from 0 up to the reported count minus 1. An

application queries each heap’s properties by calling xglGetMemoryHeapInfo() with infoType

set to XGL_INFO_TYPE_MEMORY_HEAP_PROPERTIES value. The properties are returned

in XGL_MEMORY_HEAP_PROPERTIES structure.

The heap properties contain information about heap memory type, heap size, page size,

access flags, and performance ratings. The heap size and page size are reported in bytes.

Explicit GL Proposal Khronos Group Confidential Page 23 of 112

The heap size is a multiple of the page size.

Performance ratings for each memory heap are provided to help applications determine

the best memory allocation strategy for any given access scenario. The performance

rating represents an approximate relative memory throughput for a particular access

scenario, either for CPU or GPU access for read and write operations; it should not be

taken as an absolute performance metric. For example, if two heaps in a system have

performance ratings of 1.0 and 2.0, it can safely be assumed that the second heap has

approximately twice the throughput of the first. For heaps inaccessible by the CPU, the

read and write performance rating of the CPU is reported as zero. While the performance

ratings are consistent within the system, they should not be used to compare different

systems as the performance rating implementation could vary.

 GPU MEMORY OBJECTS
A Explicit GL GPU operates on data contained in memory objects that are referenced in

the API by a XGL_GPU_MEMORY handle. There are several types of memory objects in

Explicit GL which serve different purposes. The most common memory objects are real

memory objects which are created by calling xglAllocMemory(). An application specifies

required size for the memory object along with its preferred placement in memory heaps

and other options in XGL_MEMORY_ALLOC_INFO structure. The other types of memory

objects are discussed in following sections of this document.

Whenever possible, an application should provide multiple heap choices to increase

flexibility of memory object placement and memory management in general.

The Explicit GL driver allocates video memory in blocks aligned to the page size of the

heap. The page size is system and GPU dependent and is specified in the heap properties.

Different memory heaps might use different page sizes. When specifying multiple heap

choices for a memory object, the largest of the allowed heap page sizes should be used

for the granularity of the allocation. For example, if one heap has a page size of 4KB and

another of 64KB, allocating a memory block that could reside in either of those heaps

should be 64KB aligned.

If the application needs to allocate blocks smaller than a memory page size, the

application is required to implement its own memory manager for sub-allocating smaller

memory requests. An attempt to allocate video memory that is not page size aligned fails

with XGL_ERROR_INVALID_ALIGNMENT error code. When memory is allocated, its

contents are considered undefined and must be initialized by an application.

By default, a memory object is assigned a GPU virtual address that is aligned to the

largest page size of the requested heaps. Optionally an application can request memory

Explicit GL Proposal Khronos Group Confidential Page 24 of 112

object GPU address alignment to be greater than a page size. If the specified memory

alignment is greater than zero, it must be a multiple of the largest page size of the

requested heaps. The optional memory object alignment is used when memory needs to

be used for objects that have alignment requirements that exceed a page size. For

example, if page size is reported to be 64KB in heap properties, but an alignment

requirement for a texture is 128KB, then memory object that is used for storing that

texture's contents has to be 128KB aligned. The object memory requirements are

described in API Object Memory Binding.

Avoid unnecessary memory object alignments as it might exhaust GPU virtual address

space more quickly.

A memory object is freed by calling xglFreeMemory() when it is no longer needed. Before

freeing a memory object, an application must ensure the memory object is unbound from

all API objects referencing it and that it is not referenced by any queued command

buffers. Failing to ensure that a memory allocation is not referenced results in corruption

or a fault.

 GPU MEMORY PRIORITY
A memory object priority is used to indicate to the memory management system how

hard it should try to keep an allocation in the memory heap of the highest preference

when under significant memory pressure. The memory priority behavior is platform

specific and might have no effect in when only one memory heap is available or when

GPU memory manager does not support memory object migration.

The priority is just a hint to the memory management system and does not guarantee a

particular memory object placement.

Memory objects containing Framebuffer Attachments, depth-stencil targets and write-

access shader resources should typically use either high memory priority

XGL_MEMORY_PRIORITY_HIGH or very high priority

XGL_MEMORY_PRIORITY_VERY_HIGH. Most other objects should use normal priority

XGL_MEMORY_PRIORITY_NORMAL. When it is known that a memory object will not be

used by the GPU for an extended period of time, it could be assigned

XGL_MEMORY_PRIORITY_UNUSED priority value. This indicates to the memory manager

that a memory object could be paged out without any impact on performance. If an

application decides to start using that memory allocation again, it should bump up its

priority according to usage scenario.

Explicit GL Proposal Khronos Group Confidential Page 25 of 112

The memory priority provides coarse grained control of memory placement and an

application should avoid frequent priority changes.

The initial memory object priority is specified at creation time; however, in systems that

support memory object migration it can be adjusted later on to reflect a change in priority

requirements. An application is able to adjust memory object priority by calling

xglSetMemoryPriority() with one of the values defined in XGL_MEMORY_PRIORITY.

 CPU ACCESS TO GPU MEMORY OBJECTS
Memory objects created with xglAllocMemory() represent a block of GPU virtual address

space and by default are not directly CPU accessible. Memory objects that can be made

CPU accessible are considered to be mappable. An application retrieves a CPU virtual

address pointer to the beginning of a mappable memory object by calling

xglMapMemory(). All of the memory heap choices for the mappable memory object must

be CPU visible, which is indicated by XGL_MEMORY_HEAP_CPU_VISIBLE heap property

flag. If any heap used for the memory object is not CPU visible, the memory cannot be

mapped. Attempts to map memory objects located in memory heaps invisible to the CPU

fail with a XGL_ERROR_NOT_MAPPABLE error code.

The memory is mapped without any checks for memory being used by the GPU. It is an

application’s responsibility to both synchronize memory accesses and to guarantee that

data needed for rendering queued to the GPU is not overwritten by the CPU. An

application is expected to implement its own internal memory renaming schemes or take

other corrective actions, if necessary.

Once the CPU access to a memory object is no longer needed by the application, it can be

removed by calling xglUnmapMemory().

The xglMapMemory() and xglUnmapMemory() functions are thread safe, provided the

different threads are accessing different memory objects.

Generally, it is advised to avoid keeping memory objects stored in local video memory

heaps mapped when they are referenced by executing command buffers. On the
Windows® platform, keeping memory objects mapped while using them for rendering

results in migration of the memory objects to non-local video memory.

 PINNED MEMORY
On some platforms, system memory allocations can be pinned (pages are guaranteed to

never be swapped out), allowing direct GPU access to that memory. This provides an

alternative to CPU mappable memory objects. An application determines support of

Explicit GL Proposal Khronos Group Confidential Page 26 of 112

memory pinning by examining supportsPinning in

XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure, which is retrieved by calling

xglGetGpuInfo() function with the information type parameter set to

XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES.

A pinned memory object representing a pinned memory region is created using

xglPinSystemMemory(). The pinned memory object is associated with the heap capable of

holding pinned memory objects identified by the XGL_MEMORY_HEAP_HOLDS_PINNED

flag, as if it were allocated from that heap. Explicit GL guarantees that only one heap will

be capable of holding pinned memory objects.

The pinned memory region pointer and size have to be aligned to a page boundary for the

pinning to work. The page size can be obtained from the properties of the heap marked

with the XGL_MEMORY_HEAP_HOLDS_PINNED flag.

The memory is unpinned by destroying pinned memory object using the xglFreeMemory()

function. Pinned memory objects can be used as regular memory objects, however they

have a notable difference: their priority cannot be specified. Pinned memory objects can

be mapped, which would just return a cached CPU address of the system allocation

provided at creation time.

Multiple system memory regions can be pinned, however the total size of pinned memory

in a system is limited and an application must avoid excessive use of pinning. Memory

pinning fails if the total size of pinned memory exceeds a limit imposed by the operating

system.

Pinning too much memory negatively impacts overall system performance.

 VIRTUAL MEMORY REMAPPING
On some platforms, the Explicit GL API allows reservation of GPU address space by

exposing virtual memory objects that can be remapped later to real memory objects.

Since Explicit GL GPUs operate in a virtual machine (VM) environment, all memory objects

are part of the GPU virtual address space; however, to avoid confusion, the following

terminology is used: real memory objects are those backed by physical memory, while

virtual memory objects refer to GPU virtual address space reservations without physical

memory backing. The granularity of virtual memory mapping is the page size for virtual

allocations, which can be queried in the device properties.

An application determines support of virtual memory remapping by examining

supportsVirtualMemoryRemapping in XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure,

which is retrieved by calling xglGetGpuInfo() function with the information type parameter

set to XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES.

Explicit GL Proposal Khronos Group Confidential Page 27 of 112

Virtual memory objects are created by calling xglAllocMemory() with the

XGL_MEMORY_ALLOC_VIRTUAL flag in the creation parameters. When a virtual allocation

is created, none of its pages are backed by actual physical memory and they need to be

remapped prior to use as described further. A virtual memory object is destroyed by using

the xglFreeMemory() function.

Virtual memory objects cannot be mapped for CPU access and their priority cannot be

changed. If an application wants to update memory in virtual memory objects, it should

do so by updating the real memory objects backing the virtual allocations.

Multiple virtual memory objects can exist simultaneously to provide very flexible memory

management schemes. A page from a real memory objects can be mapped to one or

more pages in one or more virtual memory objects. The remapped memory access is

transparent to the user and is internally implemented by adjusting the VM page table.

There is no direct application access to the page tables; the driver provides

xglRemapVirtualMemoryPages() function for managing virtual memory page remapping.

The remapping functionality is only valid for virtual allocations and calls to

xglRemapVirtualMemoryPages() with a real allocation or pinned memory object fail.

xglRemapVirtualMemoryPages() specifies how multiple ranges of virtual memory pages

are remapped to real memory objects. The remapping specified with each function

invocation is additive and represents a delta state for page mapping. Previously mapped

virtual pages can be unmapped by specifying the XGL_NULL_HANDLE value for the target

Figure 3.
Conceptual view of virtual memory remapping

Explicit GL Proposal Khronos Group Confidential Page 28 of 112

memory object they are remapped to.

The remapping happens asynchronously with operations queued to the GPU. Changing

page mapping for objects at the time they are accessed by the GPU results in undefined

behavior. To guarantee proper ordering of remapping with other GPU operations, two sets

of queue semaphores can be provided by an application. The use of semaphores is

optional if application can guarantee proper execution order of operations using other

methods. Before remapping, xglRemapVirtualMemoryPages() function waits on

semaphores to be signaled; and after remapping it signals another set of semaphores,

indicating completion of remapping. Multiple invocations of

xglRemapVirtualMemoryPages() are executed sequentially with each other, and with back-

to-back remapping operations it is sufficient to provide semaphores on the first and the

last remapping operations.

Memory pages are only remapped for virtual memory objects and the remapping only

points to pages in real memory. Only one level of remapping is allowed, and it is invalid to

remap pages to other virtual memory objects.

When remapping memory pages containing texture data for tiled images, an application
should be careful to avoid using the same page for different regions of images. Due to

some tiling implementations, the tiling pattern of different image regions might not match.

 MEMORY ALLOCATION AND MANAGEMENT STRATEGY
The optimal memory management strategy is dependent on the type of platform, the type

and version of the operating system and other factors. Explicit GL provides very flexible

memory management facilities to enable a wide range of performance and ease-of-use

tradeoffs. For example, an application could trade the cost of managing multiple smaller

allocations vs. the larger memory footprint. The following are some of the guidelines that

applications might want to adopt.

Memory allocation and management strategy employed by an application depends on the

capabilities of the GPU memory manager available on a platform. Some platforms might

support memory object migration between the heaps, while others might not. An

application determines GPU memory manager ability to migrate memory objects by

examining supportsMigration in XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure,

which is retrieved by calling xglGetGpuInfo() function with the information type parameter

set to XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES.

In general, an application should avoid over-subscription of GPU memory to provide ideal

memory object placement, which ensures high performance. In the operating sytems,

where memory management is not completely under application's control, a multi-tiered

approach to memory objects can be applied. In this approach parts of the memory

Explicit GL Proposal Khronos Group Confidential Page 29 of 112

management are handled by the operating systems video memory manager and parts of

it rest on application’s shoulders. First, an application should use reasonably sized memory

pools of different priorities. The “reasonable” size depends on how much video memory a

graphics board has, how much memory is needed and other factors. Using memory pools

of 16-32MB is a good starting point for experimentation. Resources should be grouped in

memory pools by their type, read or write access and priority. Objects with larger memory

requirements, such as multisampled targets, might use their own dedicated memory

objects. The key to extracting maximum performance from a number of configurations

and platforms is making memory management configurable.

When deciding on memory placement, an application should evaluate performance

characteristics of different memory heaps to sort and filter heaps according to its

requirements. An application should be prepared to deal with a wide range of memory

heap configurations – from supporting a single heap to supporting heaps of new types,

such as XGL_HEAP_MEMORY_EMBEDDED. The exposed memory heaps are likely to

change in the future due to ongoing platform, OS and hardware developments.

An application should generally specify multiple heaps for memory objects, if memory
usage allows for it. This gives the driver and video memory manager the best chance of

placing the memory object in the best location under high memory pressure. The
controlling of memory placement is done by adjusting the heap order.

Further, the memory should be grouped in pools of different priorities and object

assignment to memory should be performed according to the memory priority. It is

recommended to define 3-5 memory pool priority types. See GPU Memory Priority for

discussion of memory priorities.

An application should avoid marking all memory objects with the same memory priority.
Under heavy memory pressure the video memory manager in Windows® might get

confused trying to keep all memory objects in video memory, resulting in unnecessary
movement of data between local and non-local memory heaps.

All resources that are written by the GPU (for example, target images and read-write

images) should be in high-priority memory pools, others can be placed in medium or low

priority pools. The application should ensure that, whenever possible, high and medium

priority pools do not oversubscribe available local video memory, including all visible and

non-visible local heaps on the graphics card. The threshold for determining oversubscribed

video memory conditions depends on the platform and the execution conditions, but

setting it to about 60-80% of local video memory for high and medium priority allocations

would be a safe choice for full screen applications. To avoid crossing the memory

threshold for high and medium pools, the application should manage resource placement

based on the memory working set. If parts of the memory in high and medium priority

polls do not fit under that 60-80% threshold, the application can use an asynchronous

Explicit GL Proposal Khronos Group Confidential Page 30 of 112

DMA queue to move resource between local and non-local memory when necessary,

providing more intelligent memory management of video memory under pressure.

Buffer-like resources, as well as small, infrequently used and compressed textures, could

be lower priority than more frequently GPU accessed images of larger texel size. On the

systems which support memory object migration, it is reasonable to allow lower priority

memory objects to be spilled by the OS to non-local video memory without application

worrying too much about their migration.

On the systems with relatively small visible local memory heap, application should be

careful with the placement of memory objects inside of it. Only high priority memory pools

should be in both local non-visible and local visible, specified in that order. Medium priority

pools probably should not be in local visible heap if it is a scarce resource, but it depends

on what else needs to go into the local visible heap.

With integrated graphics, which are part of an APU, the application should generally use

non-local memory heaps instead of local visible heap for memory objects that require CPU
access.

Pipeline objects and descriptor sets should generally be in local visible heaps, provided

that they do not take up too much memory. For pipelines an application can reduce

memory requirements by just keeping a working set of pipelines bound to memory and

binding/unbinding them on the fly as necessary. An application might want to maintain

multiple pools of memory for pipelines and descriptor sets for efficient binding/unbinding.

This could help ensure the memory objects containing pipelines and descriptor sets are

not paged out to non-local memory by Windows® video memory manager.

 GENERIC EXPLICIT GL API OBJECTS
The Explicit GL API objects other than physical GPUs, devices, queues and memory

objects are grouped into a broad generic API object category. These objects have

common API functions for querying object properties, managing memory binding, and

destruction.

 API OBJECT DESTRUCTION
Once a generic API object is no longer needed, it is destroyed by calling

xglDestroyObject() function. If an object has previous memory binding, it is required to

unbind memory from an API object before it is destroyed.

The object should not be destroyed while it is referenced by any other object or while

there are references to an object in any command buffer queued for execution.

Explicit GL Proposal Khronos Group Confidential Page 31 of 112

 QUERYING API OBJECT PROPERTIES
Explicit GL API objects have a variety of properties that an application queries to enable

proper object operation. There are several functions for querying properties depending on

the object type. For generic API objects most of the properties can by queried by calling

xglGetObjectInfo().

 API OBJECT MEMORY BINDING
In Explicit GL, some API objects require video memory storage for their data. Developers

are responsible for explicitly managing video memory allocations for these objects based

on memory requirements reported at run-time. These API objects must be assigned

memory before they can be used.

The most obvious objects requiring video memory are images, but other objects, such as

state and pipeline objects, might also require GPU memory storage depending on the

implementation. The only objects that are guaranteed to have no external memory

requirements are devices, queues, command buffers, shaders and memory objects.

Device, queue and command buffer objects manage their own internal memory

allocations. Shader objects are also special because they are not directly referenced by

Explicit GL GPUs.

For the object types which can be bound to memory, an application should not make

assumptions about memory requirements, as requirements might change between GPUs

and even between versions of the Explicit GL driver. An application queries object memory

requirements by calling xglGetObjectInfo() with a handle of the object of interest and the

XGL_INFO_TYPE_MEM_REQUIREMENTS information type. The returned memory

requirements include memory size, alignment and a list of compatible memory heaps.

If the returned memory size is greater than zero, then memory needs to be allocated and

associated to the API object. To bind an object to the memory, an application should call

xglBindObjectMemory() with the desired memory object handle and an offset within the

memory object.

The memory alignment for some objects might be larger than video memory page size. If

that is the case, an application must create memory objects with an alignment multiple of

API object alignment requirements. A single memory object can have multiple API objects

bound to it as long as the bound memory regions do not overlap.

The memory heap requirements for different API objects could vary with implementation

and an application should make no assumptions about heap requirements; that

information is provided as a part of the object memory requirements using an allowed

heap list. Only the heaps on that list can be used for object memory placement. An

Explicit GL Proposal Khronos Group Confidential Page 32 of 112

application could filter the heaps according to its requirements; for example it could

remove CPU invisible heaps to ensure CPU access to the memory. The heaps in the list are

presorted according to the driver's performance preferences, but the order of heaps for a

memory allocation does not need to match the order returned in object requirements.

Driver provided heap preferences are just a suggestion and a sophisticated application

could adjust preferred heap order according to its requirements.

The driver ensures that the required heap capabilities for any given object match at least

one of the heaps present in the system.

The driver fails memory to object binding if the memory heaps used for memory object

creation do not match memory heap requirements of the particular API object, or if the

memory placement requirements make the GPU object data extend past the memory

object, or if the required memory alignment does not match the provided offset. The

object is unbound from memory by specifying the XGL_NULL_HANDLE value for the memory

object when calling xglBindObjectMemory() function.

When objects other than images are bound to a memory object, the necessary data might

be committed to memory automatically by the Explicit GL driver without an API

involvement. The handling of memory binding is different for image objects and is

described in Image Memory Binding.

If pipeline objects have memory requirements, binding their memory automatically

initializes the GPU memory by locking it and updating it with the CPU. If memory object
used for pipeline binding resides in local video memory at the time of binding while being

referenced in queued command buffers, the memory object might be migrated to non-
local video memory in Windows®, resulting in degraded performance.

An application is able to rebind objects to different memory locations as necessary. This

ability to rebind object memory is particularly useful for some cases of application

controlled image renaming as image objects would not need to be recreated. The rules for

rebinding memory are different for images and all other object types. Rebinding of a given

non-image object should not occur from the time of building a command buffer or a

descriptor set which references that object to the time at which the GPU has finished

execution of that command buffer or descriptor set. If a new memory location is bound to

a non-image object while that object is referenced in a command buffer scheduled for

execution on GPU, the execution results are not guaranteed after memory rebinding.

 IMAGE MEMORY BINDING
Image objects have slightly specialized memory binding rules. The image's object data is

not initialized on memory binding and previous memory contents is preserved. The non-

Explicit GL Proposal Khronos Group Confidential Page 33 of 112

target images are assumed to be in the XGL_IMAGE_STATE_DATA_TRANSFER state upon

memory binding. Images used as color targets or depth-stencil implicitly start in the

XGL_IMAGE_STATE_UNINITIALIZED_TARGET state and must be transitioned to a proper

state and cleared before first use.

Target images should never rely on the previous memory contents after memory binding.

Failing to initialize state and clear target images before the first use results in undefined
results.

Image memory can be rebound at any time, even during command buffer construction or

descriptor set building. A snapshot of image memory binding at the time of building a

command buffer or descriptor set data is taken and recorded in command buffer or

descriptor set on binding image to state or referencing image otherwise. To ensure

integrity of the data, any images that might have been written to by the GPU must be

transitioned to a particular state before unbinding or re-binding memory. Non-target

images must be transitioned to XGL_IMAGE_STATE_DATA_TRANSFER state before

memory unbinding, while images used as color targets or depth-stencil must be

transitioned to XGL_IMAGE_STATE_UNINITIALIZED_TARGET state. See Memory and

Image States for more information about image states.

 QUEUES AND COMMAND BUFFERS
In Explicit GL all commands are sent to GPU by recording them in command buffers and

submitting command buffers to the GPU queues along with a complete list of used

memory object references.

 QUEUES
Explicit GL GPU devices can have multiple execution engines represented at the API level

by queues of different types. The type and maximal number of queues supported by a

GPU, along with their properties, is retrieved from physical GPU properties by calling

xglGetGpuInfo() function with the information type parameter set to

XGL_INFO_TYPE_PHYSICAL_GPU_QUEUE_PROPERTIES, which returns an array of

XGL_PHYSICAL_GPU_QUEUE_PROPERTIES structures, one structure per queue type.

Since the number of available queue types and the amount of returned data could vary, to

determine the data size an application calls xglGetGpuInfo() with a NULL data pointer. The

expected data size for all queue property structures is returned in pDataSize.

Explicit GL API defines two queue types: a universal queue (XGL_QUEUE_UNIVERSAL)

and an asynchronous compute queue (XGL_QUEUE_COMPUTE_ONLY). Other queue

types, such as DMA and so on can be exposed through extensions. There is at least one

Explicit GL Proposal Khronos Group Confidential Page 34 of 112

universal queue available for the Explicit GL device; other queues are optional.

The universal queues support both graphic rendering and compute operations, which are

dispatched synchronously, even though their execution in some cases might overlap. The

additional compute-only queues operate asynchronously with the universal and other

queues and it is an application’s responsibility to synchronize all queue execution. While

the execution across multiple queues could be asynchronous, the execution order of

command buffers within any queue is well defined and matches the submission order.

The queues in Explicit GL are referenced using XGL_QUEUE object handles. The queue

objects cannot be explicitly created. Instead, when a device is created, an application

requests a number of universal, compute, and other queues up to the maximum number

of queues supported by the device. There must be at least one queue requested on

device creation. Requesting more queues than are available on a device fails the device

creation. It is invalid to request the same queue type multiple times on device creation.

Once a device is created, the queue handles are retrieved from the device by calling

xglGetDeviceQueue() with a queue type and a requested logical queue ID. The logical

queue ID is a sequential number starting from zero and referencing up to the number of

queues requested at device creation. Each queue type has its own sequence of IDs

starting at zero.

The queue objects cannot be destroyed explicitly by an application and are automatically

destroyed when the associated device is destroyed. Once the device is destroyed,

attempting to use a queue results in undefined behavior.

 COMMAND BUFFERS
Command buffers are objects that contain GPU rendering and other commands recorded

by the driver on the application's behalf. The command buffers in Explicit GL are

referenced using XGL_CMD_BUFFER object handles. A command buffer can be executed by

the GPU multiple times and recycled, provided that command buffer is not pending

execution by the GPU at the time of recycling.

The command buffers are fully independent and there is no persistence of GPU state

between the command buffers. When a new command buffer is recorded, the state is

undefined. All relevant state must be explicitly set by the application before state-

dependent operations such as draws and dispatches can be recorded in a command

buffer.

An application can create a command buffer by calling xglCreateCommandBuffer(). At

creation time a command buffer is designated for use on a particular queue type. A

command buffer created for execution on universal queues is called a universal command

buffer, the one created for a compute queue is called a compute command buffer.

Explicit GL Proposal Khronos Group Confidential Page 35 of 112

An application must ensure that the command buffer is not submitted and pending

execution before destroying it by calling xglDestroyObject().

 COMMAND BUFFER BUILDING
The Explicit GL driver supports multithreaded command buffer construction using

independent command builder contexts. There is no hard limit on how many command

buffers could be constructed in parallel at any given time.

An application calls xglBeginCommandBuffer() to start recording a command buffer. An

application must ensure the command buffer object is not previously scheduled for

execution when it begins recording. Once recording starts, an application records a

sequence of state binds, draws, dispatches, and other commands, then terminates

construction by calling xglEndCommandBuffer(). After a command buffer is fully

constructed it can be submitted for execution as many times as necessary.

Command buffer commands may only be recorded between the

xglBeginCommandBuffer() and xglEndCommandBuffer() command buffer functions that

put command buffer in a building state. Attempts to record command buffer while it is not

in the building state results in a silent fail of commands unless running with validation

layer enabled.

While a command buffer could contain a large number of GPU operations, there might be

a practical limit to the GPU command buffer length or total amount of recorded command

buffer data. If an application runs out of memory reserved for command buffers, no more

new command buffers are built until previously recorded command buffers are recycled

and command buffer memory is freed.

In general it is not recommended to record huge command buffers. If a command buffer is

taking too long to execute, a system might interpret the condition as a hardware hang and
could attempt to reset the GPU device.

An application may avoid the overhead of creating new command buffer objects by

recycling a command buffer not referenced by the GPU. Calling xglBeginCommandBuffer()

implicitly recycles the command buffer before starting a new recording session. An

application could explicitly recycle the command buffer by calling

xglResetCommandBuffer(). An explicit command buffer reset by an application allows the

driver to release the memory and any other internal command buffer resources as soon as

possible without re-recording the command buffer. A command buffer can be recycled or

reset by an application as soon as the buffer finishes its last queued execution and an

application no longer needs it. It is the application’s responsibility to ensure that the

command buffer is not referenced by the GPU and is not scheduled for execution.

Explicit GL Proposal Khronos Group Confidential Page 36 of 112

It is allowed to record and submit empty command buffers with no actual commands

between xglBeginCommandBuffer() and xglEndCommandBuffer() calls.

An application should avoid submitting excessive number of empty command buffers, as
each submitted command buffer adds CPU and GPU overhead.

Command buffer construction could fail for a number of different reasons: running out of

memory or other resources, hitting an error condition and so on. The error is only

guaranteed to be returned upon the command buffer termination with

xglEndCommandBuffer(). The error is not returned during the command buffer

construction, and command buffer building function silently fail unless running with

validation layer enabled. An application must be able to gracefully handle a case when

termination of a command buffer fails.

 COMMAND BUFFER OPTIMIZATIONS
At command buffer building time an application specifies optional optimization hints that

could help the Explicit GL driver to tailor command buffer contents for different

performance scenarios. Specifying the XGL_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT

hint indicates to the driver that command buffer will be submitted only once. This allows

the driver to apply submission time optimizations if multiple command buffers are

submitted in a single batch.

A number of other hints target GPU optimizations in command buffers. Specifying the

XGL_CMD_BUFFER_OPTIMIZE_GPU_SMALL_BATCH hint optimizes command buffer for

GPU command stream processing that could become a bottleneck in cases of small or

lightweight draw and dispatch operations. The

XGL_CMD_BUFFER_OPTIMIZE_PIPELINE_SWITCH hint optimizes command buffer for

cases when application frequently changes pipelines between draw and dispatch

operations. Similarly, XGL_CMD_BUFFER_OPTIMIZE_DESCRIPTOR_SET_SWITCH

optimizes command buffer for the case when descriptor sets are changed very frequently.

Multiple optimization flags can be specified at the same time. The command buffer

optimization hints could increase CPU overhead during command buffer building and

provide a mechanism for trading CPU performance vs. the GPU performance.

Explicit GL Proposal Khronos Group Confidential Page 37 of 112

An application could detect at run time if it is CPU or GPU bound and in which parts of the

frame and dynamically adjust command buffer optimization hints to better balance CPU
and GPU performance.

 COMMAND BUFFER SUBMISSION
Once a command buffer is built, it is submitted for execution on a queue of a matching

type. For example, a command buffer created for universal queues cannot be executed on

compute queues and vice versa. An attempt to submit a command buffer to the queue of

a wrong type fails submission.

Command buffers are submitted to a queue by calling xglQueueSubmit(). Multiple

command buffers can be submitted as a batch in a single submit operation. Submission

places the provided command buffers in a queue and does not guarantee their immediate

execution upon immediate return from xglQueueSubmit() function. When submitting

multiple command buffers in a single batch, they are executed in the order in which they

are provided in the list.

Submitting multiple command buffers in one operation might help reduce the CPU and
GPU overhead.

If an application needs to track command buffer execution status, it can supply an

optional fence object in the function parameters; otherwise XGL_NULL_HANDLE could be

used instead. The fence is reached when the last provided command buffer in a

submission batch has finished execution.

 GPU MEMORY REFERENCES
On submission, an application provides a complete list of memory objects used by the

submitted command buffers, including virtual and pinned memory objects. The memory

reference for a memory object is specified using XGL_MEMORY_REF structure. The

supplied memory object handle cannot be XGL_NULL_HANDLE. It is an application’s

responsibility to guarantee completeness of the memory references list. This includes all

memory used by all Explicit GL objects directly or indirectly referenced in command

buffers.

When using virtual memory allocations, an application must include all real allocations that

the remapped virtual memory objects are referencing. Failing to include all memory

references results in incorrect rendering since memory objects might not be resident on

the GPU at command buffer execution time.

There are two complimentary methods for supplying memory references. First, a list of

Explicit GL Proposal Khronos Group Confidential Page 38 of 112

memory references is specified at command buffer submission time. Second, a set of

global memory references is made available on a per-queue basis using

xglQueueSetGlobalMemReferences() function. The references are global for a queue in the

sense that they are used by all command buffers submitted to the queue. For example,

these might be used with memory objects storing device object data referenced in all of

submitted command buffers.

If an application needs to make memory references global to the device, it should
separately set them on all used queues.

Specifying a global memory references list completely overwrites the previously specified

list. The previous memory reference list can be removed by specifying a zero number of

global memory references along with NULL reference list pointer. Use of the global memory

reference list is optional and is present only as an optimization. A snapshot of global

memory references is taken at submission time and applied to submitted command

buffers. Changing global memory references does not apply to already submitted

command buffers.

The xglQueueSetGlobalMemReferences() function is not thread safe and the application

needs to ensure it cannot be called simultaneously with other functions accessing a

queue.

There is a limit on how many total memory references can be specified per command

buffer at execution time. This limit applies to the global memory references as well as the

references from the list supplied on submission, and the sum of both should not exceed

the specified limit. Exceeding the limit results in failed command buffer submission. The

maximal number of memory references can be queried from the physical GPU properties.

While building command buffers, an application has to keep an eye on the number of

referenced memory objects per command buffer. If it grows too large, the command buffer
cannot be safely submitted.

 READ-ONLY GPU MEMORY REFERENCES
As an optimization, an application could specify XGL_MEMORY_REF_READ_ONLY flag to

indicate that memory object is used for read-only GPU access and its contents will not

change during command buffer execution. Table 4 lists memory access type for various

operations. A memory object is considered to be read-only if all of its uses are for read-

only access.

Explicit GL Proposal Khronos Group Confidential Page 39 of 112

Table 4. Memory access type for command buffer operations

Operation Access Type

Memory bound to pipeline and state objects Read

Memory bound to descriptor sets Read

Memory for index data Read

Memory for dynamic memory view Read/Write

Memory for memory views attached to descriptor sets Read/Write

Memory bound to images used as image views attached to
descriptor sets

Read/Write

Memory bound to images used as color targets Write

Memory bound to images used as depth-stencil Write

Memory used in state transitions Write

Memory bound to images used in state transitions Write

Memory for draw or dispatch argument data Read

Source for memory copy Read

Destination for memory copy Write

Memory bound to images used as source for copy Read

Memory bound to images used as destination for copy Write

Memory bound to images used as source for cloning Write

Memory bound to images used as destination for cloning Write

Memory bound to images used as source for resolve Read

Memory bound to images used as destination for resolve Write

Memory for immediate update from command buffer Write

Memory for fill operation Write

Memory bound to cleared color images Write

Memory bound to cleared depth-stencil images Write

Explicit GL Proposal Khronos Group Confidential Page 40 of 112

Operation Access Type

Memory bound to set or reset event objects Write

Memory for queue atomic operations Write

Memory bound to query pool objects cleared or counter Write

Memory for timestamps Write

Memory for loading atomic counters Read

Memory for saving atomic counters Write

Specifying the read-only memory flag while actually writing memory contents from within

a command buffer results in undefined memory contents.

Avoid mixing read-only and read write memory uses within the same memory object.

 COMPUTE DISPATCH OPERATIONS
The Explicit GL API supports dispatching compute operations using a compute pipeline

and currently bound command buffer compute state. The compute is dispatched with

explicit work dimensions by calling xglCmdDispatch(), which is available on both universal

and compute queues.

The work dimensions for compute dispatch cannot be zero.

 INDIRECT DISPATCH
The compute job dimensions could be specified to come from memory by using

xglCmdDispatchIndirect() function. The dispatch argument data must be 4-byte aligned

and the memory range containing the indirect data must be in the

XGL_MEMORY_STATE_INDIRECT_ARG state. The layout of the indirect dispatch argument

data is shown in Table 5.

Explicit GL Proposal Khronos Group Confidential Page 41 of 112

Table 5. Argument data layout for indirect dispatch

Offset Data type Description

0x00 XGL_UINT32 Number of thread groups in X direction

0x04 XGL_UINT32 Number of thread groups in Y direction

0x08 XGL_UINT32 Number of thread groups in Y direction

The indirect version of compute dispatch is available on both universal and compute

queues.

 RENDERING OPERATIONS
An application renders graphics primitives using graphics pipelines and currently bound

command buffer graphics state. All parts of the state must be properly set for rendering

operation to produce the desired result. There are separate functions for rendering

indexed and non-indexed geometry.

Non-indexed geometry can be rendered by calling xglCmdDraw() function for rendering

both instanced and non-instanced objects. Indexed geometry can be rendered with

xglCmdDrawIndexed(). Indexed geometry can only be rendered when valid index data is

bound to command buffer state with xglCmdBindIndexData(). If objects are not instanced,

the firstInstance should be set to zero and instanceCount parameters should be set to one.

The vertex, index and instance count cannot be zero.

The rendering operations are only valid for command buffers built for execution on

universal queues.

 INDIRECT RENDERING
In addition to rendering geometry with application supplied arguments, Explicit GL

supports indirect draw functions whose execution is driven by data stored in GPU memory

objects. Indirect rendering is performed by either calling xglCmdDrawIndirect() or

xglCmdDrawIndexedIndirect() function, depending on presence of index data.

The draw argument data must be 4-byte aligned and the memory range containing the

indirect data must be in the XGL_MEMORY_STATE_INDIRECT_ARG state. The layout of

the indirect draw argument data is shown in Table 6 and Table 7.

Multiple draws can be launched from a single call to xglCmdDrawIndirect() or

xglCmdDrawIndexedIndirect(). They each have count and stride arguments that specify

Explicit GL Proposal Khronos Group Confidential Page 42 of 112

how many draws to launch, and the stride in memory for each draw’s argument data.

Table 6. Argument data layout for indirect draw

Offset Data type Description

0x00 XGL_UINT32 Number of vertices per instance

0x04 XGL_UINT32 Number of instances

0x08 XGL_INT32 Vertex offset

0x0C XGL_UINT32 Instance offset

Table 7. Argument data layout for indexed indirect draw

Offset Data type Description

0x00 XGL_UINT32 Number of indices per instance

0x04 XGL_UINT32 Number of instances

0x08 XGL_UINT32 Index offset

0x0C XGL_INT32 Vertex offset

0x10 XGL_UINT32 Instance offset

 PRIMITIVE TOPOLOGY
Explicit GL supports a wide range of standard primitive topologies, along with tessellated

patches and special rectangle list primitives. Primitive topology is specified as a part of the

graphics pipeline static state. See Graphics Pipeline State.

The rectangle list is a special geometry primitive type that can be used for implementing

post-processing techniques or efficient copy operations. There are some special limitations

for rectangle primitives. They cannot be clipped, must be axis aligned and cannot have

depth gradient. Failure to comply with these restrictions results in undefined rendering

results.

 QUERIES
Explicit GL supports occlusion and pipeline statistics queries. Occlusion queries are only

available on universal queues while pipeline statistic queries are available on universal and

compute queues.

Explicit GL Proposal Khronos Group Confidential Page 43 of 112

Queries in the Explicit GL API are managed using query pools – homogeneous collections

of queries of a certain type. Query pools are represented by XGL_QUERY_POOL object

handles. The query type and number of query slots in a pool is specified at creation time.

The query pools are created with xglCreateQueryPool().

Occlusion queries are used for counting the number of samples that pass the depth and

stencil tests. They could be helpful when an application needs to determine visibility of a

certain object. The result of an occlusion query can be accessed by the CPU to let the

application make rendering decisions based on visibility.

Pipeline statistics queries can be used to retrieve shader execution statistics, as well as

the number of invocations of some other fixed function parts of the geometry pipeline.

Naturally, the compute queue statistics have only a compute related subset of statistics

information available.

A query needs to be reset after creation and binding to memory, or if a query has already

been used before. Failing to reset a query prior to use produces undefined results. To

reset queries in a pool an application uses xglCmdResetQueryPool(). Multiple queries in a

pool could be reset in just one reset call by specifying a contiguous range of query slots to

reset.

Resetting a range of queries in one operation is a lot more optimal than resetting
individual query slots.

The query counts query-specific events between xglCmdBeginQuery() and

xglCmdEndQuery() commands embedded in the command buffer. The query commands

can only be issued in command buffers that support queries of the given type.

The same query cannot be used in a command buffer more than once; otherwise the

results of the query are undefined. Also, the query cannot span more than a single

command buffer and should be explicitly terminated before the end of a command buffer.

Failing to properly terminate a query, by matching every xglCmdBeginQuery() function call

with xglCmdEndQuery(), results in an undetermined query result value, invalid query

completion status, and could produce an undetermined rendering result. For example,

calling xglCmdBeginQuery() twice in a row matched by a single xglCmdEndQuery() call, or

matching a single xglCmdBeginQuery() call with multiple xglCmdEndQuery() is not

allowed.

Occlusion queries support an optional XGL_QUERY_IMPRECISE_DATA flag that could be

used as an optimization hint by the GPU. If flag is set, the query value is only guaranteed

to be zero when no samples pass depth or stencil test. In all other cases the query returns

some non-zero value.

An application retrieves results of any query in a pool by calling xglGetQueryPoolResults().

Explicit GL Proposal Khronos Group Confidential Page 44 of 112

One or multiple consecutive query results can be retrieved in a single function call. If any

of the requested results are not yet available, which is indicated by the XGL_NOT_READY

return code, the returned data is undefined for all requested query slots. An application

must ensure there is enough space provided to store results for all requested query slots.

Calling xglGetQueryPoolResults() with a NULL data pointer could be used to determine

expected data size.

To retrieve query results or to check for completion, the driver performs a memory map
operation, which could be relatively expensive. If application needs to perform a lot of

frequent query checks, and memory assignment for query pool objects allow it, the query
pool objects can be bound to pinned memory. This ensures expensive memory map

operations are not performed.

The results for an occlusion query are returned as a 64-bit integer value and pipeline

statistics are returned in XGL_PIPELINE_STATISTICS_DATA structure.

 TIMESTAMPS
For timing the execution of operations in command buffers, Explicit GL provides ability to

write GPU timestamps to memory from command buffers using xglCmdWriteTimestamp()

functions. The timestamps are 64-bit time values counted with a stable GPU clock

independent of the GPU engine or memory clock. To time a GPU operation an application

uses a difference of two timestamp values. The frequency of the timestamp clock is

queried from the physical GPU information as described in GPU Identification and

Initialization.

There are two types of locations in a pipeline from where the timestamp could be

generated: top of pipeline and bottom of pipeline. The top of pipeline timestamp is

generated immediately when the timestamp write command is executed, while the bottom

of pipe timestamp is written out when previously launched GPU work has finished

execution.

The timestamp destination memory offset for universal and compute queues has to be

aligned to an 8-byte boundary. Other queue types might have different alignment

requirements. Before a timestamp can be written out, the destination memory range has

to be transitioned into the XGL_MEMORY_STATE_WRITE_TIMESTAMP state using an

appropriate preparation operation.

The bottom of pipe timestamps are supported on universal and compute queues, while

the top of the pipe timestamps are supported on universal queues only.

Explicit GL Proposal Khronos Group Confidential Page 45 of 112

 SYNCHRONIZATION
The Explicit GL API provides a comprehensive set of synchronization primitives to

synchronize between CPU and GPU, as well as between multiple GPU queues.

 COMMAND BUFFER FENCES
Command buffer fences provide a coarse level synchronization between a GPU and a CPU

on command buffer boundaries by indicating completion of command buffer execution.

Figure 4 demonstrates an example of a CPU waiting on a GPU fence before it performs a

resource load operation.

A fence object, represented by XGL_FENCE object handle, can be created by calling

xglCreateFence() function and can optionally be attached to command buffer submissions

as described in Command Buffer Submission.

Once a command buffer with a fence is submitted, the fence status can be checked with

xglGetFenceStatus() function. If the fence has not been reached, the XGL_NOT_READY

code is returned to the application. An attempt to check fence status before it is submitted

returns XGL_ERROR_UNAVAILABLE error code.

An application can also sleep one of its threads while waiting for a fence or a group of

fences to come back by calling xglWaitForFences(). If multiple fences are specified and

the xglWaitForFences() is instructed to wait for all fences, the function waits for all the

fences to complete, otherwise any returned fence wakes an application thread. A timeout

in seconds can be specified on the fence wait to prevent a thread from sleeping for

excessive periods of time.

 EVENTS
Events in Explicit GL can be used for more fine-grain synchronization between a GPU and

a CPU than fences, as application could use events to monitor progress of the GPU

execution inside of the command buffers. An event object can be set or reset by both the

Figure 4. Synchronization with fences

Explicit GL Proposal Khronos Group Confidential Page 46 of 112

CPU and GPU, and its status can be queried by CPU. The events in Explicit GL are

represented by XGL_EVENT object handle.

Event objects are created by calling xglCreateEvent() function, and are set and reset by

the CPU by using xglSetEvent() and xglResetEvent() functions. From command buffers the

events are similarly manipulated using xglCmdSetEvent() and xglCmdResetEvent()

functions. Event operations are supported by both universal and compute queues.

An application checks the event's state using the CPU by calling xglGetEventStatus().

When created, the event starts in undefined state and it should be explicitly set or reset

before it can be queried.

To retrieve event status with the CPU, the driver performs a memory map operation, which
could be relatively expensive. If the application needs to perform a lot of frequent event

status checks, and memory assignment for event objects allow it, the event objects can be

bound to pinned memory. This ensures expensive memory map operations are not
performed.

 QUEUE SEMAPHORES
Queue semaphores are used to synchronize command buffer execution between multiple

queues and between capable GPUs in multi-GPU configurations. See Queue Semaphore

Sharing for discussion on synchronization in multi-GPU configurations. The semaphores

are also used for synchronizing virtual allocation remapping with other GPU operations.

The following figure shows an example of synchronization between queues to guarantee a

required order of execution.

Queue semaphore objects are represented by XGL_QUEUE_SEMAPHORE object handles and

are created by calling xglCreateQueueSemaphore(). At creation time an application can

specify an initial semaphore count.

Figure 5. Queue synchronization with semaphores

Explicit GL Proposal Khronos Group Confidential Page 47 of 112

An application issues signal and wait operations on the queues by calling

xglSignalQueueSemaphore() and xglWaitQueueSemaphore() functions. It is an

application’s responsibility to ensure proper matching of signals and waits. In the case

where a queue is stalled for excessive periods of time, the debug infrastructure is able to

detect a timeout condition and reports an error to the application.

For performance reasons it is recommended to ensure signal is issued before the wait on
the Windows® platform.

 DRAINING QUEUES
For some operations it might be required to ensure a particular queue or even all of the

device queues are completely drained before proceeding. The Explicit GL API provides

functions xglQueueWaitIdle() and xglDeviceWaitIdle() to stall and wait for the queues to

drain. These functions are not thread safe and all submissions and other API operations

must be suspended while waiting for idle. xglDeviceWaitIdle() waits for all queues to fully

drain and virtual memory remapping operations to complete.

For performance reasons it is recommended to avoid draining queues unless absolutely
necessary.

 QUEUE MEMORY ATOMICS
The Explicit GL GPU is capable of executing memory atomics operating on 32-bit and 64-

bit integers from the command buffer, similar to how memory atomic operations are

performed in shaders. Besides synchronization, atomics can be used to perform some

arithmetic operations on memory values directly from GPU queues. The memory location

operated on by an atomic operation is provided by the memory object and the application

is responsible for issuing appropriate memory preparation operations. The memory range

for the queue atomic operation must to be in the XGL_MEMORY_STATE_QUEUE_ATOMIC

state.

An atomic operation can be recorded in a command buffer using xglCmdMemoryAtomic().

The memory offset for atomic location has to be aligned to 4-bytes for 32-bit integer

atomics and 8-bytes for 64-bit atomics. The 32-bit atomic operations use the lower 32-bits

of the literal value provided in the source data argument. Atomic operations performed on

unaligned addresses cause undefined results.

Explicit GL Proposal Khronos Group Confidential Page 48 of 112

 SHADER ATOMIC COUNTERS
The Explicit GL shader model exposes atomic counters that could be used for

implementing unordered data queues using atomic increment and decrement operations.

The atomicity of operations guarantees that no two shader threads see the same counter

value returned. The underlying counter is 32-bits, representing a [0, 232-1] range of

values. Going outside of this value range causes the counter to wrap. The atomic counters

in Explicit GL are independent from images and other API objects.

Each universal and compute queue has some number of independent atomic counter

resources per pipeline type. There are guaranteed to be at least 64 atomic counters per

pipeline type for universal queues, but for other queue types the atomic counters are

optional and may be zero. The number of available atomic counters is queried in the

queue properties as described in Queues.

Before using atomic counters, an application should query a queue's properties to confirm
the number of available counter slots.

Atomic counters are referenced by a slot number varying from 0 to the number of

available atomic counters for that queue minus one. If a number of counters reported for

a particular queue is zero, atomic counters cannot be used in any of the shaders used by

compute or graphics workloads executing on that queue. Attempting to use atomic

counters outside of the available counter slot range results in undefined behavior.

Atomic counter values are not preserved across command buffer boundaries, and it is an

application’s responsibility to initialize the counters to a known value before the first use

and later save them off to memory if necessary.

Before accessing it from a shader, an atomic counter should be initialized to a specific

value by loading data with xglCmdInitAtomicCounters() or by copying the data from a

memory object using xglCmdLoadAtomicCounters(). An atomic counter value could also

be saved into a memory location using xglCmdSaveAtomicCounters().

The GPU memory offsets for loading and storing counters have to be aligned to a 4-byte

boundary. The source and destination memory for the counter values has to be in the

XGL_MEMORY_STATE_DATA_TRANSFER state before issuing the load or save operation.

Explicit GL Proposal Khronos Group Confidential Page 49 of 112

Chapter IV.

RESOURCE OBJECTS AND

VIEWS

The Explicit GL GPU operates on data stored in memory objects. There are several ways

the data can be accessed depending on its intended use. Texture and Framebuffer

Attachment data is represented by image objects and is accessed from shader and

pipeline back-end using appropriate views. Many other operations work directly on raw

data stored in memory objects, and shader access to raw memory is performed through

memory views.

 MEMORY VIEWS
A buffer-like access to raw memory from shaders is performed using memory views. There

are no objects in the Explicit GL API representing them due to often dynamic nature of

such data. Shader memory views describe how raw memory is interpreted by the shader

and are specified during descriptor set construction (see Resource Shader Binding) or

bound dynamically using dynamic memory views (see Dynamic Memory View).

A memory view describes a region of memory inside of the memory object that is made

accessible to a shader. Additionally, memory view specifies how shader sees and interprets

the raw data in memory: a format and element stride could be specified. The memory

view is defined by XGL_DYNAMIC_MEMORY_VIEW_SLOT_INFO structure.

Interpretation of memory view data depends on combination of view parameters and

Explicit GL Proposal Khronos Group Confidential Page 50 of 112

shader instructions used for data access. Here are the rules for setting up memory views

for different shader instruction types:

▼ For typed buffer shader instructions the format has to be valid and stride has to be
equal to the format element size.

▼ For raw buffer shader instructions the format is irrelevant and the stride has to be
equal to one.

▼ For structured buffer shader instructions the format is irrelevant and the stride has to
be equal to the structure stride. The actual structure or type of the data is expressed
inside of the shader.

Memory view offset, as well as the data accessed in the shader must be aligned to the

smaller of the fetched element size or the 4-byte boundary. Memory accesses outside of

the memory view boundaries or unaligned accesses produce undefined results. It is an

application’s responsibility to avoid out of bounds memory access.

 IMAGES
Images in Explicit GL are containers used to store texture data. They are also used for

color Attachments and depth-stencil buffers.

Unlike many other graphic APIs where image objects refer to the actual data residing in

video memory along with meta-data describing how that data is to be interpreted by the

GPU, Explicit GL decouples the storage of the image data and the description of how the

GPU is supposed to interpret it. Data storage is provided by memory objects, while Explicit

GL images are just CPU side objects that reference the data in memory objects and store

information about data layout and their other properties. With this approach, developers

are able to manage video memory more efficiently.

An image is composed of 1D, 2D or 3D subresources containing texels organized in a

layout that depends on the type of image tiling selected as well as other image properties.

At image creation time, a texel format is specified for the purpose of determining the

storage requirements, however it can later be overwritten with a compatible format at

view creation time. The image dimensions are specified in texels for the topmost mip level

for all image formats. This applies to compressed images as well. The size of compressed

images must be a multiple of the compression block size.

An image of any supported type is created by calling xglCreateImage(). All appropriate

usage flags are set at creation time and must match the expected image usage. For

images that are not intended for view creation and used for data storage only, for

example, data transfer, it is allowed to omit all usage flags.

Explicit GL Proposal Khronos Group Confidential Page 51 of 112

Application should specify a minimal set of image usage flags. Specifying extra flags might

result in suboptimal performance.

Once an image object is created, an application queries its memory requirements at run-

time. The video memory requirements include the memory needed to store all

subresources as well as internal image meta-data. An application either creates a new

memory object for the image data, or sub-allocates a memory block from an existing

memory object if the memory size allows. Before an image is used, it should be bound to

an appropriate memory object and, if necessary, cleared and prepared according to the

intended use.

 IMAGE ORGANIZATION AND SUBRESOURCES
The following image types are natively supported in Explicit GL:

▼ 1D images

▼ 2D images

▼ 3D images

Along with the image views, these types are used to represent all supported images,

including cube-maps and image arrays.

Image objects are composed of one or more subresources – image array slices, mip

levels, etc. – that vary based on the resource type and dimensions. A subresource within

an image is referenced by a descriptor defined as XGL_IMAGE_SUBRESOURCE structure.

Some operations can be performed on a contiguous range of image subresources. Such

subresource range is represented by XGL_IMAGE_SUBRESOURCE_RANGE structure.

 IMAGE ASPECTS
Some images could have multiple components: depth, stencil or color. Each of these

components is represented by an image aspect. Each such image component or image

aspect is logically represented by its own set of subresources. The image aspects are

described by values in XGL_IMAGE_ASPECT enumeration.

While some operations might refer to images in their entirety, some operations require

specification of a particular image aspect. For example, rendering to a depth-stencil image

uses the entire set of aspects (in this case depth and stencil), while a specific aspect is

specified to access a depth or stencil image data from a shader.

Explicit GL Proposal Khronos Group Confidential Page 52 of 112

 1D IMAGES
1D image type objects can store 1D images or 1D image arrays, with or without mipmaps.

1D images cannot be multisampled and cannot use block compression formats.

An example of 1D image array organization is shown in Figure 6.

 2D IMAGES
2D image type objects can store 2D images, 2D image arrays, cubemaps, color targets

and depth-stencil targets, including multisampled targets. Multisampled 2D images cannot

have mipmap chains.

An example of 2D image array organization is shown in Figure 7.

2D images used as depth-stencil targets have separate subresources for its depth and

stencil aspects. For GPUs that do not support separate depth and stencil image aspect

storage, the same memory offsets might be reported for depth and stencil subresources.

An example of depth-stencil image organization is shown in Figure 8.

Figure 6. 1D image organization

Figure 7. 2D image organization

Explicit GL Proposal Khronos Group Confidential Page 53 of 112

 CUBEMAPS
Cubemap images are a special case of 2D image arrays. From the storage perspective,

cubemaps are essentially 2D image arrays with 6 slices. Arrays of cubemaps are also 2D

image arrays with a number of slices equal to 6 times the number of cubemaps. The

cubemap slices have to be square in terms of their dimensions. Cubemap images cannot

be multisampled.

The slice number within a cubemap or a cubemap array can be computed as follows:

slice = 6 * cube_array_slice + faceID

The cubemap face IDs and their orientation are listed in the following table.

Figure 8. Depth-stencil image organization

Explicit GL Proposal Khronos Group Confidential Page 54 of 112

Table 8. Cubemap face ID decoding from face orientation

Direction Face ID

Positive X 0

Negative X 1

Positive Y 2

Negative Y 3

Positive Z 4

Negative Z 5

 3D IMAGES
3D image type objects can only store volume textures, and like other types of images can

contain mipmaps. 3D images cannot be multisampled or created as arrays.

In 3D images, each subresource represents a mip-mapped volume starting with the

topmost mip-level. An example 3D image organization is show in the Figure 9.

 IMAGE TILING AND IMAGE DATA ORGANIZATION
There are several options available for internal image texel organization. In linear tiling,

the texels are stored linearly within an image row and image width is padded to a

required stride. While simple and efficient for CPU access, the linear tiling does not play

well with GPU memory system. For the highest GPU performance an optimal tiling should

be used. The internal implementation of the optimal tiling could vary depending on the

image type and usage. The only reliable way to upload to or download data from

optimally tiled images is to copy their data to and from linearly tiled images that could be

Figure 9. 3D image
organization

Explicit GL Proposal Khronos Group Confidential Page 55 of 112

directly accessed by the CPU. Image tiling types are defined in XGL_IMAGE_TILING.

Some image operations can only be performed on images of certain tiling. An application

should check format capabilities for the tiling of interest to verify the tiling type is

supported for the operations with the intended image usage.

In Explicit GL, depending on the resource type and usage, images are broadly classified as

transparent or opaque in terms of their data layout. Transparent images are non-target

images with linear tiling. Memory contents of these images can be directly accessed by

the CPU as the data layout is well defined. Opaque images, while technically accessible by

the CPU in a raw form, do not make any guarantees about the data layout. Opaque

images are the optimally tiled images as well any target images (color targets, depth-

stencil targets and multisampled images). The primary use for the transparent images is

data transfer to and from the GPU.

 RESOURCE FORMATS AND CAPABILITIES
The resource format is used for specifying image element type and memory view element

type for shader access. It is specified using a XGL_FORMAT format descriptor that

contains information about the numeric format and the channel format. The numeric

format describes how the data is to be interpreted while the channel specification

describes the number of channels and their bit depth. The XGL_NUM_FMT_DS numeric

format is a special case format used specifically for creating depth and stencil images.

The channel layout in memory is specified in this particular order: R, G, B, A, with the

leftmost channel stored at the lowest address. The exceptions are the compressed

formats that have different encoding scheme per block, and formats with alternative

channel ordering which are used to handle certain OS-specific interoperability issues, such

as XGL_CH_FMT_B5G6R5 and XGL_CH_FMT_B8G8R8A8.

Not all channel and numeric format combinations are valid and only a subset of them can

be used for color and depth-stencil targets. An application can query format capabilities

using xglGetFormatInfo(). A separate set of capabilities is reported for linear and optimal

tiling modes in XGL_FORMAT_PROPERTIES structure.

If no capabilities are reported for a given combination of channel format and numeric

format, that format is unsupported. For formats with multisampling capabilities, more

detailed support of multisampling can be validated as described in Multisampled Images.

 COMPRESSED IMAGES
Compressed images are the images that use block compression channel formats

(XGL_CH_FMT_BC1 through XGL_CH_FMT_BC7). Compressed images have several

Explicit GL Proposal Khronos Group Confidential Page 56 of 112

notable differences that an application should properly handle:

▼ Image creation size is specified in texels, but size for copy operations is specified in
compression blocks.

▼ Compressed images can only use optimal tiling. Since linear tiling cannot be used for
compressed images, their uploads should use non-compressed formats of the texel
size equivalent to the block compression size.

 MULTISAMPLED IMAGES
Depth-stencil and color targets can be created as multisampled 2D images. An application

can check multisampled image support for various combinations of samples and other

image creation parameters by attempting to create a multisampled image. The image

creation is lightweight enough to not cause any performance concerns for performing

these checks.

 IMAGE VIEWS
Image objects cannot be directly accessed by pipeline shaders for reading or writing

image data. Instead, image views representing contiguous ranges of the image

subresources and containing additional meta-data are used for that purpose. Views can

only be created on images of compatible types and should represent a valid subset of

image subresources. The resource usage flags should have

XGL_IMAGE_USAGE_SHADER_ACCESS_READ and/or

XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE set for successful creation of image views

of all types.

The types of the image views for shader access that can be created are listed below:

▼ 1D image view

▼ 1D image array view

▼ 2D image view

▼ 2D image array view

▼ 2D MSAA image view

▼ 2D MSAA image array view

▼ Cubemap view

▼ Cubemap array view

▼ 3D image view.

An image view is created by calling xglCreateImageView(). The exact image view type is

Explicit GL Proposal Khronos Group Confidential Page 57 of 112

partially implicit, based on the resource characteristics — resource type, multisampling

settings, and the number of array slices — as well as the view creation parameters. Some

of the image creation parameters are inherited by the view.

The Table 9 describes required image and view creation parameters compatible with

shader resources of different types. Attempting to create a view with image formats or

image types incompatible with the parent image resource fails view creation.

Explicit GL Proposal Khronos Group Confidential Page 58 of 112

Table 9. Image and image view parameters for shader resource
types

Shader resource type Image creation
parameters

Image view creation
parameters

1D image imageType = 1D

width >= 1

height = 1

depth = 1

arraySize = 1

samples = 1

viewType = 1D

baseArraySlice = 0

arraySize = 1

1D image array imageType = 1D

width >= 1

height = 1

depth = 1

arraySize > 1

samples = 1

viewType = 1D

baseArraySlice >= 0

arraySize > 1

2D image imageType = 2D

width >= 1

height >= 1

depth = 1

arraySize >= 1

samples = 1

viewType = 2D

baseArraySlice >= 0

arraySize = 1

2D image array imageType = 2D

width >= 1

height >= 1

depth = 1

arraySize > 1

samples = 1

viewType = 2D

baseArraySlice >= 0

arraySize > 1

2D MSAA image imageType = 2D

width >= 1

height >= 1

depth = 1

arraySize = 1

samples > 1

viewType = 2D

baseArraySlice = 0

arraySize = 1

Explicit GL Proposal Khronos Group Confidential Page 59 of 112

Shader resource type Image creation
parameters

Image view creation
parameters

2D MSAA image array imageType = 2D

width >= 1

height >= 1

depth = 1

arraySize > 1

samples > 1

viewType = 2D

baseArraySlice >= 0

arraySize > 1

Cubemap image imageType = 2D

width >= 1

height = width

depth = 1

arraySize = 6

samples = 1

viewType = CUBE

baseArraySlice = 0

arraySize = 1

Cubemap image array imageType = 2D

width >= 1

height = width

depth = 1

arraySize = 6*N

samples = 1

viewType = CUBE

baseArraySlice >= 0

arraySize = N

3D image imageType = 3D

width >= 1

height >= 1

depth >= 1

arraySize = 1

samples = 1

viewType = 3D

baseArraySlice = 0

arraySize = 1

The number of mip-map levels and array slices has to be a subset of the subresources in

the parent image. If application wants to use all mip-levels or slices in an image, the

number of mip-levels or slices can be set to a special value of XGL_LAST_MIP_OR_SLICE

without knowing the exact number of mip-levels or slices.

It is an application’s responsibility to correctly use image views based on the supported

image format capabilities and usage flags requested at image creation time. For example,

attempting to write to a resource of XGL_CH_FMT_R4G4 or compressed format from a

shader results in undefined behavior. Similarly, attempting to write to an image that did

not have XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE flag specified on image creation

results in undefined behavior.

Explicit GL Proposal Khronos Group Confidential Page 60 of 112

An image view specifies image channel remapping in channels member of

XGL_IMAGE_VIEW_CREATE_INFO structure that can be used to swizzle the channel data

on shader access. This swizzling applies to both image read and write operations.

 FRAMEBUFFER ATTACHMENTS
In Explicit GL there are two different types of Framebuffer Attachments:

▼ Color Attachments

▼ Depth-stencil Framebuffer Attachments

 COLOR ATTACHMENTS
Color Attachments are 2D or 3D image objects created with the

XGL_IMAGE_USAGE_COLOR_TARGET object usage flag that designates them as color

targets. An image cannot be designated as both a color target and a depth-stencil target.

Images cannot be directly bound as color targets, but rather their color target views are

used for that purpose. A color target view is created by calling

xglCreateColorTargetView(). A color target view can represent a contiguous range of

image array slices at any particular mip level. A color target view cannot reference

multiple mip levels.

A variety of different formats is supported for color Attachments. A valid image format

must be specified for the color target view. It can be different from image format,

provided the view format is compatible with the format of the parent image.

A color target image can be accessed from shaders by creating appropriate image views,

provided the image has necessary shader access flags and formats are compatible.

 DEPTH-STENCIL FRAMEBUFFER ATTACHMENTS
The depth-stencil targets are represented by depth-stencil views created from 2D image

marked with XGL_IMAGE_USAGE_DEPTH_STENCIL usage flag and could be created as

depth-only, stencil-only and depth-stencil. The depth formats supported are 16-bit integer

and 32-bit floating point formats, while stencil only supports 8-bit integer format. It is

allowed to mix stencil with any of the supported depth formats. An image cannot be

designated as both a color target and a depth-stencil target.

Images cannot be directly bound as depth-stencil targets, but rather their depth-stencil

views need to be created for that purpose. A depth-stencil view is created by calling

xglCreateDepthStencilView().

Explicit GL Proposal Khronos Group Confidential Page 61 of 112

A depth-stencil target image can be accessed from shaders by creating appropriate image

views, provided the image has necessary shader access flags and formats are compatible.

The Table 10 list all supported depth-stencil formats and underlying storage formats for

depth and stencil aspects.

Table 10. Depth-stencil image formats

Image format
(channel/numeric
format)

Depth aspect format
(channel/numeric
format)

Stencil aspect format
(channel/numeric
format)

XGL_CH_FMT_R8 /

XGL_NUM_FMT_DS

N/A XGL_CH_FMT_R8 /

XGL_NUM_FMT_UINT

XGL_CH_FMT_R16 /

XGL_NUM_FMT_DS

XGL_CH_FMT_R16 /

XGL_NUM_FMT_UINT

N/A

XGL_CH_FMT_R32 /

XGL_NUM_FMT_DS

XGL_CH_FMT_R32 /

XGL_NUM_FMT_FLOAT

N/A

XGL_CH_FMT_R16G8 /

XGL_NUM_FMT_DS

XGL_CH_FMT_R16 /

XGL_NUM_FMT_UINT

XGL_CH_FMT_R8 /

XGL_NUM_FMT_UINT

XGL_CH_FMT_R32G8 /

XGL_NUM_FMT_DS

XGL_CH_FMT_R32 /

XGL_NUM_FMT_FLOAT

XGL_CH_FMT_R8 /

XGL_NUM_FMT_UINT

Only a single aspect: depth or stencil can be accessed by the shader through image view

at a time.

 TARGET BINDING
All provided color targets and depth-stencil target are simultaneously bound to command

buffer state with xglCmdBindTargets(). It is not required for all target information to be

present for binding. Specifying the NULL target information unbinds previously bound

targets, leaving them unbound until the next call to xglCmdBindTargets(). All targets have

to match graphics pipeline expectations at the time of the draw call execution following

the state binding.

Along with target views, an application specifies per target image state that represents

the expected state for all subresources in the view at the draw time. For depth-stencil

view a separate state is specified for depth and stencil aspects. The depth and stencil

states could be different, for example, in case of read-only depth or stencil. For unused

color targets, as well as for unused depth-stencil aspects an application should specify

Explicit GL Proposal Khronos Group Confidential Page 62 of 112

XGL_IMAGE_STATE_UNINITIALIZED_TARGET state.

 READ-ONLY DEPTH-STENCIL VIEWS
Read-only depth-stencil view allows rendering with read-only access to depth or stencil

aspect of an image while it is also used for read access from the graphics pipeline

shaders. Only one of the depth or stencil aspects can be designated as read-only, but not

both at the same time. The read-only depth in a view is indicated by

XGL_DEPTH_STENCIL_VIEW_CREATE_READ_ONLY_DEPTH flag and read-only stencil by

XGL_DEPTH_STENCIL_VIEW_CREATE_READ_ONLY_STENCIL flag at depth-stencil creation

time.

If depth or stencil aspect is used for simultaneous read access as depth-stencil target and

as an image view from the graphic shaders, it has to be in

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY image state. The image

subresources in a read-only depth stencil view that are read from shaders should be

transitioned to that state, as well as this state should be used for binding image view and

appropriate aspect for depth-stencil target.

 VIEW FORMAT COMPATIBILITY
An image view or color target view can be created with a format different from the

original image format. Generally, the formats are compatible when they have the same

texel bit-depth. Compressed formats for image views are compatible with uncompressed

formats of the texel bit-depth equal to the compressed image block size.

To verify a particular view format is compatible with a given image resource, an

application attempts to create a view with the desired format. The view creation is

lightweight enough not to cause any performance concerns for the compatibility checks.

 DATA FEEDBACK LOOP
There is the possibility that the same memory range, an image or its views could be

bound to multiple parts of the pipeline for both read and output operations. An example

would be an image simultaneously bound for Framebuffer Attachment output and texture

fetch, or a memory range bound for index fetch while it is output from one of the pipeline

shaders to a writable memory view. This causes data feedback loops in the pipeline that

can compromise integrity of the data. The validation layer is capable of catching a number

of feedback conditions; however, under normal operation the driver performs no checks

and it is the developer’s responsibility to avoid creating any data feedback loops. Results

are undefined in such cases.

Explicit GL Proposal Khronos Group Confidential Page 63 of 112

 RESOURCE ALIASING
With the flexible memory management in Explicit GL, it might be tempting to alias

memory regions or images by associating them with the same memory location. Aliasing

of raw memory or memory views is allowed and is encouraged as means of sharing data,

saving memory and reducing memory copy operations. The subresources of transparent

images (non-target images with linear tiling) can also be aliased in memory. From this

perspective transparent images behave similarly to memory views due to well defined

data layout.

Different rules apply to opaque images. Because of hidden resource meta-data, tiling

restrictions, and a possibility for introducing hard to track errors, it is illegal to directly

alias opaque images. An application should use views to perform compatible format

conversions for those images. The validation layer in the driver detects cases of aliased

opaque images and reports an error. To avoid triggering this error when reusing memory

for multiple image resources accessed at different times, the application must unbind

memory from one image before rebinding it to the other.

Figure 10 demonstrates examples of allowed memory view aliasing and image

reinterpretation through views.

No assumption about preserving memory contents should be made when reusing memory

between multiple target images (for example, depth-stencil targets, color Attachments,

including multisampled images), and the application should perform proper preparation to

initialize newly memory-bound target image resources.

One has to be careful about tracking memory and image state dependencies and properly

handling their preparation (see Resource States and Preparation) when aliasing memory

or using overlapping memory ranges for different purposes.

Memory view aliasing could be the source of a data feedback loop when multiple aliased

views or memory ranges are simultaneously bound to the graphics pipeline for both

output and read operations (also see Data Feedback Loop). The consistency of data in

that case cannot be guaranteed and results are undefined.

Figure 10.
Examples of data aliasing in Explicit GL

Explicit GL Proposal Khronos Group Confidential Page 64 of 112

 INVARIANT IMAGE DATA
For non-target images, the memory contents are preserved after unbinding memory if

image is in XGL_IMAGE_STATE_DATA_TRANSFER state. Rebinding the same non-target

image object to the previously used memory location preserves image contents. This

generally is not true for binding image objects to image data left in memory from other

image objects. Reusing image memory contents can be accomplished by using

XGL_IMAGE_FLAG_INVARIANT_DATA flag. Creating a new image with exactly the same

parameters and memory binding as an old image provides initial memory contents

equivalent to the old image if XGL_IMAGE_FLAG_INVARIANT_DATA flag is specified at

image creation time for both old and new image object.

 RESOURCE STATES AND PREPARATION
When the GPU accesses a memory or an image, the memory range or image is assumed

to be in a particular state that matches the GPU expectations for its behavior with respect

to cache residency, state of the meta-data, and so on. There has to be consistency

between the memory state or the image state and its current GPU resource usage to

produce correct results. The Explicit GL driver does not keep track of the persistent

memory or image state, nor does it track hazard conditions for performance reasons. In

Explicit GL, it becomes an application’s responsibility to track memory and image state

states and ensure their consistency with operations performed by the GPU. For some

operations, an application also must communicate to the driver the current state at the

time of performing the operation.

In Explicit GL, the memory and image state is expressed in terms of the resource usage.

The resource state represents where an image or memory can be bound, what operations

can be performed on it, and provides abstracted hints for the internal resource

representation. The application transitions memory and images from one state to another

to indicate the change in the GPU usage of applicable resources.

 MEMORY AND IMAGE STATES
There are separate states for memory and images, as they are representative of different

usage and resource bind points. The memory states represented by XGL_MEMORY_STATE

values are used for memory regions directly accessed by the GPU and for memory views

accessed from shaders. The image states represented by XGL_IMAGE_STATE values are

specially used for tracking not only memory state, but also internal image meta-data

states for images. The image state can be thought of as a superset of memory state, and

no separate memory range state needs to be tracked for memory associated with an

Explicit GL Proposal Khronos Group Confidential Page 65 of 112

image object.

When binding memory, memory views, or images to different parts of the pipeline, some

of the attachment points are more restrictive in terms of the acceptable resource states

than others. For example, shader resources could be in variety of states depending on the

pipeline and resource access type, while memory containing draw index data has to be

only in XGL_MEMORY_STATE_INDEX_DATA state. The color targets or depth-stencil

images could be in either XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL or

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL state, which is communicated

to Explicit GL at the target bind time. Naturally, the

XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL state for color targets and

depth-stencil buffers provides the best performance for rendering, but might incur an

overhead when converting to any other access state or when accessing from shaders. In

cases when the application expects to have light rendering followed by image shader

access, it has an option of using

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL state for rendering. A list of

allowed states modes for various operations in Explicit GL is presented in table below.

Explicit GL Proposal Khronos Group Confidential Page 66 of 112

Table 11. Allowed resource states for various operations

Operation or usage Allowed resource states

CPU resource access XGL_MEMORY_STATE_DATA_TRANSFER

XGL_IMAGE_STATE_DATA_TRANSFER

GPU resource copy XGL_MEMORY_STATE_DATA_TRANSFER

XGL_IMAGE_STATE_DATA_TRANSFER

Immediate memory update XGL_MEMORY_STATE_DATA_TRANSFER

Load/save atomic counter XGL_MEMORY_STATE_DATA_TRANSFER

Copy occlusion data XGL_MEMORY_STATE_DATA_TRANSFER

Queue atomics XGL_MEMORY_STATE_QUEUE_ATOMIC

Write timestamp XGL_MEMORY_STATE_WRITE_TIMESTAMP

Resource cloning Any image state except
XGL_IMAGE_STATE_UNINITIALIZED_TARGET

Indirect draw/dispatch argument
data

XGL_MEMORY_STATE_INDIRECT_ARG

Index data XGL_MEMORY_STATE_INDEX_DATA

Graphics shader access XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY

XGL_MEMORY_STATE_GRAPHICS_SHADER_WRITE_ONLY

XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_WRITE

XGL_MEMORY_STATE_MULTI_SHADER_READ_ONLY

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY

XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_WRITE

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY

Compute shader access XGL_MEMORY_STATE_COMPUTE_SHADER_READ_ONLY

XGL_MEMORY_STATE_COMPUTE_SHADER_WRITE_ONLY

XGL_MEMORY_STATE_COMPUTE_SHADER_READ_WRITE

XGL_MEMORY_STATE_MULTI_SHADER_READ_ONLY

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_ONLY

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_WRITE

XGL_IMAGE_STATE_MULTI_SHADER_READ_ONLY

Explicit GL Proposal Khronos Group Confidential Page 67 of 112

Operation or usage Allowed resource states

Color targets XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL

Depth-stencil targets XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY

Image clear XGL_IMAGE_STATE_CLEAR

Resolve source XGL_IMAGE_STATE_RESOLVE_SOURCE

Resolve destination XGL_IMAGE_STATE_RESOLVE_DESTINATION

When memory objects are created or non-target images are bound to memory, they are

assumed to be in XGL_MEMORY_STATE_DATA_TRANSFER or

XGL_IMAGE_STATE_DATA_TRANSFER state. Images that could be used as color

Attachments or depth-stencil buffers are assumed to be in

XGL_IMAGE_STATE_UNINITIALIZED_TARGET state when bound to memory and have to

be transitioned to an appropriate state on a graphics capable queue.

Before unbinding GPU updated images from memory, an application transitions target

images to XGL_IMAGE_STATE_UNINITIALIZED_TARGET state and non-target images to

XGL_IMAGE_STATE_DATA_TRANSFER state. This ensures the GPU caches are properly

flushed and avoids a possibility of data corruption.

 STATE PREPARATIONS
An application indicates a memory range or an image state transition by adding special

preparation commands into the GPU command buffer before the expected change of the

memory or image usage model. A preparation command specifies how a memory range or

an image was used previously (since the last preparation command) and its new usage.

The non-rendering and non-compute operations that affect memory contents, such as

copies, clears, and so on also participate in the change of resource usage and require

preparation commands before and after the operation. The preparation of a list of

memory ranges is added to a command buffer by calling xglCmdPrepareMemoryRegions().

Images are similarly prepared by using xglCmdPrepareImages().

On memory and image preparation, the driver internally generates appropriate GPU stalls,

cache flushes, surface decompressions, and other required operations according to the

resource state transition and the expected usage model. Some of the transitions might be

“no-op” from the hardware perspective, however all preparations have to be performed

Explicit GL Proposal Khronos Group Confidential Page 68 of 112

for compatibility with a wide range of GPUs, including future generations.

It is more optimal to prepare memory or images in batches, rather than executing
preparations on individual resources.

Image preparation is performed at a subresource granularity, according to the specified

range of subresources. Any given subresource must only be referenced once in a

preparation call. Referencing a subresource multiple times within a preparation operation

produces undefined results.

When an image preparation operation is executed, the Framebuffer Attachment and

depth-stencil view of that image cannot be bound in a command buffer, as it causes

undefined rendering behavior following the preparation. The application must rebind

target views that are based on images that have been prepared before the draw.

All memory and image states are available for transitions executed on the graphics and

universal queues, but only a subset is available for transitions executed on compute

queues. The queues defined in extensions might have a different set of rules regarding

the preparations.

When preparing memory ranges or images for transitioning use between queues, the

preparation has to be performed on the queue that was last to use the resource. For

example, if the universal queue was used to render to a color target that is used next for

shader read on a compute queue, the universal queue has to execute a

XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL to

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_ONLY transition. The only exceptions to

this are that transitions from any of the XGL_MEMORY_STATE_DATA_TRANSFER,

XGL_IMAGE_STATE_DATA_TRANSFER and XGL_IMAGE_STATE_UNINITIALIZED_TARGET

states should be performed on the queue that will use resources next.

Failing to prepare memory range or image on the queue that was last to update or
otherwise use resource might result in corruption due to residual data in caches.

Additionally, the queue intended for the next operation might not have hardware capability
to properly perform state transition.

 MULTISAMPLED IMAGE PREPARATION
Preparation of multisampled images requires a correct MSAA state object (see

Multisampling State) to be bound to the current command buffer state. The MSAA state

object used for preparation should be with exactly the same configuration as the one used

for rendering to the multisampled image. If multiple multisampled images with different

MSAA configurations have to be processed, they cannot be prepared on the same

invocation of xglCmdPrepareImages() function.

Explicit GL Proposal Khronos Group Confidential Page 69 of 112

 HAZARDS
The Explicit GL driver does not track any potential resource access hazards such as read-

after-write (RAW), write-after-write (WAW) or write-after-read (WAR) that could result

from resources being written and read by different parts of the pipeline and by the

overlapping nature of the shader execution in draws and compute dispatches. The

resource hazard conditions are expressed in Explicit GL using the preparation operations.

In most cases, the graphics pipeline does not guarantee ordering of element processing in

the pipeline. The ordering of execution between the draw calls is only guaranteed for color

target and Depth Stencil Attachment writes – the Fragments of the second draw are not

written until all of the Fragments from the first draw are written to the targets. Explicit GL

also guarantees ordering of copy operations for memory ranges in

XGL_MEMORY_STATE_DATA_TRANSFER state and images in

XGL_IMAGE_STATE_DATA_TRANSFER state. In all other cases hazards must be addressed

by the application. For example, image writes from shaders could cause write-after-write

hazards.

The read-after-write hazards must to be addressed whenever there is a possibility of the

GPU reading resource data produced by the GPU. Likewise, write-after-write and write-

after-read hazards must be resolved when there is a possibility of concurrent or out-of-

order writes. In case of back-to-back image clears, without transition to any other state,

there is also a possibility of write-after-write hazard that must be resolved by an

application.

Some of the write-after-write hazards, such as executing back to back compute dispatches

that write to the same resource or memory range, do not represent actual change in

image or memory state. These can be resolved by performing a transition to the same

state the image or memory is in. For example, the write-after-write hazard for image

writes from the compute pipeline in the case above can be resolved by a preparation call

with a state transition from the XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY to

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY. While there is not an actual

transition of state, such preparation would be an indication to the Explicit GL driver of a

write-after-write hazard condition. Inserting hazard processing ensures non-overlapping

nature of the copy operations.

There is never a write-after-write hazard when performing operations on memory in

XGL_MEMORY_STATE_DATA_TRANSFER state and on images in
XGL_IMAGE_STATE_DATA_TRANSFER state. When performing back-to-back copies of

data, the Explicit GL driver ensures there are no hazards by ensuring each copy function

call has finished before continuing with the next operation.

Some typical examples of hazard conditions and state transitions are listed in Table 12.

Explicit GL Proposal Khronos Group Confidential Page 70 of 112

Note that preparations are not only used for handling hazard conditions, but to indicate

actual resource usage transition – for example, change from shader readable state to

Framebuffer Attachment use.

Table 12. Hazard and state transition examples

Usage scenario Hazard Transition

Read the Framebuffer

Attachment previously in render-

optimal state

RAW XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL

to

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY

Write to image from compute

shader after it was read by

graphics pipeline

WAR XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY

to

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY

Write to image from compute

shader on consecutive

dispatches

WAW XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY

to

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY

Write to image from Fragment

shader (non-target write) on

consecutive draws

WAW XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY

to

XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY

Draw indirect with data

generated by the compute

shader

RAW XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY

to

XGL_MEMORY_STATE_INDIRECT_ARG

Draw indirect with data loaded

by the CPU

N/A XGL_MEMORY_STATE_DATA_TRANSFER

to
XGL_MEMORY_STATE_INDIRECT_ARG

Draw with indices output by the

compute shader

RAW XGL_MEMORY_STATE_COMPUTE_SHADER_WRITE_ONLY

to
XGL_MEMORY_STATE_INDEX_DATA

Back-to-back image clears WAW XGL_IMAGE_STATE_CLEAR

to

XGL_IMAGE_STATE_CLEAR

Reading the GPU timestamp

data by the CPU

N/A XGL_MEMORY_STATE_WRITE_TIMESTAMP

to

XGL_MEMORY_STATE_DATA_TRANSFER

The list of the hazard conditions in the table above is non-exhaustive and all hazards must

be addressed whenever there is a possibility of reading or writing resource data in

different parts of the pipeline or by different GPU engines, or in case of race conditions.

Explicit GL Proposal Khronos Group Confidential Page 71 of 112

 RESOURCE OPERATIONS
In the Explicit GL API, images and memory content are operated on by resource operation

commands recorded in command buffers. Using command buffers submitted on multiple

queues allows some resource operations to be asynchronous with respect to rendering

and dispatch commands. It is an application’s responsibility to ensure proper

synchronization and preparation of images and memory on accesses from compute and

graphic pipelines and asynchronous resource operations executed on other queues. An

application must make no assumptions about the order in which command buffers

containing resource operations are executed between queues (ordering of command

buffers is guaranteed only within a queue) and should rely on synchronization objects to

ensure command buffer completion before proceeding with dependent operations.

The following operations can be performed on memory and images:

▼ Clearing images and memory

▼ Copying data in memory and images

▼ Updating memory

▼ Resolving multisampled images

▼ Cloning images

 RESOURCE COPIES
An application can copy memory and image data using several methods depending on the

type of data transfer. The memory data can be copied between memory objects with

xglCmdCopyMemory() and a portion of an image could be copied to another image with

xglCmdCopyImage(). The image data can also be copied to and from memory using

xglCmdCopyImageToMemory() and xglCmdCopyMemoryToImage(). Multiple memory or

image regions can be specified in the same function call. None of the source and

destination regions can overlap – overlapping any of the source or destination regions

within a single copy operation produces undefined results. It is also invalid to specify

empty memory region or zero image extents.

Not all image types can be used for copy operations. While images designated as depth

targets can be used as copy source, but they cannot be used as copy destination. An

attempt to copy to a depth image produces undefined behavior.

If application needs to copy data into a depth image, it can do so by rendering a rectangle

that covers the copy region and exporting depth information with Fragment shader.

When copying memory to and from images, the memory offsets have to be aligned to the

Explicit GL Proposal Khronos Group Confidential Page 72 of 112

image texel size (or compression block size for compressed images).

When copying data between images, the source and destination image type must match.

That is, a part of a 2D image can be copied to another 2D image, but it is not allowed to

copy a part of a 1D image to a 2D image. The multisampled images can only be copied

when source and destination images they have the same number of samples. Source and

destination formats do not have to match and appropriate format conversion is performed

automatically if both source and destination image formats support conversion, which is

indicated by XGL_FORMAT_CONVERSION format capability flag. In that case the Fragment

size (or compression block size for compressed images) has to match, and raw image data

is copied.

For compressed image formats the conversion cannot be performed and the image

extents are specified in compression blocks.

Before any of the copy operations can be used, the memory ranges involved in copy

operations must be transitioned to the XGL_MEMORY_STATE_DATA_TRANSFER and

images must be transitioned to the XGL_IMAGE_STATE_DATA_TRANSFER state using an

appropriate preparation command. After the memory or image copy is done, a preparation

command indicating transition of usage from the XGL_MEMORY_STATE_DATA_TRANSFER

or XGL_IMAGE_STATE_DATA_TRANSFER state must be performed before a source or a

destination memory or image can be used for rendering or other operations. With back-to-

back copies to the same resource there is no need to deal with write-after-write hazards

as each copy is guaranteed to finish before starting the next one.

Whenever possible, an application should combine copy operations using the same image

or memory objects, provided the copy regions do not overlap. Batching reduces the
overhead of copy operations.

 RESOURCE CLONING
The image copy operations described in Resource Copies, while flexible, require images to

be put into the XGL_IMAGE_STATE_DATA_TRANSFER state for the duration of the copy

operation. That state transition might incur some overhead and in many cases for target

images might be suboptimal. If a whole resource needs to be copied without a change of

its state, a special optimized clone operation can be used. Images are cloned by calling

xglCmdCloneImageData().

The clone operation can only be performed on images with the same creation parameters;

and memory objects must be bound to the source and destination image before executing

a clone operation. Both source and destination image must be created with

XGL_IMAGE_CREATE_CLONEABLE flag. After cloning, the application should assume the

destination image object is in the same state as the source image before the clone

Explicit GL Proposal Khronos Group Confidential Page 73 of 112

operation. The source resource state is left intact after the cloning.

Even though an application has direct access to the memory store of all resources, it
should not rely on direct memory copy for cloning opaque objects, but should instead use

the specially provided function to properly clone all image meta-data.

If the destination image for cloning operation was bound to a device state as a target

during the clone operation, it needs to be re-bound before the next draw, otherwise

rendering produces undefined results.

 IMMEDIATE MEMORY UPDATES
Sometimes it is necessary to inline small memory updates in command buffers, for

example to quickly feed new parameter values into shaders. In the Explicit GL API this can

be accomplished by using xglCmdUpdateMemory(). The update is performed

synchronously with other operations in a command buffer.

While immediate memory update is a convenient mechanism for small data updates, it can

be relatively slow and inefficient. Use immediate memory update sparingly.

The data size and destination offset for immediate memory updates have to be 4-byte

aligned. The memory range must be in the XGL_MEMORY_STATE_DATA_TRANSFER state

for the immediate updates to work correctly. These updates can be executed on queues of

all types. There is a limit on the maximum size of the uploaded data that can be queried

from the physical GPU properties (see GPU Identification and Initialization); however it is

guaranteed to be at least 256 DWORDs.

 RESOURCE UPLOAD STRATEGIES
Explicit GL provides a number of different data upload options that can be selected to

satisfy a particular set of requirements or tradeoffs. For small infrequent updates

Immediate Memory Updates might be an acceptable choice. For larger uploads there are

generally two methods: direct memory update or indirect update.

To implement direct update method an application maps the CPU accessible memory and

directly loads memory and image data using a CPU memory copy. This method generally

works well for non-image dynamic data, provided the destination memory resides in a

CPU visible heap.

The indirect update method uses two steps for loading data. First, the non-local (remote)

memory object is mapped (or alternatively a pinned memory is used) and data is loaded

into that staging area using the CPU memory copy. Second, the memory or image data is

copied to the final destination using the GPU. If a DMA queue is available, it can be used

Explicit GL Proposal Khronos Group Confidential Page 74 of 112

to upload the memory or image data in parallel with rendering and compute operations.

The indirect update method is particularly useful for loading the data to CPU invisible

heaps and to load data for optimally tiled images. If necessary, the tiling conversion is

performed during the GPU copy.

Since compressed images can only use optimal tiling, the indirect update is the only

suitable method for loading compressed images.

 MEMORY FILL
A range of memory could be cleared by the GPU by filling it with the provided 4-byte value

using xglCmdFillMemory(). The destination and fill size have to be 4-byte aligned. The

memory range needs to be in the XGL_MEMORY_STATE_DATA_TRANSFER state for the fill

operation to work correctly. The memory fill can be executed on queues of all types.

The memory objects in system memory heaps probably can be cleared faster by the CPU
than the GPU.

 IMAGE CLEARS
Image clears are optimized operations to set a clear value to all elements of an aspect or

set of aspects in the image. Both target and non-target image clears are supported by

calling xglCmdClearColorImage() or xglCmdClearColorImageRaw(). Depth-stencil targets

can be cleared by calling xglCmdClearDepthStencil(). These clear operations for target

images are only available in universal command buffers. Non-target color images can also

be cleared in compute command buffers.

Before a color image or depth-stencil clear operation is performed, an application should

ensure the image is in the XGL_IMAGE_STATE_CLEAR state by issuing an appropriate

resource preparation command.

The granularity of clears for non-target images is a subresource. For target images the

granularity depends on the GPU capabilities and number of unique clear colors per image.

If multiColorTargetClears in GPU properties reports XGL_FALSE, only a single clear color (or a

single set of depth and stencil clear values) can be used per target image. In that case,

the whole image first is cleared to a clear color and then subsequently parts of the image

are cleared to exactly the same color. If application would like to use a different clear

color, the whole target image must be cleared. Clearing image to multiple values on GPUs

that do not support that capability produces undefined results.

Explicit GL Proposal Khronos Group Confidential Page 75 of 112

When only a subset of a resource needs to be cleared is smaller than allowed granularity

or multiple clear values per image need to be used, but they are not supported by the
GPU, an application should use the graphics or compute pipeline for the purpose of image

clears by rendering a constant shaded rectangle covering the cleared area.

Clearing an image with xglCmdClearColorImage() automatically performs value conversion

on the application-provided floating point color values as is appropriate for the image

format used. These clears are only allowed for formats that have

XGL_FORMAT_CONVERSION capability flag exposed. For the sRGB formats the clear color

is specified in a linear space, which is appropriately converted by the Explicit GL driver to

sRGB color space. Raw clears perform no format conversion and are available for all image

formats. The provided clear data is directly stored regardless of the format’s numeric type

(including sRGB formats). xglCmdClearColorImageRaw() takes a number of least

significant bits from per-channel UINT color values as appropriate for the image format bit

depth and stores them in the channels that are present in the format. The order of color

channel data specified for clear functions is R, G, B, A.

To clear a depth-stencil image, an application uses xglCmdClearDepthStencil() with

specified depth and stencil clear values. The decision to clear depth or stencil parts of the

image is made according to provided subresource range aspects. If application wants to

clear both depth and stencil, it needs to provide separate subresource ranges for depth

and stencil aspects. The ranges for depth and stencil aspects are fully independent and it

is not required to specify the matching ranges of depth and stencil subresource in one

clear call. It is also allowed to clear depth and stencil separately.

For performance reasons it is advised to clear depth and stencil in the same operation with

matching subresource ranges.

Before clearing a resource, an application must ensure it is not bound to a command

buffer state in the command buffer where it is cleared. If necessary, a resource could be

rebound again after the clear and appropriate preparation operations. Clearing a resource

while it is bound to a GPU state causes undefined results in subsequent rendering

operations.

 MULTISAMPLED IMAGE RESOLVES
An application could implement its own resolve operations using shaders, but for

convenience an optimized resolve implementation is provided in Explicit GL. The built-in

implementation understands all sample counts and is guaranteed to work on a variety of

formats. The resolve operation could be recorded into a command buffer using

xglCmdResolveImage(). The built-in resolve operation can only be executed on universal

queue.

Explicit GL Proposal Khronos Group Confidential Page 76 of 112

The source image must be a 2D multisampled image and the destination must be a single

sample image. The formats of the source and destination image subresources should

match; otherwise the results of the resolve operation are undefined. It is not necessary to

cover the whole destination subresource with the resolve rectangle – an application can

perform partial subresource resolves.

The resolve operation is also supported for depth-stencil images, in which case it is

performed by copying the first sample from the target image to the destination image.

Before a resolve operation can take a place, the source and destination image

subresources must be processed using an appropriate preparation commands, designating

them as resolve source and destination using the XGL_IMAGE_STATE_RESOLVE_SOURCE

and XGL_IMAGE_STATE_RESOLVE_DESTINATION image states, respectively. At the time

of a resource resolve execution, the color target and depth-stencil view of the source and

destination resources must not be bound in a command buffer, otherwise the rendering

that follows the resolve causes undefined behavior. The application should rebind target

views that are based on images that are used as a source or destination of the resolve

operation.

 IMAGE SAMPLERS
Sampler objects, represented in Explicit GL by XGL_SAMPLER handle, describe how images

are processed (for example filtered, converted and so on) on a texture fetch operation. A

sampler object is created by calling xglCreateSampler().

The core Explicit GL specification defines a limited support for border colors available to

application when XGL_TEX_ADDRESS_CLAMP_BORDER addressing mode is used.

Available border colors are specified using XGL_BORDER_COLOR_TYPE. More options for

border colors may be exposed through an extension.

 RESOURCE SHADER BINDING
Shader resources such as memory views and images, as well as the sampler object

references are not directly bound to pipeline shaders; they are grouped into monolithic

descriptor sets that are bound to a command buffer state. Pipeline Resource Access

discusses in greater detail how descriptor sets are mapped to shaders and bound to the

state. In addition to descriptor sets, an application can use the Dynamic Memory View.

 DESCRIPTOR SETS
A descriptor set is a special state object that conceptually can be viewed as an array of

shader resource or sampler object descriptors or pointers to other descriptor sets. A

Explicit GL Proposal Khronos Group Confidential Page 77 of 112

portion of the descriptor set is bound to command buffer state to be accessed by the

shaders of the currently active pipeline. A descriptor set is created by calling

xglCreateDescriptorSet().

There could be several descriptor sets available to the pipeline. Shader resources and

samplers referenced in descriptor sets are shared by all shaders forming a pipeline. The

number of descriptor sets that can be bound to a command buffer state is can be queried

from physical GPU properties, but it is guaranteed to be at least 2. Additionally, more

descriptor sets can be accessed hierarchically through the descriptor sets directly bound to

the pipeline. An example of descriptor set and its bindings is shown in Figure 11.

Explicit GL imposes no limits on the size of the descriptor set or the total number of

created descriptor sets, provided they fit in memory. An application can create larger

descriptor sets than necessary for a given pipeline, sub-allocate a range of slots and bind

descriptor set ranges to a pipeline with an offset. Ability to create large descriptor sets

and sub-allocate descriptor set chunks provides a potential tradeoff between memory

usage and complexity of descriptor set management.

When a descriptor set is created and its memory is bound, the contents of a descriptor set

are not initialized. An application should explicitly initialize a descriptor set by binding

Figure 11.
Descriptor set binding example

Explicit GL Proposal Khronos Group Confidential Page 78 of 112

shader resources and samplers or by clearing descriptor set slots as described in

Descriptor Set Updates.

There are many strategies for organizing shader resources in descriptor sets, which

provides a wide range of CPU and GPU performance trade-offs. One example of such

strategy is to divide sampler and resource objects into separate descriptor sets: one

dedicated to resources and another for samplers – for simplicity of object management.

Another strategy is to mix resources and samplers in the same descriptor set, but group

them into descriptor sets according to the frequency of update. For example, one

descriptor set could be dedicated for frequently changing memory views and images.

Using multiple directly bound descriptor sets provides a lot of freedom in managing

resources and samplers for shader access.

 DESCRIPTOR SET UPDATES
Descriptor sets can be initially constructed and later updated by an application outside of

command buffer execution. Sets can be updated multiple times; however, when updating,

an application should ensure they are not currently used for rendering.

An update for a descriptor set is initiated by calling xglBeginDescriptorSetUpdate(),

followed by calls to one of the following functions to update ranges of descriptor set slots

with objects that need to be bound to them – xglAttachMemoryViewDescriptors() for

memory views, xglAttachImageViewDescriptors() for image views,

xglAttachSamplerDescriptors() for samplers and xglAttachNestedDescriptors() for building

hierarchical descriptor sets. After an update is complete, an application calls

xglEndDescriptorSetUpdate(). Failure to match xglBeginDescriptorSetUpdate() with a call

to xglEndDescriptorSetUpdate(), or performing an update without beginning the update,

results in undefined behavior.

Image objects cannot be directly bound to resource descriptor sets; image views are used

instead. An image view always references the most recent memory association of the

parent image object. Binding an image to a descriptor set takes a snapshot of the memory

association as it was defined at the time of the binding. Later changes to images memory

binding are not reflected in previously built descriptor sets. The memory for shader access

is bound as described in Memory Views.

For performance reasons it is recommended to avoid calling
xglBeginDescriptorSetUpdate() and updating descriptor set while the memory object

associated with descriptor set is used for rendering.

To create complex descriptor set hierarchies as shown in Figure 11, descriptor set ranges

are hierarchically bound to slots of other descriptor sets. It is allowed to reference

descriptor sets hierarchically within the same descriptor set.

Explicit GL Proposal Khronos Group Confidential Page 79 of 112

The descriptor set update operation produces undefined results if the application attempts

to bind a sampler or shader resource to a slot that does not exist in a descriptor set.

To reset a range of descriptor set slots to an unbound state, an application calls

xglClearDescriptorSetSlots(). There is no requirement for clearing descriptor set slots

before binding new objects, but it could be useful for assisting in debugging an

unexpected behavior related to bound descriptor set objects.

Each individual descriptor set update might be fairly CPU-heavy due to a possibility of a
memory mapping operation on a call to xglBeginDescriptorSetUpdate() and memory

unmapping on a call to xglEndDescriptorSetUpdate(). In case of heavy dynamic descriptor
set updates it is recommended to create larger descriptor sets and use them as pools of

descriptor slots in ranges that are individually bound to the GPU state. In case of a large
descriptor set used as a pool, only a single set of xglBeginDescriptorSetUpdate() and

xglEndDescriptorSetUpdate() calls per large descriptor set should be necessary.

An application can create and initialize descriptor set objects ahead of time or it can

update them on the fly as necessary. Ranges of descriptor set slots must not be updated if

they are referenced in command buffers scheduled for execution. An application is

responsible for tracking the lifetime of descriptor sets and their slot reuse.

Explicit GL Proposal Khronos Group Confidential Page 80 of 112

Chapter V.

STATE, SHADERS, AND

PIPELINES

 EXPLICIT GL STATE OVERVIEW
The configuration of the GPU device and how rendering happens is described by the state

data. State is specified by binding various state objects and setting state values in

command buffers. When command buffer recording starts, all GPU state is undefined and

an application should explicitly initialize all relevant state before the first draw or dispatch

call. Failing to bind all required state produces undefined results. State is persistent only

within the boundaries of a command buffer. For performance reasons the application

should avoid binding state redundantly.

The compute command buffers have only one instance of the GPU state – compute. The

universal command buffers have two separate GPU states for tracking compute and

graphics related state information.

 STATIC VS. DYNAMIC STATE
Conceptually there are several types of state data in Explicit GL – the dynamic state that is

a configurable part of the state that is set in command buffers, and the static state used

for the pipeline construction. The dynamic state is represented by state block objects,

pipelines objects and others.

Explicit GL Proposal Khronos Group Confidential Page 81 of 112

Table 13 provides a summary of the dynamic state that can be bound or set in command

buffers for graphics and compute operations.

Table 13. Summary of dynamic command buffer state

Dynamic state type Graphics operations Compute operations

Index data YES NO

Pipeline YES YES

Descriptor sets YES YES

Dynamic memory view YES YES

Framebuffer Attachments YES NO

Rasterizer state YES NO

Viewport and scissor state YES NO

Color blender state YES NO

Depth-stencil state YES NO

Multisampling state YES NO

Static state in graphic pipelines is discussed in Graphics Pipeline State.

 DYNAMIC STATE OBJECTS
The dynamic state is represented by state objects. The state objects are created by the

driver from the application provided state descriptions and are referenced using handles.

There are separate state objects for different fixed function blocks. The following types of

dynamic state objects exist in Explicit GL :

▼ Rasterizer state (XGL_RASTER_STATE_OBJECT)

▼ Viewport and scissor state (XGL_VIEWPORT_STATE_OBJECT)

▼ Color blender state (XGL_COLOR_BLEND_STATE_OBJECT)

▼ Depth-stencil state (XGL_DEPTH_STENCIL_STATE_OBJECT)

▼ Multisampling state (XGL_MSAA_STATE_OBJECT)

Explicit GL API specifies a set of matching bind points that state objects blocks can be

attached to using xglCmdBindStateObject(). All state bind points must have dynamic state

objects bound for rendering operations. The state specified in the state blocks has to

Explicit GL Proposal Khronos Group Confidential Page 82 of 112

match pipeline expectations at the draw time.

 RASTERIZER STATE
The rasterizer state object is represented by XGL_RASTER_STATE_OBJECT handle. It describes

primitive screen space orientation and rasterization rules, as well as specifies used depth

bias. The raster state object is created by calling xglCreateRasterState(). The rasterizer

state is bound to XGL_STATE_BIND_RASTER binding point.

 VIEWPORT AND SCISSOR STATE
The viewport state object is represented by XGL_VIEWPORT_STATE_OBJECT handle. It

describes viewports used for rendering and optional scissors corresponding to the

viewports. The viewport state object is created by calling xglCreateViewportState(). The

viewport state is bound to XGL_STATE_BIND_VIEWPORT binding point.

 COLOR BLENDER STATE
The color blender state object is represented by XGL_COLOR_BLEND_STATE_OBJECT handle. It

describes color blending state for the pipelines that enable blending operations. The color

blender state is created by calling xglCreateColorBlendState(). The color blender state is

bound to XGL_STATE_BIND_COLOR_BLEND binding point.

A blender state defined to use the second Fragment shader output is considered to be the

dual source blender state. Dual-source blending is specified by one of the following blend

values:

▼ XGL_BLEND_SRC1_COLOR

▼ XGL_BLEND_ONE_MINUS_SRC1_COLOR

▼ XGL_BLEND_SRC1_ALPHA

▼ XGL_BLEND_ONE_MINUS_SRC1_ALPHA

A blender state object with dual-source blending must only be used with pipelines

enabling dual source blend.

The blend enable specified in color blender state for each color target must match the

blend state defined in the pipelines it is used with. Mismatches between pipeline

declarations and actually bound blender state objects causes undefined results.

Explicit GL Proposal Khronos Group Confidential Page 83 of 112

 DEPTH-STENCIL STATE
The depth-stencil state object is represented by XGL_DEPTH_STENCIL_STATE_OBJECT handle.

It describes depth-stencil test operations in the graphics pipeline. The depth-stencil state

is created by calling xglCreateDepthStencilState(). The depth-stencil state is bound to

XGL_STATE_BIND_DEPTH_STENCIL binding point.

 MULTISAMPLING STATE
The multisampling state object is represented by XGL_MSAA_STATE_OBJECT handle. It

describes the multisampling anti-aliasing (MSAA) options for the graphics rendering. The

multisampling state is created by calling xglCreateMsaaState(). The multisampling state is

bound to XGL_STATE_BIND_MSAA binding point.

Specifying one sample in a multisampling state disables multisampling. A valid

multisampling state must be bound even when rendering to single sampled images. The

sampling rates defined in the multisampling state are uniform throughout the graphics

pipeline.

Using multisampling state objects that have different sample pattern or different

configuration for rendering to the same set of color or depth-stencil targets produces an

undefined result.

 DEFAULT SAMPLE PATTERNS
In Explicit GL the application cannot query sample positions for the rasterizer or images

from within a shader, but rather should rely on the knowledge of the patterns. Figure 12

defines default sample patterns in Explicit GL for 2-sample, 4-samples and 8-samples.

Explicit GL Proposal Khronos Group Confidential Page 84 of 112

 SHADERS
Shader objects are used to represent code executing on programmable pipeline stages.

The input shaders in Explicit GL are specified in binary intermediate language (IL) format.

The currently supported intermediate language is a subset of XGL IL. The shaders can be

developed in IL assembly or high-level languages and compiled off-line to a binary IL. The

Explicit GL API can be considered language agnostic as it could support other IL options in

the future, provided that they expose a full shader feature set required by Explicit GL.

Shader objects, represented by XGL_SHADER handles, are not directly used for rendering

and are never bound to a command buffer state. Their only purpose is to serve as helper

objects for pipeline creation. During the pipeline creation, shaders are converted to native

GPU shader instruction set architecture (ISA) along with the relevant shader state. Once a

pipeline is formed from the shader objects, the shader objects can be destroyed since the

pipeline contains its own compiled and optimized shader representation. Shader objects

help to reduce pipeline construction time when the same shader is used in multiple

pipelines. Some of the compilation and pre-linking steps can be performed by the Explicit

GL driver only once on shader object construction instead of during each pipeline creation.

Since shaders are not directly used by the GPU, they never require GPU video memory

binding.

A shader object for any shader stage is created by calling xglCreateShader().

 PIPELINES
The Explicit GL API supports two principal types of pipelines – compute and graphics. In

Figure 12.
Default sample patterns

Explicit GL Proposal Khronos Group Confidential Page 85 of 112

the future more types of pipelines could be added to support new GPU architectures. All

of the pipeline objects in Explicit GL, regardless of their type, are represented by

XGL_PIPELINE handle. There are separate pipeline creation functions for different pipeline

types.

The compute pipeline represents a compute shader operation. The graphics pipeline

encapsulates the fixed function state and shader based stages, all linked together into a

special monolithic state object. It defines the communication between the pipeline stages

and the flow of data within a graphics pipeline for rendering operations. Linking the whole

pipeline together allows the optimization of shaders based on their input/outputs and

eliminates expensive draw time state validation. This monolithic pipeline representation is

bound to the GPU state in command buffers just like any other dynamic state.

Currently, the majority of developers create many thousands of different shaders and

experience difficulties in managing this shader variety. In fact, shader management has

been identified by many developers as one of their top problems. Given the combinatorial

explosion that can otherwise occur, Explicit GL’s programming model is designed with the

expectation that future applications create a moderate number of linked pipelines

(possibly hundreds or low thousands) to cover a variety of rendering scenarios and rely

more on uber-shader and data driven approaches to manage the variety of rendering

options.

 COMPUTE PIPELINES
The compute pipeline encapsulates a compute shader and is created by calling

xglCreateComputePipeline() with a compute shader object handle in the pipeline creation

parameters. It is invalid to specify XGL_NULL_HANDLE for the compute shader.

 GRAPHICS PIPELINES
The graphics pipeline is created by calling xglCreateGraphicsPipeline() according to the

shader objects and the fixed function pipeline static state specified at creation time. An

example of a full graphics pipeline configuration and its bound state is shown in Figure 13.

Explicit GL Proposal Khronos Group Confidential Page 86 of 112

The nomenclature for shaders and fixed function blocks from the pipeline diagram are

explained in Table 14.

Figure 13. Graphics pipeline and its state

Explicit GL Proposal Khronos Group Confidential Page 87 of 112

Table 14. Graphics pipeline stages

Stage Type Description

IA Fixed function Input assembler

VS Shader Vertex shader

HS Shader Tessellation control shader

TESS Fixed function Tessellator

DS Shader Tessellation evaluation shader

GS Shader Geometry shader

RS Fixed function Rasterizer

PS Shader Fragment shader

DB Fixed function Depth-stencil test and output

CB Fixed function Color blender and output

The following are the rules for building valid graphics pipelines:

▼ a vertex shader is always required, while other shaders might be optional, depending
on pipeline configuration;

▼ a fragment shader is always required for color output and blending, but is optional for
depth-only rendering;

▼ both tessellation control and tessellation evaluation shaders must be present at the
same time to enable tessellation.

Presence of the shader stage in a pipeline is indicated by specifying a valid shader object.

The application uses XGL_NULL_HANDLE value to indicate the shader stage is not needed.

Presence of some of the fixed function stages in the pipeline is implicitly derived from

enabled shaders and provided state. For example, the fixed function tessellator is always

present when the pipeline has valid Tessellation Control and Tessellation Evaluation

shaders.

The following table lists the most common examples of valid graphics pipeline

configurations.

Explicit GL Proposal Khronos Group Confidential Page 88 of 112

Table 15. Examples of valid graphics pipeline configurations

Pipeline configuration Description

IA-VS-RS-DB Depth-stencil only rendering pipeline.

IA-VS-RS-PS-DB Depth/stencil only rendering pipeline with Fragment shader
(for example, using Fragment shader for alpha test).

IA-VS-RS-PS-CB Color only rendering pipeline.

IA-VS-RS-PS-DB-CB Color and depth-stencil rendering pipeline.

IA-VS-GS-RS-PS-DB-CB Rendering pipeline with geometry shader.

IA-VS-HS-TESS-DS-RS-PS-DB-CB Rendering pipeline with tessellation.

IA-VS-HS-TESS-DS-GS-RS-PS-DB-CB Rendering pipeline with tessellation and geometry shader.

Other pipeline configurations are possible, as long as they follow the rules outlined in this

section of the document.

 GRAPHICS PIPELINE OPERATION
In the Explicit GL environment, rendering is initiated by draw operations from a command

buffer. Depending on the topology specified in a pipeline, the type of draw operation, and

presence of index data, the vertex IDs are determined and provided to vertex shader

threads. The vertex shader explicitly fetches vertices from bound resources or generates

vertex data analytically, performs necessary computations and outputs data. The vertex

shader outputs are automatically forwarded to subsequent stages in the pipeline.

Optionally, geometry could be further processed by tessellator and geometry shaders

before it is rasterized. After geometry is rasterized, it is processed by the Fragment shader

and optionally forwarded to the color and depth fixed function units for processing and

output.

 VERTEX FETCH IN GRAPHICS PIPELINE
Unlike other APIs, Explicit GL does not provide special handling for vertex buffers and

does not implicitly fetch vertex data before it is passed to the vertex shader. It is an

application’s responsibility to treat vertex buffers as any other memory views and

generate vertex shaders to fetch them.

The vertex or index offset as well instance offset, in case of instanced rendering, are

passed as inputs to the vertex shader to compute a proper vertex ID.

Explicit GL Proposal Khronos Group Confidential Page 89 of 112

 GRAPHICS PIPELINE STATE
Each of the fixed-function stages of the pipeline has the static part of the state that is

included in the pipeline.

Input Assembler Static State

The input assembler static state for the graphics pipeline is specified using

XGL_PIPELINE_IA_STATE structure. The state includes information about primitive

topology and vertex reuse.

The XGL_TOPOLOGY_PATCH primitive topology is only valid for tessellation pipelines;

likewise, non-patch topologies cannot be used with tessellation pipelines. Mismatching

primitive topology and tessellation fails graphics pipeline creation.

An application can use disableVertexReuse in the input assembler state to indicate that post-

transform vertex reuse should be disabled. Normally vertex reuse should be enabled for

better performance; however there might be cases where more predictable execution of

vertex or geometry shader is needed. This setting is just a hint and does not guarantee

vertex reuse. Under some circumstances, vertex reuse might be disabled by the driver,

even if the application allows it.

Vertex reuse should generally be disabled if vertex, or geometry shader, or any of the
tessellation shaders write data out to memory or images.

enablePrimitiveRestart and primitiveRestartIndex allow a particular index value to be specified that will

trigger a new primitive to be started with the following index. This is useful to drawing multiple

triangle strips from a single draw command. Enabling this feature may have a negative

performance impact on some implications, and should be left disabled unless the feature is

required.

provokingVertex chooses whether the first or last vertex in a primitive supplies the values for flat

shaded attributes, among other things. The default, should the value be left set to 0, is

XGL_PROVOKING_VERTEX_LAST.

Tessellator Static State

The tessellator static state for the graphics pipeline is specified using

XGL_PIPELINE_TESS_STATE structure. The state includes information about the

tessellation patches.

The tessellator static state is only used when valid Tessellation Control and Tessellation

Evaluation shaders are specified in the graphics pipeline. The patchControlPoints parameter

is used to define the number of control points used by the pipeline. The number of control

points must be greater than 0 and less than or equal to 32 when tessellation is enabled. It

Explicit GL Proposal Khronos Group Confidential Page 90 of 112

must be zero when tessellation is disabled.

The tessellator state includes ability to specify the optimization hint that indicates to the

Explicit GL driver what target tessellation factor to optimize the pipeline for. For example,

if an average tessellation factor for a set of objects rendering with the pipeline is expected

to be around 7.0, the application could specify that value in optimalTessFactor. If application

is unsure of optimal tessellation factor for the pipeline, the value should be left at zero.

Rasterizer Static State

The rasterizer static state for the graphics pipeline is specified using

XGL_PIPELINE_RS_STATE structure. The state includes information about the depth clip

mode and rasterization discard. Rasterization discard is a feature that allows rasterization

to be disabled even when a fragment shader is otherwise bound and enabled. It is useful

when the front-end of the pipeline has visible side effects such as writing to images or

modifying atomic counters, but fragment shader execution is not required. It is also used

in some performance analysis tools to override application state and disable rasterization

during bottleneck analysis.

Depth-stencil Static State

The depth-stencil static state for the graphics pipeline is specified using

XGL_PIPELINE_DB_STATE structure. The state includes information about the depth-

stencil target format that is used with the pipeline.

The pipeline depth-stencil format specification must match the actual depth-stencil target

format bound at draw time. Mismatch of the depth-stencil target and pipeline format

expectations results in undefined behavior. If no depth-stencil is bound for rendering, the

pipeline should specify XGL_CH_FMT_UNDEFINED channel format and

XGL_NUM_FMT_UNDEFINED numeric format.

Color Output and Blender Static State

The color output and blender static state for the graphics pipeline is specified using

XGL_PIPELINE_CB_STATE structure. The state includes information about color target

formats, blending and other color output options.

The blend enable and the color target format specified at pipeline creation must match

the formats of the color target views bound at draw time. Mismatch of target formats or

blend enable flags results in undefined rendering. If a target is not bound at draw time, its

write mask has to be set to zero and the pipeline should specify

XGL_CH_FMT_UNDEFINED as the channel format and XGL_NUM_FMT_UNDEFINED as the

numeric format for the target. For a valid color target output the write mask should

contain only channels present in the format.

When dual source blending is enabled (see Color Blender State), only a single color target

Explicit GL Proposal Khronos Group Confidential Page 91 of 112

can be specified and it must have blend enabled. A dynamic blender state object with dual

source blending modes should only be used with pipelines enabling dual source blending.

Any mismatch between the dual source blending pipeline declaration and the bound

blender state object causes undefined results.

XGL_LOGIC_OP_COPY is the default logic operation, choosing the unmodified source

value. When the logic op is non-default, blending must be disabled for all color

Attachments. The logic operation may only be non-default on targets of

XGL_NUM_FMT_UINT and XGL_NUM_FMT_SINT numeric formats, other formats fail

pipeline creation.

 GRAPHICS PIPELINE SHADER LINKING
Shaders in the pipeline are linked through matching the shader input and output registers

by index. There is no semantic matching and it is a responsibility of the high-level

compiler, or IL translator, or an application to guarantee compatible shader inputs and

outputs.

 PIPELINE SERIALIZATION
For large and complex shaders, the shader compilation and pipeline construction could be

quite a lengthy process. To avoid this costly pipeline construction every time an

application links a pipeline, Explicit GL allows applications to save the pre-compiled

pipelines as opaque binary objects and later load them back. An application only needs to

incur a one-time pipeline construction cost on the first application run or even at

application installation time. It is the application’s responsibility to implement a pipeline

cache and save/load binary pipeline objects.

A pipeline is saved to memory by calling xglStorePipeline(). Before calling

xglStorePipeline(), the application should initialize the available data buffer size in the

location pointed to by pDataSize. Upon completion, that location contains the amount of

data stored in the buffer. To determine the exact buffer requirements an application can

call xglStorePipeline() function with NULL value in pData. xglStorePipeline() fails if

insufficient data buffer space is specified.

A pipeline object is loaded from memory with xglLoadPipeline(). On loading a pipeline

object the driver performs a hardware and driver version compatibility check. If the

versions of the current hardware and the driver do not match those of the saved pipeline,

the pipeline load fails. The application is required to gracefully handle the failed pipeline

loads and recreate the pipelines from scratch.

Explicit GL Proposal Khronos Group Confidential Page 92 of 112

A pipeline can be saved and loaded with debug infrastructure enabled, which keeps

internal data pertaining to debugging and validation in the serialized pipeline object. These
versions of pipeline objects are intended for debugging only and cannot be loaded when

validation is disabled. Mismatching debug capabilities of pipelines with validation currently
enabled on device results in error.

 CONSTANT BASED PIPELINE COMPILATION
There are some cases when it is not desirable to use uber-shaders for performance

reasons and an application prefers to create variety of slightly specialized shaders. One

way to implement such variety of shader pipelines would be to pre-compile all possible

shader versions off-line and use them for pipeline creation. The constant based pipeline

compilation feature available in Explicit GL reduces the need for off-line creation of large

number of similar shaders and simplifies the application’s task of managing shaders when

constructing pipelines.

The application is able to build uber-shaders with some constants that are not known at

shader compilation time and are provided at the pipeline linkage time. Explicit GL uses

Uniform Buffer facilities available in shader IL to designate shader data that would be

specified at pipeline linkage. The IL Uniform Buffers in Explicit GL shaders can only be

used for this purpose; an application must use conventional memory views for passing

run-time data to shaders. Multiple link Uniform Buffers per shader can be used, and each

shader in a pipeline could have its own set of link time Uniform Buffers. The constant data

layout provided at pipeline link time must match the shader expectations, and all of the

shader referenced constant data must be available for linking. Failing to match constant

data layout or to provide sufficient amount of data results in undefined behavior.

The link time constants are specified per shader stage as a part of the

XGL_PIPELINE_SHADER structure when creating the pipeline.

 PIPELINE BINDING
A pipeline object is bound to one of the pipeline bind points in the command buffer state

by calling the xglCmdBindPipeline() function. The pipeline bind point is specified in

pipelineBindPoint parameter and must match the creation type of the pipeline object being

bound. Compute command buffers can only have compute pipelines bound and universal

command buffers can have both graphics and pipeline bound.

As soon as a new pipeline object is bound within a command buffer, it remains in effect

until another pipeline is bound or the command buffer is terminated. A pipeline object can

be explicitly unbound by using XGL_NULL_HANDLE for the pipeline parameter, leaving the

pipeline in an undefined state. Pipeline unbinding is optional and should mainly be used

Explicit GL Proposal Khronos Group Confidential Page 93 of 112

for debugging.

 PIPELINE DELTAS
Graphics pipeline objects represent the entire graphics pipeline as a large, monolithic
object. Binding a new graphics pipeline may require a large amount of state commands
to be sent to the GPU by the driver, consuming driver CPU overhead and front-end
overhead in the GPU. Explicit GL offers a way to reduce these overheads with pipeline
delta objects.

A pipeline delta object is created by specifying two existing XGL_PIPELINE objects, p1 and
p2. The driver will examine these two objects and compute the least amount of state
possible to transition from p1 to p2. While building a command buffer, if p1 is the current
pipeline state, the application can choose apply this pipeline delta in lieu of binding p2.

For implementations where this up front optimization is not helpful, applying the delta
may simply bind p2. If the application applies a delta whose p1 state does not match the
currently bound pipeline, results are undefined.

 PIPELINE RESOURCE ACCESS
Pipeline shaders access shader resources specified in descriptor sets bound to the

command buffer state at the time of executing a draw or dispatch command. Additionally,

a dynamic memory view can be used for buffer-like access to memory. The expected

descriptor set layout and its mapping to shader resources is specified by the application at

pipeline creation time.

 PIPELINE RESOURCE MAPPING
On the one hand, hierarchical descriptor set structures bound to the pipeline are shared

by all shaders forming the pipeline. On the other hand, the shaders themselves use flat

resource addressing scheme with different resource namespaces for distinct resource

usages (read-only textures, UAVs, Uniform Buffers and etc.), as specified in the IL

definition, and have these separate namespaces for each pipeline shader. To reconcile

these differences, mapping of shader resources and samplers to the descriptor sets is

performed at pipeline construction time by means of the descriptor set remapping

structures. If no mapping is specified, the pipeline creation fails. The mapping has to be

provided for all resources that are used by a given IL shader for all active shader stages.

Even if it is known that resource access is optimized out by the Explicit GL driver, it has to

be present in remapping data if it is declared in IL. Failing to specify all shader resource

mappings to the expected descriptor set hierarchy results in a pipeline creation failure.

Explicit GL Proposal Khronos Group Confidential Page 94 of 112

The resource remapping structure can be different per shader stage, such that different

shader resource slots can be mapped to the same descriptor set slot in a descriptor set

hierarchy. If multiple shaders in a pipeline resolve to the same resource, their resource

type expectations must match, otherwise pipeline creation fails. For example, a cubemap

image from a Fragment shader cannot be aliased to a resource slot that is expected to

provide a buffer reference for a vertex shader.

The CPU side structures, used to describe descriptor set mapping, closely follow the

desired descriptor set hierarchy as is referenced by the GPU. Each of the descriptor set

slots in a bound range is represented by a structure describing the shader IL object type

and the shader resource slot it maps to. If a descriptor set element does not map to any

IL shader resource, it must have the XGL_SLOT_UNUSED object type specified. An

indirection to the next level of descriptor set hierarchy is specified by using the

XGL_SLOT_NEXT_DESCRIPTOR_SET object type and a pointer to an array of next level

descriptor set elements. A shader resource slot can be referenced only once in the whole

descriptor set hierarchy. Specifying multiple references to a resource slot produce

undefined results.

Explicit GL Proposal Khronos Group Confidential Page 95 of 112

Figure 14 shows an example of the descriptor set remapping structures for a simple

pipeline consisting of vertex and Fragment shaders and a two level resource descriptor set

hierarchy. An application should ensure there are no circular dependencies in the

remapping structure or a soft hang in the driver might occur.

 DESCRIPTOR SET BINDING
Descriptor sets are bound to command buffer state using xglCmdBindDescriptorSet().

There are separate descriptor sets for each pipeline type – graphics and compute. The

pipeline bind point specified in the xglCmdBindDescriptorSet() indicates whether the

descriptor sets should be available to the graphics or compute pipeline. For command

buffers to be executed on compute queues, the only valid pipeline type option is

XGL_PIPELINE_BIND_POINT_COMPUTE.

Specifying XGL_NULL_HANDLE for the descriptor set object unbinds the previously bound

descriptor set. Failing to bind a descriptor set hierarchy that is compatible with the

Figure 14. Descriptor set mapping to pipeline shaders

Explicit GL Proposal Khronos Group Confidential Page 96 of 112

pipeline shader requirements produces undefined results.

 DYNAMIC MEMORY VIEW
One of the memory views referenced in a pipeline shader can be mapped to a dynamic

memory view. The dynamic memory view can be used to send some frequently changing

constants and other data to pipeline shaders without a need to manage descriptor sets.

The dynamic memory view is directly bound to the command buffer state for a given

pipeline type by describing the view defined by XGL_MEMORY_VIEW_ATTACH_INFO

structure passed to xglCmdBindDynamicMemoryView() function. Use of the dynamic

memory view is optional, but is highly encouraged.

The resource mapping for dynamic memory view is specified individually per shader stage.

The dynamic memory view can be mapped to an IL resource slot or IL UAV slot by

specifying the shader object type as XGL_SLOT_SHADER_RESOURCE or

XGL_SLOT_SHADER_UAV, respectively. If a shader does not need to use a dynamic

memory view, the shader object type in the mapping must be set to XGL_SLOT_UNUSED.

The same shader resource cannot be specified in dynamic memory view mapping and

descriptor set mapping of pipeline configuration info in the same shader. Specifying

resource in both mappings fails the pipeline creation. However, multiple shaders withing a

pipeline might map resources differently.

It is invalid to specify dynamic memory view mapping for a shader resource slot that is

used for non-buffer shader resources. Failure to match shader resource type produces

undefined results.

Explicit GL Proposal Khronos Group Confidential Page 97 of 112

Chapter VI.

MULTI-DEVICE OPERATION

 OVERVIEW
Explicit GL empowers applications to explicitly control multi-GPU operation and enables

highly flexible and sophisticated solutions that could go far beyond alternate frame

rendering (AFR) functionality. At the API level, each Explicit GL capable GPU in a system is

presented as an independent device that is managed by an application.

The following features are exposed by the Explicit GL API for implementing multi-device

functionality at the application level:

▼ Device discovery and identification

▼ Memory sharing

▼ Synchronization object sharing

▼ Peer-to-peer transfers

▼ Composition and cross-device presentation

 MULTIPLE DEVICES
The overview of GPU device discovery and initialization was covered in GPU Identification

and Initialization. Several additional aspects of device discovery have to be considered in

the case of multiple Explicit GL GPUs. First, if multiple Explicit GL capable GPU devices are

present in the system, the application must decide which GPU or multiple GPUs are the

Explicit GL Proposal Khronos Group Confidential Page 98 of 112

best choice for executing rendering or other operations, and how to split workloads across

devices, should it choose to target rendering on multiple GPUs. Some platforms may

provide additional multi-device functionality depending on a system’s GPU topology, so the

application must also query and consider the availability of these features as well.

GPU DEVICE SELECTION

When deciding what GPU to use for rendering or other operations, an application looks at

a number of different factors:

▼ Display connectivity

▼ General GPU capabilities

▼ Type of the GPU

▼ Performance

▼ Multi-device capabilities

The discovery of display connectivity must be provided via an OS-specified Window

System Interface (WSI) extension. In addition to display connectivity, a WSI extension

must report what displays can be used for cross-device presentation.

The general GPU capabilities and performance are reported by the Explicit GL core API

using xglGetGpuInfo() function as described in GPU Identification and Initialization. Along

with that information, the device compatibility information allows applications to decide

how to implement multi-device operation in a best possible way.

There are two aspects to device compatibility. The first aspect is matching GPU features

and image quality. Second is the ability to use advanced multi-device functionality:the

ability to share memory and synchronization objects and to composite displayable output.

Not all GPUs or GPU combinations could expose these extra features. Multi-device

compatibility can be queried with xglGetMultiGpuCompatibility(). The compatibility

information is returned in the XGL_GPU_COMPATIBILITY_INFO structure containing

various compatibility flags.

Any devices created on compatible GPUs are considered compatible devices, inheriting the

compatibility flags of the physical GPUs.

 IMAGE QUALITY MATCHING
Different generations of GPUs might produce images of slightly different quality. In

particular, texture filtering is one area that is under constant improvement, both in terms

of quality and performance. When using alternate frame rendering mode it is important to

Explicit GL Proposal Khronos Group Confidential Page 99 of 112

produce images of similar quality on the alternating frames.

If GPUs expose XGL_GPU_COMPAT_FLAG_IQ_MATCH flag in the multi-device capability

info, they can be configured to produce similar image quality at device creation time by

specifying XGL_DEVICE_CREATE_MGPU_IQ_MATCH in the device creation flags on all

compatible GPUs. The Explicit GL driver attempts to match rendering quality between the

supported GPUs as much as possible.

 SHARING MEMORY BETWEEN GPUS
Memory objects residing in some non-local memory heaps can be made shareable across

devices if the GPUs have the XGL_GPU_COMPAT_SHARED_MEMORY flag set in the GPU

compatibility information. A shared memory object is created on one device and opened

on any other compatible device. Only the memory object associated with a particular

device must be used, and it is not allowed to directly share memory object handles across

devices.

There are several parts to enabling memory sharing across multiple Explicit GL devices:

▼ Discovery of heaps for shared memory.

▼ Creation of shared memory object on one device.

▼ Opening of shared memory object on another device.

 DISCOVERY OF SHAREABLE HEAPS
Memory heaps that could be used for creating shared memory objects are identified by

the XGL_MEMORY_HEAP_FLAG_SHAREABLE flag reported in heap properties. See GPU

Memory Heaps for information on heap properties. If no heaps expose

XGL_MEMORY_HEAP_FLAG_SHAREABLE, shared memory objects cannot be created. For

devices with compatible memory capabilities it is guaranteed that at least one heap is

shareable.

 SHARED MEMORY CREATION
A shared memory object is created just like any other regular memory objects using the

xglAllocMemory() function. A shared memory object is marked by the

XGL_MEMORY_ALLOC_SHAREABLE flag in its creation information and can only be created

in heaps marked by the XGL_MEMORY_HEAP_FLAG_SHAREABLE heap property flag.

A shared memory object created on one device can be opened on another compatible

device using xglOpenSharedMemory(). The shared memory object cannot be opened on

the device on which it was created.

Explicit GL Proposal Khronos Group Confidential Page 100 of 112

The opened memory object is associated with memory heaps of the second device

equivalent to the heaps used for original shared object creation on the first device. Either

device can be used for creating a shared memory objects. The shared memory object

created on the first device and opened on the second is functionally equivalent to the

memory object created on the second device and opened on the first.

Opened memory objects have some limitations. They cannot have priority changed and

they cannot be used for virtual allocation remapping.

Once no longer needed, opened memory objects are destroyed with xglFreeMemory(). An

opened memory object cannot be used once its corresponding shared memory object is

freed, thus the shared memory object should not be freed until any of devices stop using

the corresponding opened memory objects.

 SHARED IMAGES
The image data located in shared memory objects can be made shareable across multiple

compatible devices by using shared images. The shared images are created on both

devices with exactly the same creation parameters that include

XGL_IMAGE_CREATE_SHAREABLE image creation flag. Then these images must be bound

to a shared and opened memory object at the same offset. Shared images can only be

used when XGL_GPU_COMPAT_ASIC_FEATURES flag is reported in GPU compatibility

information.

 QUEUE SEMAPHORE SHARING
Queue semaphores can be made shareable across devices if the GPUs have the

XGL_GPU_COMPAT_SHARED_SYNC flag set in the GPU compatibility information. A shared

semaphore should be created on one device and opened on other compatible devices.

Only the semaphore object associated with the particular device can be used, and it is not

allowed to directly share semaphore object handles across devices.

There are several parts to enabling creation of shared semaphores across multiple Explicit

GL devices:

▼ Creation of shared queue semaphores on one device

▼ Opening of shared queue semaphores on another device.

 SHARED SEMAPHORE CREATION
Shared queue semaphores are created just like any other regular semaphores using the

xglCreateQueueSemaphore() function. The shared queue semaphore object is marked by

Explicit GL Proposal Khronos Group Confidential Page 101 of 112

XGL_SEMAPHORE_CREATE_SHAREABLE in creation info. A shared queue semaphore

behaves just like a regular queue semaphore object, but it could be signaled/waited on by

queues from other compatible devices through their opened semaphore objects.

A shared queue semaphore created on one device can be opened on another compatible

device using xglOpenSharedQueueSemaphore().

The shared semaphore cannot be opened on the device on which it was created. Just like

with any other Explicit GL object, an application must query memory requirements for

opened semaphore objects.

Either device can be used for creating a shared semaphore. The shared semaphore

created on the first device and opened on the second is functionally equivalent to the

semaphore created on the second device and opened on the first.

Once no longer needed, opened semaphores are destroyed with xglDestroyObject(). An

opened semaphore cannot be used, once a corresponding shared semaphore is destroyed.

Thus, the shared semaphore must not be destroyed while any of corresponding opened

semaphores are used on any of the devices.

 PEER-TO-PEER TRANSFERS
It is not possible to transfer data between the memory and image objects from different

GPUs by directly referencing their handles, since only objects local to device can be used

for the copy operations. For optimal copying of image and other data between GPUs, an

application uses peer-to-peer transfers. These allow direct device-to-device

communication over a system bus without intermediate storage of data in system

memory. Explicit GL supports peer-to-peer transfers between GPUs if the

XGL_GPU_COMPAT_FLAG_PEER_TRANSFER flag is reported in the GPU compatibility

information.

There are several parts to enabling peer-to-peer transfers across multiple Explicit GL

devices:

▼ Creation of proxy peer memory and optionally image objects on one of the devices,
representing those objects from another device

▼ Executing transfers between memory or image local to the device and a peer memory
or image.

If an application wants to transfer memory from GPU0 to GPU1, it should create a proxy

peer memory object on GPU0 for the target memory destination from GPU1. Then it

should transfer data on GPU0 using the proxy peer memory as a copy operation

destination.

Explicit GL Proposal Khronos Group Confidential Page 102 of 112

 OPENING PEER MEMORY
A memory object created on one device can be opened on another compatible device for

peer access using xglOpenPeerMemory(). A peer memory object cannot be opened on the

device on which it was originally created. The original memory object has to be a real

allocation.

Peer memory objects have some limitations. They cannot have priority changed, cannot

be mapped and they shouldn’t be used for virtual allocation remapping. They should only

be used as a destination for memory transfers.

Once no longer needed, peer memory objects are destroyed with xglFreeMemory(). An

opened peer memory object must be freed before a corresponding original memory object

is freed. An original memory object should not be freed while any devices use

corresponding peer memory objects for transfers.

 OPENING PEER IMAGES
An image object created on one device can be opened on another compatible device for

peer access using xglOpenPeerImage().

The xglOpenPeerImage() returns a peer image and a peer memory object associated with

the peer image at the time of opening it. These are associated with the original image and

memory bound to it at the time of opening peer image. A valid memory object has to be

bound to an original image before opening peer image, and the memory binding cannot

be changed until associated peer images and memory objects are destroyed. A peer

image object cannot be opened on the device on which it was originally created.

If both GPUs involved in a peer transfer have the XGL_GPU_COMPAT_ASIC_FEATURES

compatibility flag set, the peer transfer destination image can use XGL_OPTIMAL_TILING

tiling, otherwise only XGL_LINEAR_TILING must be used for the destination image.

Peer memory objects returned by xglOpenPeerImage() have limitations regarding their

use. These memory objects must only be used for memory references in command

buffers that perform peer-to-peer image transfers. Peer images cannot be rebound to

other memory objects.

Once no longer needed, peer images are destroyed with xglDestroyObject(). An opened

peer image object must be destroyed before a corresponding original image object is

destroyed. An original image object must not be destroyed while any devices use

corresponding peer image objects for transfers. The memory objects returned for peer

images should not be freed by the application and are automatically disposed of by the

driver on peer image destruction.

Explicit GL Proposal Khronos Group Confidential Page 103 of 112

 PEER TRANSFER EXECUTION
The peer memory or image object should only be used as a destination for peer-to-peer

transfers. They should not be used for any other purpose, such as binding as shader

resources and so on.

An application should be careful with selection of the GPU used for execution of peer-to-
peer transfer of data. The peer opened memory and image objects should only be used as

a destination for writing data. Reading of peer memory or image may result in very slow
read transactions across a system bus and should be avoided for performance reasons.

Before a peer transfer can take place, the source and destination memory or images have

to be transferred to XGL_MEMORY_STATE_DATA_TRANSFER and

XGL_IMAGE_STATE_DATA_TRANSFER states. The state transitions for peer transfer have

to be performed on devices owning the original memory objects or images. There is no

need to prepare peer objects as they inherit the state of the original objects.

 COMPOSITING AND CROSS-DEVICE PRESENTATION
Some multi-device Explicit GL configurations might include the display compositing

capabilities for automatically transferring and displaying images between the GPUs using

dedicated hardware. The hardware compositor in Explicit GL is abstracted with cross-

device presentation functionality.

The automatic cross-device presentation is only available on compatible devices and only

in full screen mode. In windowed mode it is an application’s responsibility to transfer,

composite and present rendered images across the GPUs. In some display modes the

automatic cross-device presentation might not be available due to hardware compositor

restrictions.

The cross-device presentation is based on the following steps:

▼ Discovering devices capable of sharing displays

▼ Checking if desired display modes supports cross-device presentation

▼ Creating special presentable images local to each of the compatible devices

▼ Presenting from compatible devices to a shared display

Figure 16 shows a conceptual diagram of cross-device presentation in a multi-device

configuration with a single logical Explicit GL display.

Explicit GL Proposal Khronos Group Confidential Page 104 of 112

 DISCOVERING CROSS-DEVICE DISPLAY CAPABILITIES
An application detects if a GPU can present to a display from another GPU by examining

the XGL_GPU_COMPAT_FLAG_SHARED_GPU0_DISPLAY and

XGL_GPU_COMPAT_FLAG_SHARED_GPU1_DISPLAY compatibility flags. If neither flag is

present, software compositing should be used. If cross-device presentation is supported,

an application should further check if it is available for a particular display mode through

the appropriate WSI extension.

Without cross-device presentation support, an application needs to transfer the final

image across devices and present it locally on the desired device through a standard WSI

full screen presentation mechanism.

 CROSS-DEVICE PRESENTABLE IMAGES
Cross-device presentable images created through a WSI extension could be used for

cross-device presentation. Any presentable image created for a display that belongs to

another device is assumed to be cross-device presentation compatible. Cross-device

presentable image creation fails if hardware compositing between the necessary devices is

not available for the requested resolution. In case a presentable image cannot be created,

an application must fall back to a software compositing.

If multiple Explicit GL display objects are present in the system, it is an application’s

responsibility to split rendering on a per-display basis and manage separate presentable

images for each of the displays.

Figure 16.
Conceptual view of cross-device presentation

Explicit GL Proposal Khronos Group Confidential Page 105 of 112

 CROSS-DEVICE PRESENTATION
From the application's perspective the cross-device presentation is performed just like in a

single device scenario. If there are multiple shared displays in a system, multiple

presentation calls should be made – one per display.

Cross-device presentable images must only be presented from the device on which they

were created. If the display associated with a presentable image is a display from another

device, the presentation must only be performed in full screen mode. An attempt to

present across devices in windowed mode fails.

Explicit GL Proposal Khronos Group Confidential Page 106 of 112

Chapter VII.

DEBUGGING AND

VALIDATION LAYER

The debug features are fundamental to the successful use of the Explicit GL API due to its

lower-level nature – there are a lot of features that might be hard to get right in Explicit

GL without proper debugging and validation support. Additionally, for performance

reasons, Explicit GL drivers perform only a very limited set of checks under normal

circumstances, so it becomes even more important to validate application operation with

Explicit GL debug options enabled.

The Explicit GL debug infrastructure is layered on top of the core Explicit GL

implementation and is enabled by specifying a debug flag at device creation time. The

debug infrastructure provides a variety of additional checks and options to validate the

use of the Explicit GL API and facilitate debugging of intermittent issues. The layered

implementation allows significantly reducing the cost of debugging in release builds of the

application.

 DEBUG DEVICE INITIALIZATION
The debugging and profiling infrastructure can be enabled on a per device basis by

specifying the XGL_DEVICE_CREATE_VALIDATION flag at device creation. Additionally, a

maximum validation level that can be enabled at run time is specified at device creation.

Without the XGL_DEVICE_CREATE_VALIDATION flag the maximum debug level has to be

set to XGL_VALIDATION_LEVEL_0.

Explicit GL Proposal Khronos Group Confidential Page 107 of 112

 VALIDATION LEVELS
The debugging infrastructure is capable of detecting a variety of errors and suboptimal

performance conditions, ranging from invalid function parameters to issues with object

and memory dependencies. The cost of the error checking can also vary from very

lightweight operations to some really expensive and thorough checking. To provide control

over the performance and safety tradeoffs, Explicit GL introduces a concept of validation

levels. Lower validation levels perform relatively lightweight checks, while higher levels

perform increasingly more expensive validation.

There are two parts to specifying a desired validation level. First, the maximum validation

level that can later be enabled has to be specified at device creation time. Setting the

maximum validation level does not perform the validation, but internally enables tracking

of additional object meta-data that are required for the validation at that level. This

internal tracking introduces some additional CPU overhead and maximum validation level

should be only as high as you actually intend to validate at run-time. Requesting higher

than necessary maximum validation level has a higher impact on performance.

The second part is actually enabling a particular level of validation at run-time by calling

xglDbgSetValidationLevel().

Setting the validation level is not a thread safe operation. Additionally, when changing

validation level an application should ensure it is not in the middle of building any

command buffers. Switching validation level while constructing command buffers leads to

undefined results.

Since higher validation level used at run-time causes bigger performance impact, it is
recommended to avoid running with high validation levels if performing performance

profiling. Validation should not be enabled in the publicly available builds of your
application.

It is invalid to set the validation level higher than the maximum level specified at device

creation and the function call fails in that case. A particular level of validation implies that

all lower level validations are also performed. See XGL_VALIDATION_LEVEL for description

of various validation levels.

 DEBUGGER CALLBACK
When running with the debugging infrastructure enabled and an error or a warning

condition is encountered, the error or warning message could be logged to debug output.

Additionally, an application or debugging tools could register a debug message callback

function to be notified about the error or warning condition. The callbacks are globally

registered across all devices enumerated by the Explicit GL environment and multiple

Explicit GL Proposal Khronos Group Confidential Page 108 of 112

callbacks can be simultaneously registered. For example, an application could

independently register a callback, as well as the debugger could register its own callback

function. If multiple callback functions are registered, their execution order is not defined.

An application registers a debug message callback by calling

xglDbgRegisterMsgCallback(). The callback function is an application’s function defined of

XGL_DBG_MSG_CALLBACK_FUNCTION type. A callback function provided by an

application must be re-entrant as it might be simultaneously called from multiple threads

and on multiple devices. It is allowed to register debug message callback before Explicit

GL is initialized.

When it no longer needs to receive debug messages, an application unregisters the

callback with xglDbgUnregisterMsgCallback(). These functions are valid even when debug

features are not enabled on a device, however only functions related to device creation

and ICD loader operation generate callback messages and message filtering is not

available.

These debugger callback handling functions are not thread safe. If an error occurs inside

of the xglDbgRegisterMsgCallback() or xglDbgUnregisterMsgCallback() functions, an error

code is returned, but it is not reported back to an application via a callback.

 DEBUG MESSAGE FILTERING
Sometimes the volume of error or warning messages can be overwhelming and an

application might chose to temporarily ignore some of them during a debugging session.

For example, during development one might want to temporarily disregard specific

performance warnings. An application filters the messages by calling

xglDbgSetMessageFilter(). Previously disabled messages are re-enabled at any time by

specifying XGL_DBG_MSG_FILTER_NONE. This function is only valid for devices created

with debug features enabled.

The debug message filtering function is not thread safe. If an error occurs inside of the

function an error code is returned, but it is not reported back to an application via a

callback. The errors generated by the ICD loader cannot be filtered.

Debug message filtering should be considered a special debug feature that should be
carefully used only when absolutely necessary during development and debugging. It

should not be used when validating an application for correctness.

 OBJECT DEBUG DATA
The validation infrastructure provides a wealth of debugging information to assist tools

and applications with debugging and analysis of rendering. The following information can

Explicit GL Proposal Khronos Group Confidential Page 109 of 112

be retrieved:

▼ Application set object tags.

▼ Internal debug and validation information.

 OBJECT TAGGING
When the debug infrastructure is enabled, an application can tag any Explicit GL object

other than the XGL_PHYSICAL_GPU by attaching a binary data structure containing

application specific object information. One use of such annotations could be for

identifying the objects reported by the debug infrastructure to an application on the

debug callback execution. When the debug infrastructure is disabled, tagging functionality

has no effect.

An application tags an object with its custom data by calling xglDbgSetObjectTag().

Specifying a NULL pointer for the tag data removes any previously set application data.

Only one tag can be attached to an object at any given time. The tag data is copied by

the Explicit GL driver when xglDbgSetObjectTag() is called.

To retrieve a previously set object tag an application calls xglGetObjectInfo() with the

XGL_DBG_DATA_OBJECT_TAG debug data type.

 INTERNAL DEBUG AND VALIDATION INFORMATION

 COMMAND BUFFER MARKERS
For debugging and inspection purposes, an application could retrieve a list of API

operations recorded in a command buffer as described in Internal Debug and Validation

Information. To aid with command buffer inspection and add some context to recorded

commands, an application could record command buffer markers – arbitrary strings that

have a meaning to an application or tools. These markers have no effect on the actual

content of the command buffer data executed by the GPU, and with validation layer

enabled the markers are just kept along with other CPU side meta-data for command

buffers. The command buffer markers can be inserted using the xglCmdDbgMarkerBegin()

and xglCmdDbgMarkerEnd() functions.

 DEBUG INFRASTRUCTURE SETTINGS
The debug infrastructure has various settings that can be used during debugging to force

specific Explicit GL driver and GPU behaviors. Some of the options are set globally for all

devices and some are set per device. The per-device settings functionality is only available

Explicit GL Proposal Khronos Group Confidential Page 110 of 112

on devices created with debug features enabled. The global optional settings are

configured using xglDbgSetGlobalOption() and per-device settings are configured with

xglDbgSetDeviceOption(). These functions are not thread safe. If an error occurs inside of

these functions, an error code is returned, but it is not reported back to an application via

a callback.

Explicit GL Proposal Khronos Group Confidential Page 111 of 112

Chapter VIII. FEATURE

ADDITIONS TO MATCH

OPENGL NEEDS

In order to be able to implement the current core profile of OpenGL on top of Explicit GL, and
to not propose feature loss moving from OpenGL to Explicit GL, several feature additions to
the proposed spec should be addressed.

FEATURES SUPPORTED BY CURRENT OPENGL
The following features are present in existing core profile OpenGL and should be considered
for support in Explicit GL to allow an OpenGL driver to be implemented on top of it.

POINT SPRITES

Point sprites allow hardware generation of a UV coordinate that varies across a point
primitive. The Explicit GL proposal does not expose point sprites, but they are a mandatory
feature of core profile OpenGL and OpenGL ES, and will be required.

Fortunately, point sprite coordinate generation does not require any API changes as it is
possible to enable it solely in the fragment shader. In OpenGL, the built-in variable
“gl_PointCoord” contains the generated hardware point sprite UV. Generation of this
coordinate is implicitly enabled by its access in a shader. Though the Explicit GL proposal does
not have a high level shading language, it should be possible to reference the point
coordinate system value in a shader to enable the feature. We simply need to document an
affirmation that this works in Explicit GL.

TRANSFORM FEEDBACK

Transform feedback is a pipeline stage that appears logically after all vertex and geometry

Explicit GL Proposal AMD Confidential Page 112 of 112

processing but before primitive assembly and rasterization. This feature is known as “stream-
out” in DirectX and is sometimes shortened to XFB in OpenGL literature. This feature is not
supported in the Explicit GL proposal, with a suggestion that UAV writes from early pipeline
stages covers most of the offered functionality. This may not be sufficient for Explicit GL as
the stream compaction offered by geometry shader decimation is not possible.

A detailed proposal for XFB support in Explicit GL is not available at this time. Most likely, it
would involve creating XFB memory views including vertex stride, size, etc. and attaching
them to descriptor sets. Analysis would need to be done to determine which states are
needed in the graphics pipeline state to enable proper pipeline creation; it may be that all
necessary state can be inferred by the shaders themselves. Additional work will need to be
done to support XFB PRIMITIVES_WRITTEN and a new draw interface would be needed to
mimic glDrawTransformFeedback.

UNSIGNED BYTE INDICES

All versions of OpenGL and OpenGL ES support 8-bit unsigned index data whereas the Explicit
GL proposal currently does not. Some hardware may not have native support for this index
format. Emulating that support in the driver is possible in OpenGL, but not with the proposed
Explicit GL model. This support should be added to the API as an optional feature.

FEATURE MODIFICATIONS
The following suggestions are on the removal, modification or replacement of existing Mantle
features.

FLEXIBLE QUEUE TYPES

The current Explicit GL core proposal only includes support for two types of queues, universal
and compute, and at least one universal queue must be exposed. This is not flexible enough
to match the restrinctions and capabilities of a large range of hardware. For example, an
implementation may need to expose a graphics-only queue, or a compute-only device might
need to expose only a compute queue.

Instead:

 The XGL device should expose the ability to query how many queues are supported.

 The XGL queue should expose the ability to query extensible caps flags reporting support for

at least:

o Graphics

o Compute

o DMA

 An implementation is only required to export support for at least 1 queue.

