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Chapter I.  
 
INTRODUCTION 

 MOTIVATION 
While existing platform programming models – OpenGL and DirectX® – have provided a 

solid 3D graphics foundation for quite some time, they are not necessarily ideal solutions 

in scenarios where developers want tighter control of the graphics system and require 

lower execution overhead. 

The proposed new programming model and API attempts to bridge PC, mobile and 

consoles in terms of flexibility and performance, address efficiency problems, and provide 

a forward-looking, system level foundation for graphics programming. 

 

High Level Khronos Goals 

The GL common working group at Khronos is driving the development of a new cross-

vendor standard. The stated primary goals are: 

 Produce a split level API. 

o The lower level API is close to the hardware and runs with very little validation. 

This proposal addresses that need. 

o The higher level API is more similar to traditional OpenGL with hazard tracking, 

synchronization and other high level primitives. This proposal does not attempt 

to address this. 
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 Have the ability to implement core profile OpenGL on top of the lower level API. 

 Ensure consistency, cleanliness, and unambiguity in the new API. Requirements 

include: 

o Type safety 

o Extensibility 

o Eliminate redundancy 

 It is expected that debugging and validation be possible through opt-in layers. 

 SOLUTION OVERVIEW 
The proposed solution implements a lower system level programming model designed for 

high performance graphics that makes the platform graphics programming environment 

look a bit more like that found on gaming consoles. While allowing applications to build 

hardware command buffers with very small operational overhead, Explicit GL provides a 

reasonable level of abstraction in terms of the pipeline definition and programming model. 

As a part of improving the programming model, the Explicit GL API removes some legacy 

features found in other graphics APIs. 

While the proposed programming model draws somewhat on the strengths of OpenGL 

and DirectX®, it was based on the following main design concepts: 

▼ Performance for both CPU and GPU is the primary goal. 

▼ The solution is forward looking in terms of the abstraction and the programming 
model. 

▼ The solution supports multiple operating systems and platform configurations. 

▼ The application is the arbiter of correct rendering and the sole handler of persistent 
state. Analysis of current APIs indicates that an efficient small batch solution can only 
be achieved when the driver is as stateless as possible. 

▼ Where generic feature implementation have been proven to be too inefficient in other 
APIs and driver models, the responsibility is shifted to the application. An application 
generally has a better knowledge of the rendering context and can implement more 
intelligent optimization strategies. As an example, video memory management 
becomes an application responsibility in Explicit GL. 

The Explicit GL API is not for everyone, due to its lower level control of memory and 

synchronization features. Effectively using the API requires in-depth knowledge of 3D 

graphics, familiarity with the underlying hardware architecture and capabilities of modern 

GPUs, as well as an understanding of performance considerations. The proposed solution 

is primarily targeted at advanced graphics programmers familiar with the game console 
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programming environment. Despite some of its lower-level implementation features, the 

expectation is that Explicit GL can still benefit a wide range of projects as specialized 

higher-level middle-ware Explicit GL-based solutions and engines become available. 

 DEVELOPER MANIFESTO 
The Explicit GL API imposes a new set of rules upon platform graphics subsystem. 

Because of the abstraction level in Explicit GL, which is different from other graphics API 

solutions in the traditional OpenGL/DirectX space, some developer expectations need to 

be adjusted accordingly. 

Explicit GL attempts to close a gap between existing platforms and consoles in terms of 

flexibility and performance by implementing a lower system-level programming model. In 

achieving this, Explicit GL places a lot more responsibility in the hands of developers. Due 

to the lower level of the API, there are many areas where the driver is no longer capable 

of providing safety, performance improvements, and workarounds. The driver essentially 

gets out of the developers' way as much as possible to allow applications to extract every 

little bit of performance out of modern GPUs. The driver does not create extra CPU 

threads behind the application's back, does not perform extensive validation on 

performance critical paths, nor does it recompile shaders in the background or perform 

other actions that application does not expect. 

When using Explicit GL, developers need to take responsibility for their actions with 

extensive validation: fixing all instances of incorrect API usage, doing things efficiently and 

ensuring the implementation is forward looking to support future GPU architectures. The 

reason for this is that in order for the driver to be as efficient as possible, these problems 

can no longer be efficiently worked-around in the driver. This extra responsibility is the 

cost developers have to pay to benefit from Explicit GL advantages. 

Explicit GL is really only for those graphics developers who are willing to 

accept this new level of responsibility.
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Chapter II.  
 
PROGRAMMING OVERVIEW 

 SOFTWARE INFRASTRUCTURE 
Explicit GL provides a programming environment that takes advantage of the graphics and 

compute capabilities of platforms equipped with one or more Explicit GL compatible GPUs. 

The Explicit GL infrastructure includes the following components: 

▼ a hardware platform with Explicit GL compatible GPUs 

▼ an installable client driver (ICD) implementing: 

▼ core Explicit GL API 

▼ platform specific window system bindings 

▼ Explicit GL API extensions 

▼ API validation layer 

▼ a generic ICD loader library with Explicit GL API interface 

▼ optional extension interface libraries, either vendor-specific or shared 

▼ optional helper libraries to simplify Explicit GL development 

▼ optional shader compilers and translators. 

The following diagram depicts the simplified conceptual view of Explicit GL software 

infrastructure. 
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The following static libraries are available: 

Table 1. Statically Linked Explicit GL Libraries 

Library file name Description 

xgl32.lib 32-bit static Explicit GL core API library 

xgl64.lib 64-bit static Explicit GL core API library 

 

The corresponding dynamic libraries for Microsoft Windows are (other Operating Systems 

will have similar solutions): 

 

Figure 1. XGL Software Infrastructure 



 

 

Explicit GL Proposal Khronos Group Confidential Page 12 of 112 

Table 2. Dynamically Linked Explict GL Libraries 

Library file name Description 

xgl32.dll 32-bit Explicit GL loader and core API dynamic library 

xgl64.dll 64-bit Explicit GL loader and core API dynamic library 

The function entry points for API and extension libraries are declared in header files: 

 

Table 3. Explicit GL header files 

Header file name Description 

xgl.h Explicit GL core API 

xglExt.h Explicit GL extension interface 

xglPlatform.h Platform specific definitions 

xglDbg.h Explicit GL debug API 

xglExtDbg.h Debug features for Explicit GL extensions 

Since Explicit GL libraries might not be available on all systems, an application could use 

delayed DLL loading. This would allow application to avoid loading issues on the systems 

that do not have Explicit GL libraries installed. The following code snippet checks for 

presence of 64-bit Explicit GL library and delay loads it. 
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Listing 1. Example of Checking presence and delay load Explicit GL 
library in an Operating system  

// application is linked with /DELAYLOAD:XGL64.dll 

XGL_RESULT InitXGL( 

    const XGL_APPLICATION_INFO* pAppInfo, 

    XGL_UINT*                   pGpuCount, 

    XGL_PHYSICAL_GPU            gpus[XGL_MAX_PHYSICAL_GPUS]) 

{ 

    // Check Explicit GL library presence by trying to load it 

    HMODULE hModule = LoadLibrary(TEXT("XGL64.dll")); 

    if (hModule == NULL) { 

        // Explicit GL library is not found 

        return XGL_ERROR_UNAVAILABLE; 

    } else { 

        // Decrement Explicit GL library reference count and unload 

        FreeLibrary(hModule); 

        // Implicitly load library and initialize Explicit GL 

        return xglInitAndEnumerateGpus(pAppInfo, NULL, pGpuCount, gpus); 

    } 

} 

An application should avoid talking to Explicit GL drivers directly by circumventing loader 

and extension libraries. 

 EXECUTION MODEL 
Modern GPUs have a number of different engines capable of executing in parallel ― 

graphics, compute, DMA, as well as various multimedia engines. The basic building block 

for GPU work is a command buffer containing rendering, compute and other commands 

targeting one of the GPU engines. Command buffers are generated by drivers and added 

to an execution queue representing one of the GPU engines as shown in Figure 2. When 

the GPU is ready, it picks the next available command buffer from the queue and executes 

it. Explicit GL provides a thin abstraction of this execution model. 
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An application in the Explicit GL programming environment controls the GPU devices by 

constructing command buffers containing native GPU commands through the Explicit GL 

API. The command buffer construction is extremely efficient ― the API commands are 

directly translated to native GPU commands with minimal driver overhead, providing a 

high performing solution. To achieve this performance, the driver’s core implementation 

performs only minimal error checking while building command buffers in the release build 

of an application. Developers are responsible for ensuring correct rendering during the 

development process. To facilitate input validation, profiling, and debugging, a special 

validation layer can be enabled on top of the core API that contains comprehensive state 

checking that notifies the developer of errors (invalid rendering operations) and warnings 

(potentially undefined rendering operations and performance concerns). Additional tools 

and libraries can also be used to simplify debugging and performance profiling. To 

improve performance on systems with multi-core CPU, an application can build 

independent command buffers on multiple CPU threads in a thread-safe manner. 

After command buffers are built, they can be executed one or more times by the GPU 

device by submitting them to the appropriate queue. The Explicit GL programming model 

uses a separate command queue for each of the engines so they can be controlled 

independently. The command buffer execution within a queue is serialized, but different 

queues could execute asynchronously. An application is responsible for using GPU 

synchronization primitives to synchronize execution between the queues as necessary. 

Command buffer execution happens asynchronously from the CPU. When a command 

buffer is submitted to a queue, control is returned to an application before the command 

buffer executes. There can be a large number of submitted command buffers queued up 

at any time. The synchronization objects provided by the Explicit GL API are used to 

determine completion of various GPU operations and to synchronize CPU and GPU 

execution. 

Figure 2. 
Queue submission model 
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In Explicit GL, an application explicitly manages GPU memory allocations and resources 

required for rendering operations. At the time a command buffer is to be executed, the 

system ensures all resources and memory referenced in the command buffer are available 

to the GPU. If necessary, this is done by marshaling memory allocations according to the 

application-provided memory object reference list. In the Explicit GL programming 

environment it is an application’s responsibility to provide a complete list of memory 

object references for each command buffer submission. Failure to specify an exhaustive 

list of memory references used in command buffer might result in resources not being 

paged in and a fault or incorrect rendering. 

A system could include multiple Explicit GL capable GPUs, each of them exposed as a 

separate physical GPU. The Explicit GL driver does not automatically distribute rendering 

tasks to multiple physical GPUs present in the system; it is an application’s responsibility 

to distribute rendering tasks between GPUs and synchronize operation as required. The 

API provides functionality for an efficient implementation of multi-GPU rendering 

techniques. 

 MEMORY IN EXPLICIT GL  
A Explicit GL device operates on data stored in GPU memory objects. Internally, memory 

objects are referenced with a unique virtual address in a process address space. A Explicit 

GL GPU operates in a virtual address space which is separate from the CPU address space. 

Depending on the platform, a GPU device has a choice of different memory heaps with 

different properties for memory object placement. These heaps might include local video 

memory, remote (non-local) video memory, and other GPU accessible memory. Further, 

the memory objects in remote memory heaps could be CPU cacheable or write-combined 

as indicated by the heap properties. An application can control memory object placement 

by indicating heap preferences and restricting the memory object placement to a specific 

set of heaps. The operating system and Explicit GL driver are free to move memory 

objects between heaps within the constraints specified by the application. 

GPU memory is allocated on the block size boundary, which in most cases is equal to the 

GPU page size. If an application needs smaller allocations, it sub-allocates from larger 

memory blocks. 

The GPU memory is not accessible by the CPU unless it is explicitly mapped into the CPU 

address space. In some implementations, local video memory heaps might not be CPU 

visible at all, therefore not all GPU memory objects can be directly mapped by the CPU. 

An application should make no assumptions about direct memory visibility; instead it 

should rely on heap properties reported by Explicit GL. In the case when a particular 

memory heap cannot be directly accessed by a CPU, the data is loaded to a memory 



 

 

Explicit GL Proposal Khronos Group Confidential Page 16 of 112 

location using GPU copy operations from a CPU accessible memory object. 

The memory objects do not automatically provide renaming functionality – employing 

multiple copies of memory on discard type memory mapping operations. An application is 

responsible for tracking memory object use in the queued command buffers, recycling 

them when possible and allocating new memory objects for implementing renaming 

functionality. 

 OBJECTS IN EXPLICIT GL  
The devices, queues, state objects and other entities in Explicit GL are represented by the 

internal Explicit GL objects. At the API level, all objects are referenced by their appropriate 

handles. Conceptually, all objects in Explicit GL can be grouped in the following broad 

categories: 

▼ Physical GPU objects 

▼ Device management objects: devices and queues 

▼ Memory objects 

▼ Shader objects 

▼ Generic API objects 

Some of the objects might have requirements for binding GPU memory as described in 

section API Object Memory Binding. These memory requirements are implementation 

dependent. 

The objects are created and destroyed through the Explicit GL API, though some of the 

objects are destroyed implicitly by Explicit GL. It is an application’s responsibility to track 

lifetime of the objects and only delete them once objects are no longer used by command 

buffers that are queued for execution. Failure to properly track object lifetime causes 

undefined results due to premature object deletion. 

Explicit GL objects are associated with a particular device and cannot be directly shared 

between devices in multi-GPU configurations. There are special mechanisms for sharing 

some memory objects and synchronization primitives between capable GPUs. See Chapter 

VI. Multi-device Operation for more details. It is an application’s responsibility to create 

multiple sets of objects, per device, and use them accordingly. 

 PIPELINES AND SHADERS 
The GPU pipeline configuration defines the graphics or compute operations that a GPU 

performs on the input data to generate an image or computation result. Pipelines provide 
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a level of abstraction that supports existing graphics and compute operations, as well as 

enable exposure of new pipeline configurations in the future, such as hybrid 

graphics/compute pipelines. Depending on its type, a pipeline is composed of one or more 

shaders and a portion of fixed function GPU state. 

A compute pipeline includes a single compute shader while a graphics pipeline is 

composed of several programmable shaders and fixed function stages, some optional, 

connected in a predefined order. The capability of the graphics and compute pipelines is 

similar to that of DirectX® 11 and OpenGL 4.4. In the future, more pipeline configurations 

might be made available. 

Compute queues support workloads performed by compute pipelines, while universal 

queues support workloads performed by both graphics and compute pipelines. A universal 

queue’s command buffer independently specifies graphics and compute pipelines along 

with any associated state. 

The pipelines are constructed from shaders. The Explicit GL API does not include any 

high-level shader compilers, and shader creation takes a binary form of an intermediate 

language (IL) shader representation as an input. The Explicit GL drivers could support 

multiple IL choices and the API should generally be considered IL agnostic. At present, an 

IL is based on a subset of XGL IL. Other options could be adopted in the future. 

 WINDOW AND PRESENTATION SYSTEMS 
In the most common case, an application has a user interface and displays rendering 

results in a window. The integration of Explicit GL with a window system is performed 

using a platform-specific Window System Interface (WSI) extension inter-operating with 

core Explicit GL API. 

It is also possible to use Explicit GL in a headless configuration that lacks a graphical user 

interface. In this scenario, an application does not need to use the Window System 

Interface API, and it could directly render to an off-screen surface. 

 ERROR CHECKING AND RETURN CODES 
Under normal operation, the Explicit GL driver detects only a small subset of potential 

errors that are reported back to applications using error codes. Functions used for building 

command buffers do not return any errors, and in case of an error silently fail the 

recording of the operations in a command buffer. Submitting such command buffer results 

in undefined behavior. 

Explicit GL’s design philosophy is to avoid error checking as much as possible during 

performance-critical paths such as command buffer and descriptor set building. Whenever 
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possible, the driver is designed to result in an application crash as opposed to hung 

hardware as the outcome of an invalid operation. 

The return codes in Explicit GL are grouped in three categories: 

▼ Successful completion code – XGL_SUCCESS is returned when no problems are 
encountered. 

▼ Alternative successful completion code – returned when function successfully 
completes and needs to communicate an additional information to the application (for 
example XGL_NOT_READY). 

▼ Error code – returned when a function does not successfully complete due to error 
condition. 

Because the Explicit GL API exposes some lower level functionality with minimal error 

checking, such as the ability to introduce an infinite wait in the queue, there is a higher 

risk of encountering either a hang of the GPU engines or an appearance of a hang. It is 

expected that a possibility of such occurrences is minimized by extensive debugging and 

validation at development and testing time. The Explicit GL driver implementation relies 

on system recovery mechanisms such as Timeout Detection and Recovery (TDR) in the OS 

to detect GPU hang conditions and gracefully recover without a need to reboot the whole 

system. 

 LOST EXPLICIT GL DEVICES 
An application is notified via XGL_ERROR_DEVICE_LOST error code that either the GPU 

has been physically removed from the system or it is inoperable due to a hang and 

recovery execution. When an application detects a lost device error, it quits submitting 

command buffers, releases all memory and objects, re-enumerates devices by calling 

xglInitAndEnumerateGpus(), and re-initializes all necessary devices objects. Failing to correctly 

respond to this error code results in incorrect or missing rendering and compute 

operations. 

 DEBUG AND VALIDATION LAYER 
To facilitate debugging, a special validation layer can be optionally enabled at execution 

time. It is capable of detecting and reporting many more errors and dangerous conditions 

at the expense of performance. The debug error messages can be logged to the debug 

output or reported to an application through the debugger callback functionality as 

described in Chapter VII. Debugging and Validation Layer. 
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Applications that are not completely error and warning free with the comprehensive error 

checking in the validation layer might not execute correctly on some Explicit GL compatible 
platforms. Failure to address the warnings or errors could result in intermittent rendering 

or any other problems, even if the application might seem to perform correctly on some 
system configurations. 
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Chapter III.  
 
BASIC EXPLICIT GL 

OPERATION 

 GPU IDENTIFICATION AND INITIALIZATION 
Each Explicit GL capable GPU in a system is represented by a physical GPU object 

referenced with a XGL_PHYSICAL_GPU object handle. There could be multiple physical GPUs 

visible to a Explicit GL application, such as in a case of multi-GPU graphics boards. A 

device represents a logical view or a context of an individual physical GPU and provides 

associations of memory allocations, pipelines, states, and other objects with that GPU 

context. Explicit GL API objects cannot be shared across different devices. At any given 

time there can only be a single Explicit GL device per physical GPU per process. 

To use Explicit GL, an application first needs to initialize and enumerate available physical 

GPU devices by calling xglInitAndEnumerateGpus(), which retrieves the number of 

physical GPUs and their object handles. If no Explicit GL capable GPUs are found in the 

system, xglInitAndEnumerateGpus() returns a GPU count of zero. In multi-GPU 

configurations, each physical GPU is reported separately in arbitrary order. See Chapter VI. 

Multi-device Operation for more information about multi-device configurations in Explicit 

GL. xglInitAndEnumerateGpus() can be called multiple times. Calling it more than once 

forces driver reinitialization. 

Explicit GL requires applications to identify themselves to the driver at initialization time. 

This identification helps the driver to reliably implement API versioning and application 
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specific driver strategies. The XGL_MAKE_VERSION macro is used to encode the API version, 

application, and engine versions provided on initialization in the XGL_APPLICATION_INFO 

structure. The application and engine identification is optional, but the API version used 

by the application is mandatory. Additionally, an application can provide optional pfnAlloc 

and pfnFree function callbacks for system memory management of memory used 

internally by the Explicit GL driver. If system memory allocation callbacks are not provided, 

the driver uses its own memory allocation scheme. The ICD loader does not use these 

allocation callbacks. 

These allocation callback functions are called whenever the driver needs to allocate or free 

a block of system memory. On allocation, the driver requests memory of a certain size and 

alignment requirement. The alignment of zero is the equivalent of 1 byte or no alignment. 

To fine-tune allocation strategy, the driver provides a reason for allocation, which is 

indicated by XGL_SYSTEM_ALLOC_TYPE type. When xglInitAndEnumerateGpus() is called 

multiple times, the same callbacks have to be provided on each invocation. Changing the 

callbacks on subsequent calls to xglInitAndEnumerateGpus() causes it to fail with 

XGL_ERROR_INVALID_POINTER error. 

To make a selection of GPU devices suitable for an application's purpose, an application 

can retrieve GPU properties by using the xglGetGpuInfo() function. Basic physical GPU 

properties are retrieved with information type parameter set to 

XGL_INFO_TYPE_PHYSICAL_GPU_PROPERTIES, which are returned in 

XGL_PHYSICAL_GPU_PROPERTIES structure. GPU performance characteristics could be 

obtained with the information type parameter set to 

XGL_INFO_TYPE_PHYSICAL_GPU_PERFORMANCE, which returns performance properties 

in XGL_PHYSICAL_GPU_PERFORMANCE structure. 

 DEVICE CREATION 
A device object in Explicit GL is referenced by the XGL_DEVICE handle and can be created 

using the xglCreateDevice() function for a given physical GPU device. Attempts to create 

multiple devices for the same physical GPU fail with 

XGL_ERROR_DEVICE_ALREADY_CREATED error code. 

At device creation time an application requests what queues should be available on the 

device. An application should only request queues that are available for the given physical 

GPU. A list of available queue types and number of queues supported can be queried by 

using the xglGetGpuInfo() function with information type parameter set to 

XGL_INFO_TYPE_PHYSICAL_GPU_QUEUE_PROPERTIES. 

To access advanced or platform-specific Explicit GL features, an application can use the 

extension mechanism. Before creating a device, an application should determine if a 
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desired extension is supported. If so, it can be requested at device creation time by 

adding the extension name to the table of enabled extensions in the device creation 

parameters. Extensions that are not explicitly requested at device creation time are not 

available for use. 

An application might optionally request creation of a device that implements debug 

infrastructure for validation of various aspects of GPU operation and consistency of 

command buffer data. Refer to Chapter VII. Debugging and Validation Layer for more 

information. 

Once an application finishes rendering and no longer needs a device, it is destroyed by 

calling xglDestroyDevice(). To avoid memory leaks, an application must completely drain 

all command queues and destroy all objects associated with a device before its 

destruction. 

 GPU MEMORY HEAPS 
The GPU operates on data stored in GPU accessible memory. The GPU memory is 

represented by a variety of video memory heaps available in a system. The choice of 

heaps and their properties are platform dependent and the application queries memory 

heap properties to derive the best allocation strategy. On a typical platform with a discrete 

GPU, there would generally be one or more local video memory heaps and one or more 

non-local, or remote heaps. Other platforms might have different heap configurations. 

While heap identities are provided, the GPU proximity and strategy for managing heap 

priorities should be inferred from heap performance characteristics and other properties. 

The reported heap sizes are approximate and do not account for the amount of memory 

already allocated. An application might not be able to allocate as much memory as there 

is in a heap due to other running processes and system constraints. 

 

It is a good idea to avoid oversubscribing memory. The reported heap size gives a 

reasonable upper bound estimate on how much memory could be used. 

To get the number of available memory heaps a device supports, an application calls 

xglGetMemoryHeapCount(). The returned number of heaps is guaranteed to be at least 

one or greater. 

Heaps are identified by a heap ID ranging from 0 up to the reported count minus 1. An 

application queries each heap’s properties by calling xglGetMemoryHeapInfo() with infoType 

set to XGL_INFO_TYPE_MEMORY_HEAP_PROPERTIES value. The properties are returned 

in XGL_MEMORY_HEAP_PROPERTIES structure. 

The heap properties contain information about heap memory type, heap size, page size, 

access flags, and performance ratings. The heap size and page size are reported in bytes. 
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The heap size is a multiple of the page size. 

Performance ratings for each memory heap are provided to help applications determine 

the best memory allocation strategy for any given access scenario. The performance 

rating represents an approximate relative memory throughput for a particular access 

scenario, either for CPU or GPU access for read and write operations; it should not be 

taken as an absolute performance metric. For example, if two heaps in a system have 

performance ratings of 1.0 and 2.0, it can safely be assumed that the second heap has 

approximately twice the throughput of the first. For heaps inaccessible by the CPU, the 

read and write performance rating of the CPU is reported as zero. While the performance 

ratings are consistent within the system, they should not be used to compare different 

systems as the performance rating implementation could vary. 

 GPU MEMORY OBJECTS 
A Explicit GL GPU operates on data contained in memory objects that are referenced in 

the API by a XGL_GPU_MEMORY handle. There are several types of memory objects in 

Explicit GL which serve different purposes. The most common memory objects are real 

memory objects which are created by calling xglAllocMemory(). An application specifies 

required size for the memory object along with its preferred placement in memory heaps 

and other options in XGL_MEMORY_ALLOC_INFO structure. The other types of memory 

objects are discussed in following sections of this document. 

 

Whenever possible, an application should provide multiple heap choices to increase 

flexibility of memory object placement and memory management in general. 

The Explicit GL driver allocates video memory in blocks aligned to the page size of the 

heap. The page size is system and GPU dependent and is specified in the heap properties. 

Different memory heaps might use different page sizes. When specifying multiple heap 

choices for a memory object, the largest of the allowed heap page sizes should be used 

for the granularity of the allocation. For example, if one heap has a page size of 4KB and 

another of 64KB, allocating a memory block that could reside in either of those heaps 

should be 64KB aligned. 

If the application needs to allocate blocks smaller than a memory page size, the 

application is required to implement its own memory manager for sub-allocating smaller 

memory requests. An attempt to allocate video memory that is not page size aligned fails 

with XGL_ERROR_INVALID_ALIGNMENT error code. When memory is allocated, its 

contents are considered undefined and must be initialized by an application. 

By default, a memory object is assigned a GPU virtual address that is aligned to the 

largest page size of the requested heaps. Optionally an application can request memory 
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object GPU address alignment to be greater than a page size. If the specified memory 

alignment is greater than zero, it must be a multiple of the largest page size of the 

requested heaps. The optional memory object alignment is used when memory needs to 

be used for objects that have alignment requirements that exceed a page size. For 

example, if page size is reported to be 64KB in heap properties, but an alignment 

requirement for a texture is 128KB, then memory object that is used for storing that 

texture's contents has to be 128KB aligned. The object memory requirements are 

described in API Object Memory Binding. 

 

Avoid unnecessary memory object alignments as it might exhaust GPU virtual address 

space more quickly. 

A memory object is freed by calling xglFreeMemory() when it is no longer needed. Before 

freeing a memory object, an application must ensure the memory object is unbound from 

all API objects referencing it and that it is not referenced by any queued command 

buffers. Failing to ensure that a memory allocation is not referenced results in corruption 

or a fault. 

 GPU MEMORY PRIORITY 
A memory object priority is used to indicate to the memory management system how 

hard it should try to keep an allocation in the memory heap of the highest preference 

when under significant memory pressure. The memory priority behavior is platform 

specific and might have no effect in when only one memory heap is available or when 

GPU memory manager does not support memory object migration. 

 

The priority is just a hint to the memory management system and does not guarantee a 

particular memory object placement. 

Memory objects containing Framebuffer Attachments, depth-stencil targets and write-

access shader resources should typically use either high memory priority 

XGL_MEMORY_PRIORITY_HIGH or very high priority 

XGL_MEMORY_PRIORITY_VERY_HIGH. Most other objects should use normal priority 

XGL_MEMORY_PRIORITY_NORMAL. When it is known that a memory object will not be 

used by the GPU for an extended period of time, it could be assigned 

XGL_MEMORY_PRIORITY_UNUSED priority value. This indicates to the memory manager 

that a memory object could be paged out without any impact on performance. If an 

application decides to start using that memory allocation again, it should bump up its 

priority according to usage scenario. 
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The memory priority provides coarse grained control of memory placement and an 

application should avoid frequent priority changes. 

The initial memory object priority is specified at creation time; however, in systems that 

support memory object migration it can be adjusted later on to reflect a change in priority 

requirements. An application is able to adjust memory object priority by calling 

xglSetMemoryPriority() with one of the values defined in XGL_MEMORY_PRIORITY. 

 CPU ACCESS TO GPU MEMORY OBJECTS 
Memory objects created with xglAllocMemory() represent a block of GPU virtual address 

space and by default are not directly CPU accessible. Memory objects that can be made 

CPU accessible are considered to be mappable. An application retrieves a CPU virtual 

address pointer to the beginning of a mappable memory object by calling 

xglMapMemory(). All of the memory heap choices for the mappable memory object must 

be CPU visible, which is indicated by XGL_MEMORY_HEAP_CPU_VISIBLE heap property 

flag. If any heap used for the memory object is not CPU visible, the memory cannot be 

mapped. Attempts to map memory objects located in memory heaps invisible to the CPU 

fail with a XGL_ERROR_NOT_MAPPABLE error code. 

The memory is mapped without any checks for memory being used by the GPU. It is an 

application’s responsibility to both synchronize memory accesses and to guarantee that 

data needed for rendering queued to the GPU is not overwritten by the CPU. An 

application is expected to implement its own internal memory renaming schemes or take 

other corrective actions, if necessary. 

Once the CPU access to a memory object is no longer needed by the application, it can be 

removed by calling xglUnmapMemory(). 

The xglMapMemory() and xglUnmapMemory() functions are thread safe, provided the 

different threads are accessing different memory objects. 

 

Generally, it is advised to avoid keeping memory objects stored in local video memory 

heaps mapped when they are referenced by executing command buffers. On the 
Windows® platform, keeping memory objects mapped while using them for rendering 

results in migration of the memory objects to non-local video memory. 

 PINNED MEMORY 
On some platforms, system memory allocations can be pinned (pages are guaranteed to 

never be swapped out), allowing direct GPU access to that memory. This provides an 

alternative to CPU mappable memory objects. An application determines support of 
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memory pinning by examining supportsPinning in 

XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure, which is retrieved by calling 

xglGetGpuInfo() function with the information type parameter set to 

XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES. 

A pinned memory object representing a pinned memory region is created using 

xglPinSystemMemory(). The pinned memory object is associated with the heap capable of 

holding pinned memory objects identified by the XGL_MEMORY_HEAP_HOLDS_PINNED 

flag, as if it were allocated from that heap. Explicit GL guarantees that only one heap will 

be capable of holding pinned memory objects. 

The pinned memory region pointer and size have to be aligned to a page boundary for the 

pinning to work. The page size can be obtained from the properties of the heap marked 

with the XGL_MEMORY_HEAP_HOLDS_PINNED flag. 

The memory is unpinned by destroying pinned memory object using the xglFreeMemory() 

function. Pinned memory objects can be used as regular memory objects, however they 

have a notable difference: their priority cannot be specified. Pinned memory objects can 

be mapped, which would just return a cached CPU address of the system allocation 

provided at creation time. 

Multiple system memory regions can be pinned, however the total size of pinned memory 

in a system is limited and an application must avoid excessive use of pinning. Memory 

pinning fails if the total size of pinned memory exceeds a limit imposed by the operating 

system. 

 

Pinning too much memory negatively impacts overall system performance. 

 VIRTUAL MEMORY REMAPPING 
On some platforms, the Explicit GL API allows reservation of GPU address space by 

exposing virtual memory objects that can be remapped later to real memory objects. 

Since Explicit GL GPUs operate in a virtual machine (VM) environment, all memory objects 

are part of the GPU virtual address space; however, to avoid confusion, the following 

terminology is used: real memory objects are those backed by physical memory, while 

virtual memory objects refer to GPU virtual address space reservations without physical 

memory backing. The granularity of virtual memory mapping is the page size for virtual 

allocations, which can be queried in the device properties. 

An application determines support of virtual memory remapping by examining 

supportsVirtualMemoryRemapping in XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure, 

which is retrieved by calling xglGetGpuInfo() function with the information type parameter 

set to XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES. 
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Virtual memory objects are created by calling xglAllocMemory() with the 

XGL_MEMORY_ALLOC_VIRTUAL flag in the creation parameters. When a virtual allocation 

is created, none of its pages are backed by actual physical memory and they need to be 

remapped prior to use as described further. A virtual memory object is destroyed by using 

the xglFreeMemory() function. 

Virtual memory objects cannot be mapped for CPU access and their priority cannot be 

changed. If an application wants to update memory in virtual memory objects, it should 

do so by updating the real memory objects backing the virtual allocations. 

Multiple virtual memory objects can exist simultaneously to provide very flexible memory 

management schemes. A page from a real memory objects can be mapped to one or 

more pages in one or more virtual memory objects. The remapped memory access is 

transparent to the user and is internally implemented by adjusting the VM page table. 

There is no direct application access to the page tables; the driver provides 

xglRemapVirtualMemoryPages() function for managing virtual memory page remapping. 

The remapping functionality is only valid for virtual allocations and calls to 

xglRemapVirtualMemoryPages() with a real allocation or pinned memory object fail. 

xglRemapVirtualMemoryPages() specifies how multiple ranges of virtual memory pages 

are remapped to real memory objects. The remapping specified with each function 

invocation is additive and represents a delta state for page mapping. Previously mapped 

virtual pages can be unmapped by specifying the XGL_NULL_HANDLE value for the target 

Figure 3. 
Conceptual view of virtual memory remapping 
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memory object they are remapped to. 

The remapping happens asynchronously with operations queued to the GPU. Changing 

page mapping for objects at the time they are accessed by the GPU results in undefined 

behavior. To guarantee proper ordering of remapping with other GPU operations, two sets 

of queue semaphores can be provided by an application. The use of semaphores is 

optional if application can guarantee proper execution order of operations using other 

methods. Before remapping, xglRemapVirtualMemoryPages() function waits on 

semaphores to be signaled; and after remapping it signals another set of semaphores, 

indicating completion of remapping. Multiple invocations of 

xglRemapVirtualMemoryPages() are executed sequentially with each other, and with back-

to-back remapping operations it is sufficient to provide semaphores on the first and the 

last remapping operations. 

Memory pages are only remapped for virtual memory objects and the remapping only 

points to pages in real memory. Only one level of remapping is allowed, and it is invalid to 

remap pages to other virtual memory objects. 

 

When remapping memory pages containing texture data for tiled images, an application 
should be careful to avoid using the same page for different regions of images. Due to 

some tiling implementations, the tiling pattern of different image regions might not match. 

 MEMORY ALLOCATION AND MANAGEMENT STRATEGY 
The optimal memory management strategy is dependent on the type of platform, the type 

and version of the operating system and other factors. Explicit GL provides very flexible 

memory management facilities to enable a wide range of performance and ease-of-use 

tradeoffs. For example, an application could trade the cost of managing multiple smaller 

allocations vs. the larger memory footprint. The following are some of the guidelines that 

applications might want to adopt. 

Memory allocation and management strategy employed by an application depends on the 

capabilities of the GPU memory manager available on a platform. Some platforms might 

support memory object migration between the heaps, while others might not. An 

application determines GPU memory manager ability to migrate memory objects by 

examining supportsMigration in XGL_PHYSICAL_GPU_MEMORY_PROPERTIES structure, 

which is retrieved by calling xglGetGpuInfo() function with the information type parameter 

set to XGL_INFO_TYPE_PHYSICAL_GPU_MEMORY_PROPERTIES. 

In general, an application should avoid over-subscription of GPU memory to provide ideal 

memory object placement, which ensures high performance. In the operating sytems, 

where memory management is not completely under application's control, a multi-tiered 

approach to memory objects can be applied. In this approach parts of the memory 
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management are handled by the operating systems video memory manager and parts of 

it rest on application’s shoulders. First, an application should use reasonably sized memory 

pools of different priorities. The “reasonable” size depends on how much video memory a 

graphics board has, how much memory is needed and other factors. Using memory pools 

of 16-32MB is a good starting point for experimentation. Resources should be grouped in 

memory pools by their type, read or write access and priority. Objects with larger memory 

requirements, such as multisampled targets, might use their own dedicated memory 

objects. The key to extracting maximum performance from a number of configurations 

and platforms is making memory management configurable. 

When deciding on memory placement, an application should evaluate performance 

characteristics of different memory heaps to sort and filter heaps according to its 

requirements. An application should be prepared to deal with a wide range of memory 

heap configurations – from supporting a single heap to supporting heaps of new types, 

such as XGL_HEAP_MEMORY_EMBEDDED. The exposed memory heaps are likely to 

change in the future due to ongoing platform, OS and hardware developments. 

 

An application should generally specify multiple heaps for memory objects, if memory 
usage allows for it. This gives the driver and video memory manager the best chance of 

placing the memory object in the best location under high memory pressure. The 
controlling of memory placement is done by adjusting the heap order. 

Further, the memory should be grouped in pools of different priorities and object 

assignment to memory should be performed according to the memory priority. It is 

recommended to define 3-5 memory pool priority types. See GPU Memory Priority for 

discussion of memory priorities. 

 

An application should avoid marking all memory objects with the same memory priority. 
Under heavy memory pressure the video memory manager in Windows® might get 

confused trying to keep all memory objects in video memory, resulting in unnecessary 
movement of data between local and non-local memory heaps. 

All resources that are written by the GPU (for example, target images and read-write 

images) should be in high-priority memory pools, others can be placed in medium or low 

priority pools. The application should ensure that, whenever possible, high and medium 

priority pools do not oversubscribe available local video memory, including all visible and 

non-visible local heaps on the graphics card. The threshold for determining oversubscribed 

video memory conditions depends on the platform and the execution conditions, but 

setting it to about 60-80% of local video memory for high and medium priority allocations 

would be a safe choice for full screen applications. To avoid crossing the memory 

threshold for high and medium pools, the application should manage resource placement 

based on the memory working set. If parts of the memory in high and medium priority 

polls do not fit under that 60-80% threshold, the application can use an asynchronous 
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DMA queue to move resource between local and non-local memory when necessary, 

providing more intelligent memory management of video memory under pressure. 

Buffer-like resources, as well as small, infrequently used and compressed textures, could 

be lower priority than more frequently GPU accessed images of larger texel size. On the 

systems which support memory object migration, it is reasonable to allow lower priority 

memory objects to be spilled by the OS to non-local video memory without application 

worrying too much about their migration. 

On the systems with relatively small visible local memory heap, application should be 

careful with the placement of memory objects inside of it. Only high priority memory pools 

should be in both local non-visible and local visible, specified in that order. Medium priority 

pools probably should not be in local visible heap if it is a scarce resource, but it depends 

on what else needs to go into the local visible heap. 

 

With integrated graphics, which are part of an APU, the application should generally use 

non-local memory heaps instead of local visible heap for memory objects that require CPU 
access. 

Pipeline objects and descriptor sets should generally be in local visible heaps, provided 

that they do not take up too much memory. For pipelines an application can reduce 

memory requirements by just keeping a working set of pipelines bound to memory and 

binding/unbinding them on the fly as necessary. An application might want to maintain 

multiple pools of memory for pipelines and descriptor sets for efficient binding/unbinding. 

This could help ensure the memory objects containing pipelines and descriptor sets are 

not paged out to non-local memory by Windows® video memory manager. 

 GENERIC EXPLICIT GL API OBJECTS 
The Explicit GL API objects other than physical GPUs, devices, queues and memory 

objects are grouped into a broad generic API object category. These objects have 

common API functions for querying object properties, managing memory binding, and 

destruction. 

 API OBJECT DESTRUCTION 
Once a generic API object is no longer needed, it is destroyed by calling 

xglDestroyObject() function. If an object has previous memory binding, it is required to 

unbind memory from an API object before it is destroyed. 

The object should not be destroyed while it is referenced by any other object or while 

there are references to an object in any command buffer queued for execution. 
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 QUERYING API OBJECT PROPERTIES 
Explicit GL API objects have a variety of properties that an application queries to enable 

proper object operation. There are several functions for querying properties depending on 

the object type. For generic API objects most of the properties can by queried by calling 

xglGetObjectInfo(). 

 API OBJECT MEMORY BINDING 
In Explicit GL, some API objects require video memory storage for their data. Developers 

are responsible for explicitly managing video memory allocations for these objects based 

on memory requirements reported at run-time. These API objects must be assigned 

memory before they can be used. 

The most obvious objects requiring video memory are images, but other objects, such as 

state and pipeline objects, might also require GPU memory storage depending on the 

implementation. The only objects that are guaranteed to have no external memory 

requirements are devices, queues, command buffers, shaders and memory objects. 

Device, queue and command buffer objects manage their own internal memory 

allocations. Shader objects are also special because they are not directly referenced by 

Explicit GL GPUs. 

For the object types which can be bound to memory, an application should not make 

assumptions about memory requirements, as requirements might change between GPUs 

and even between versions of the Explicit GL driver. An application queries object memory 

requirements by calling xglGetObjectInfo() with a handle of the object of interest and the 

XGL_INFO_TYPE_MEM_REQUIREMENTS information type. The returned memory 

requirements include memory size, alignment and a list of compatible memory heaps. 

If the returned memory size is greater than zero, then memory needs to be allocated and 

associated to the API object. To bind an object to the memory, an application should call 

xglBindObjectMemory() with the desired memory object handle and an offset within the 

memory object. 

The memory alignment for some objects might be larger than video memory page size. If 

that is the case, an application must create memory objects with an alignment multiple of 

API object alignment requirements. A single memory object can have multiple API objects 

bound to it as long as the bound memory regions do not overlap. 

The memory heap requirements for different API objects could vary with implementation 

and an application should make no assumptions about heap requirements; that 

information is provided as a part of the object memory requirements using an allowed 

heap list. Only the heaps on that list can be used for object memory placement. An 
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application could filter the heaps according to its requirements; for example it could 

remove CPU invisible heaps to ensure CPU access to the memory. The heaps in the list are 

presorted according to the driver's performance preferences, but the order of heaps for a 

memory allocation does not need to match the order returned in object requirements. 

 

Driver provided heap preferences are just a suggestion and a sophisticated application 

could adjust preferred heap order according to its requirements. 

The driver ensures that the required heap capabilities for any given object match at least 

one of the heaps present in the system. 

The driver fails memory to object binding if the memory heaps used for memory object 

creation do not match memory heap requirements of the particular API object, or if the 

memory placement requirements make the GPU object data extend past the memory 

object, or if the required memory alignment does not match the provided offset. The 

object is unbound from memory by specifying the XGL_NULL_HANDLE value for the memory 

object when calling xglBindObjectMemory() function. 

When objects other than images are bound to a memory object, the necessary data might 

be committed to memory automatically by the Explicit GL driver without an API 

involvement. The handling of memory binding is different for image objects and is 

described in Image Memory Binding. 

 

If pipeline objects have memory requirements, binding their memory automatically 

initializes the GPU memory by locking it and updating it with the CPU. If memory object 
used for pipeline binding resides in local video memory at the time of binding while being 

referenced in queued command buffers, the memory object might be migrated to non-
local video memory in Windows®, resulting in degraded performance. 

An application is able to rebind objects to different memory locations as necessary. This 

ability to rebind object memory is particularly useful for some cases of application 

controlled image renaming as image objects would not need to be recreated. The rules for 

rebinding memory are different for images and all other object types. Rebinding of a given 

non-image object should not occur from the time of building a command buffer or a 

descriptor set which references that object to the time at which the GPU has finished 

execution of that command buffer or descriptor set. If a new memory location is bound to 

a non-image object while that object is referenced in a command buffer scheduled for 

execution on GPU, the execution results are not guaranteed after memory rebinding. 

 IMAGE MEMORY BINDING 
Image objects have slightly specialized memory binding rules. The image's object data is 

not initialized on memory binding and previous memory contents is preserved. The non-
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target images are assumed to be in the XGL_IMAGE_STATE_DATA_TRANSFER state upon 

memory binding. Images used as color targets or depth-stencil implicitly start in the 

XGL_IMAGE_STATE_UNINITIALIZED_TARGET state and must be transitioned to a proper 

state and cleared before first use. 

 

Target images should never rely on the previous memory contents after memory binding. 

Failing to initialize state and clear target images before the first use results in undefined 
results. 

Image memory can be rebound at any time, even during command buffer construction or 

descriptor set building. A snapshot of image memory binding at the time of building a 

command buffer or descriptor set data is taken and recorded in command buffer or 

descriptor set on binding image to state or referencing image otherwise. To ensure 

integrity of the data, any images that might have been written to by the GPU must be 

transitioned to a particular state before unbinding or re-binding memory. Non-target 

images must be transitioned to XGL_IMAGE_STATE_DATA_TRANSFER state before 

memory unbinding, while images used as color targets or depth-stencil must be 

transitioned to XGL_IMAGE_STATE_UNINITIALIZED_TARGET state. See Memory and 

Image States for more information about image states. 

 QUEUES AND COMMAND BUFFERS 
In Explicit GL all commands are sent to GPU by recording them in command buffers and 

submitting command buffers to the GPU queues along with a complete list of used 

memory object references. 

 QUEUES 
Explicit GL GPU devices can have multiple execution engines represented at the API level 

by queues of different types. The type and maximal number of queues supported by a 

GPU, along with their properties, is retrieved from physical GPU properties by calling 

xglGetGpuInfo() function with the information type parameter set to 

XGL_INFO_TYPE_PHYSICAL_GPU_QUEUE_PROPERTIES, which returns an array of 

XGL_PHYSICAL_GPU_QUEUE_PROPERTIES structures, one structure per queue type. 

Since the number of available queue types and the amount of returned data could vary, to 

determine the data size an application calls xglGetGpuInfo() with a NULL data pointer. The 

expected data size for all queue property structures is returned in pDataSize. 

Explicit GL API defines two queue types: a universal queue (XGL_QUEUE_UNIVERSAL) 

and an asynchronous compute queue (XGL_QUEUE_COMPUTE_ONLY). Other queue 

types, such as DMA and so on can be exposed through extensions. There is at least one 
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universal queue available for the Explicit GL device; other queues are optional. 

The universal queues support both graphic rendering and compute operations, which are 

dispatched synchronously, even though their execution in some cases might overlap. The 

additional compute-only queues operate asynchronously with the universal and other 

queues and it is an application’s responsibility to synchronize all queue execution. While 

the execution across multiple queues could be asynchronous, the execution order of 

command buffers within any queue is well defined and matches the submission order. 

The queues in Explicit GL are referenced using XGL_QUEUE object handles. The queue 

objects cannot be explicitly created. Instead, when a device is created, an application 

requests a number of universal, compute, and other queues up to the maximum number 

of queues supported by the device. There must be at least one queue requested on 

device creation. Requesting more queues than are available on a device fails the device 

creation. It is invalid to request the same queue type multiple times on device creation. 

Once a device is created, the queue handles are retrieved from the device by calling 

xglGetDeviceQueue() with a queue type and a requested logical queue ID. The logical 

queue ID is a sequential number starting from zero and referencing up to the number of 

queues requested at device creation. Each queue type has its own sequence of IDs 

starting at zero. 

The queue objects cannot be destroyed explicitly by an application and are automatically 

destroyed when the associated device is destroyed. Once the device is destroyed, 

attempting to use a queue results in undefined behavior. 

 COMMAND BUFFERS 
Command buffers are objects that contain GPU rendering and other commands recorded 

by the driver on the application's behalf. The command buffers in Explicit GL are 

referenced using XGL_CMD_BUFFER object handles. A command buffer can be executed by 

the GPU multiple times and recycled, provided that command buffer is not pending 

execution by the GPU at the time of recycling. 

The command buffers are fully independent and there is no persistence of GPU state 

between the command buffers. When a new command buffer is recorded, the state is 

undefined. All relevant state must be explicitly set by the application before state-

dependent operations such as draws and dispatches can be recorded in a command 

buffer. 

An application can create a command buffer by calling xglCreateCommandBuffer(). At 

creation time a command buffer is designated for use on a particular queue type. A 

command buffer created for execution on universal queues is called a universal command 

buffer, the one created for a compute queue is called a compute command buffer. 
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An application must ensure that the command buffer is not submitted and pending 

execution before destroying it by calling xglDestroyObject(). 

 COMMAND BUFFER BUILDING 
The Explicit GL driver supports multithreaded command buffer construction using 

independent command builder contexts. There is no hard limit on how many command 

buffers could be constructed in parallel at any given time. 

An application calls xglBeginCommandBuffer() to start recording a command buffer. An 

application must ensure the command buffer object is not previously scheduled for 

execution when it begins recording. Once recording starts, an application records a 

sequence of state binds, draws, dispatches, and other commands, then terminates 

construction by calling xglEndCommandBuffer(). After a command buffer is fully 

constructed it can be submitted for execution as many times as necessary. 

Command buffer commands may only be recorded between the 

xglBeginCommandBuffer() and xglEndCommandBuffer() command buffer functions that 

put command buffer in a building state. Attempts to record command buffer while it is not 

in the building state results in a silent fail of commands unless running with validation 

layer enabled. 

While a command buffer could contain a large number of GPU operations, there might be 

a practical limit to the GPU command buffer length or total amount of recorded command 

buffer data. If an application runs out of memory reserved for command buffers, no more 

new command buffers are built until previously recorded command buffers are recycled 

and command buffer memory is freed. 

 

In general it is not recommended to record huge command buffers. If a command buffer is 

taking too long to execute, a system might interpret the condition as a hardware hang and 
could attempt to reset the GPU device. 

An application may avoid the overhead of creating new command buffer objects by 

recycling a command buffer not referenced by the GPU. Calling xglBeginCommandBuffer() 

implicitly recycles the command buffer before starting a new recording session. An 

application could explicitly recycle the command buffer by calling 

xglResetCommandBuffer(). An explicit command buffer reset by an application allows the 

driver to release the memory and any other internal command buffer resources as soon as 

possible without re-recording the command buffer. A command buffer can be recycled or 

reset by an application as soon as the buffer finishes its last queued execution and an 

application no longer needs it. It is the application’s responsibility to ensure that the 

command buffer is not referenced by the GPU and is not scheduled for execution. 
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It is allowed to record and submit empty command buffers with no actual commands 

between xglBeginCommandBuffer() and xglEndCommandBuffer() calls. 

 

An application should avoid submitting excessive number of empty command buffers, as 
each submitted command buffer adds CPU and GPU overhead. 

Command buffer construction could fail for a number of different reasons: running out of 

memory or other resources, hitting an error condition and so on. The error is only 

guaranteed to be returned upon the command buffer termination with 

xglEndCommandBuffer(). The error is not returned during the command buffer 

construction, and command buffer building function silently fail unless running with 

validation layer enabled. An application must be able to gracefully handle a case when 

termination of a command buffer fails. 

 COMMAND BUFFER OPTIMIZATIONS 
At command buffer building time an application specifies optional optimization hints that 

could help the Explicit GL driver to tailor command buffer contents for different 

performance scenarios. Specifying the XGL_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT 

hint indicates to the driver that command buffer will be submitted only once. This allows 

the driver to apply submission time optimizations if multiple command buffers are 

submitted in a single batch. 

A number of other hints target GPU optimizations in command buffers. Specifying the 

XGL_CMD_BUFFER_OPTIMIZE_GPU_SMALL_BATCH hint optimizes command buffer for 

GPU command stream processing that could become a bottleneck in cases of small or 

lightweight draw and dispatch operations. The 

XGL_CMD_BUFFER_OPTIMIZE_PIPELINE_SWITCH hint optimizes command buffer for 

cases when application frequently changes pipelines between draw and dispatch 

operations. Similarly, XGL_CMD_BUFFER_OPTIMIZE_DESCRIPTOR_SET_SWITCH 

optimizes command buffer for the case when descriptor sets are changed very frequently. 

Multiple optimization flags can be specified at the same time. The command buffer 

optimization hints could increase CPU overhead during command buffer building and 

provide a mechanism for trading CPU performance vs. the GPU performance. 
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An application could detect at run time if it is CPU or GPU bound and in which parts of the 

frame and dynamically adjust command buffer optimization hints to better balance CPU 
and GPU performance. 

 COMMAND BUFFER SUBMISSION 
Once a command buffer is built, it is submitted for execution on a queue of a matching 

type. For example, a command buffer created for universal queues cannot be executed on 

compute queues and vice versa. An attempt to submit a command buffer to the queue of 

a wrong type fails submission. 

Command buffers are submitted to a queue by calling xglQueueSubmit(). Multiple 

command buffers can be submitted as a batch in a single submit operation. Submission 

places the provided command buffers in a queue and does not guarantee their immediate 

execution upon immediate return from xglQueueSubmit() function. When submitting 

multiple command buffers in a single batch, they are executed in the order in which they 

are provided in the list. 

 

Submitting multiple command buffers in one operation might help reduce the CPU and 
GPU overhead. 

If an application needs to track command buffer execution status, it can supply an 

optional fence object in the function parameters; otherwise XGL_NULL_HANDLE could be 

used instead. The fence is reached when the last provided command buffer in a 

submission batch has finished execution. 

 GPU MEMORY REFERENCES 
On submission, an application provides a complete list of memory objects used by the 

submitted command buffers, including virtual and pinned memory objects. The memory 

reference for a memory object is specified using XGL_MEMORY_REF structure. The 

supplied memory object handle cannot be XGL_NULL_HANDLE. It is an application’s 

responsibility to guarantee completeness of the memory references list. This includes all 

memory used by all Explicit GL objects directly or indirectly referenced in command 

buffers. 

When using virtual memory allocations, an application must include all real allocations that 

the remapped virtual memory objects are referencing. Failing to include all memory 

references results in incorrect rendering since memory objects might not be resident on 

the GPU at command buffer execution time. 

There are two complimentary methods for supplying memory references. First, a list of 
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memory references is specified at command buffer submission time. Second, a set of 

global memory references is made available on a per-queue basis using 

xglQueueSetGlobalMemReferences() function. The references are global for a queue in the 

sense that they are used by all command buffers submitted to the queue. For example, 

these might be used with memory objects storing device object data referenced in all of 

submitted command buffers. 

 

If an application needs to make memory references global to the device, it should 
separately set them on all used queues. 

Specifying a global memory references list completely overwrites the previously specified 

list. The previous memory reference list can be removed by specifying a zero number of 

global memory references along with NULL reference list pointer. Use of the global memory 

reference list is optional and is present only as an optimization. A snapshot of global 

memory references is taken at submission time and applied to submitted command 

buffers. Changing global memory references does not apply to already submitted 

command buffers. 

The xglQueueSetGlobalMemReferences() function is not thread safe and the application 

needs to ensure it cannot be called simultaneously with other functions accessing a 

queue. 

There is a limit on how many total memory references can be specified per command 

buffer at execution time. This limit applies to the global memory references as well as the 

references from the list supplied on submission, and the sum of both should not exceed 

the specified limit. Exceeding the limit results in failed command buffer submission. The 

maximal number of memory references can be queried from the physical GPU properties. 

 

While building command buffers, an application has to keep an eye on the number of 

referenced memory objects per command buffer. If it grows too large, the command buffer 
cannot be safely submitted. 

 READ-ONLY GPU MEMORY REFERENCES 
As an optimization, an application could specify XGL_MEMORY_REF_READ_ONLY flag to 

indicate that memory object is used for read-only GPU access and its contents will not 

change during command buffer execution. Table 4 lists memory access type for various 

operations. A memory object is considered to be read-only if all of its uses are for read-

only access. 
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Table 4. Memory access type for command buffer operations 

Operation Access Type 

Memory bound to pipeline and state objects Read 

Memory bound to descriptor sets Read 

Memory for index data Read 

Memory for dynamic memory view Read/Write 

Memory for memory views attached to descriptor sets Read/Write 

Memory bound to images used as image views attached to 
descriptor sets 

Read/Write 

Memory bound to images used as color targets Write 

Memory bound to images used as depth-stencil Write 

Memory used in state transitions Write 

Memory bound to images used in state transitions Write 

Memory for draw or dispatch argument data Read 

Source for memory copy Read 

Destination for memory copy Write 

Memory bound to images used as source for copy Read 

Memory bound to images used as destination for copy Write 

Memory bound to images used as source for cloning Write 

Memory bound to images used as destination for cloning Write 

Memory bound to images used as source for resolve Read 

Memory bound to images used as destination for resolve Write 

Memory for immediate update from command buffer Write 

Memory for fill operation Write 

Memory bound to cleared color images Write 

Memory bound to cleared depth-stencil images Write 
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Operation Access Type 

Memory bound to set or reset event objects Write 

Memory for queue atomic operations Write 

Memory bound to query pool objects cleared or counter Write 

Memory for timestamps Write 

Memory for loading atomic counters Read 

Memory for saving atomic counters Write 

Specifying the read-only memory flag while actually writing memory contents from within 

a command buffer results in undefined memory contents. 

 

Avoid mixing read-only and read write memory uses within the same memory object. 

 COMPUTE DISPATCH OPERATIONS 
The Explicit GL API supports dispatching compute operations using a compute pipeline 

and currently bound command buffer compute state. The compute is dispatched with 

explicit work dimensions by calling xglCmdDispatch(), which is available on both universal 

and compute queues. 

 

The work dimensions for compute dispatch cannot be zero. 

 INDIRECT DISPATCH 
The compute job dimensions could be specified to come from memory by using 

xglCmdDispatchIndirect() function. The dispatch argument data must be 4-byte aligned 

and the memory range containing the indirect data must be in the 

XGL_MEMORY_STATE_INDIRECT_ARG state. The layout of the indirect dispatch argument 

data is shown in Table 5. 
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Table 5. Argument data layout for indirect dispatch 

Offset Data type Description 

0x00 XGL_UINT32 Number of thread groups in X direction 

0x04 XGL_UINT32 Number of thread groups in Y direction 

0x08 XGL_UINT32 Number of thread groups in Y direction 

The indirect version of compute dispatch is available on both universal and compute 

queues. 

 RENDERING OPERATIONS 
An application renders graphics primitives using graphics pipelines and currently bound 

command buffer graphics state. All parts of the state must be properly set for rendering 

operation to produce the desired result. There are separate functions for rendering 

indexed and non-indexed geometry. 

Non-indexed geometry can be rendered by calling xglCmdDraw() function for rendering 

both instanced and non-instanced objects. Indexed geometry can be rendered with 

xglCmdDrawIndexed(). Indexed geometry can only be rendered when valid index data is 

bound to command buffer state with xglCmdBindIndexData(). If objects are not instanced, 

the firstInstance should be set to zero and instanceCount parameters should be set to one. 

 

The vertex, index and instance count cannot be zero. 

The rendering operations are only valid for command buffers built for execution on 

universal queues. 

 INDIRECT RENDERING 
In addition to rendering geometry with application supplied arguments, Explicit GL 

supports indirect draw functions whose execution is driven by data stored in GPU memory 

objects. Indirect rendering is performed by either calling xglCmdDrawIndirect() or 

xglCmdDrawIndexedIndirect() function, depending on presence of index data. 

The draw argument data must be 4-byte aligned and the memory range containing the 

indirect data must be in the XGL_MEMORY_STATE_INDIRECT_ARG state. The layout of 

the indirect draw argument data is shown in Table 6 and Table 7. 

Multiple draws can be launched from a single call to xglCmdDrawIndirect() or 

xglCmdDrawIndexedIndirect().  They each have count and stride arguments that specify 
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how many draws to launch, and the stride in memory for each draw’s argument data. 

Table 6. Argument data layout for indirect draw 

Offset Data type Description 

0x00 XGL_UINT32 Number of vertices per instance 

0x04 XGL_UINT32 Number of instances 

0x08 XGL_INT32 Vertex offset 

0x0C XGL_UINT32 Instance offset 

Table 7. Argument data layout for indexed indirect draw 

Offset Data type Description 

0x00 XGL_UINT32 Number of indices per instance 

0x04 XGL_UINT32 Number of instances 

0x08 XGL_UINT32 Index offset 

0x0C XGL_INT32 Vertex offset 

0x10 XGL_UINT32 Instance offset 

 PRIMITIVE TOPOLOGY 
Explicit GL supports a wide range of standard primitive topologies, along with tessellated 

patches and special rectangle list primitives. Primitive topology is specified as a part of the 

graphics pipeline static state. See Graphics Pipeline State. 

The rectangle list is a special geometry primitive type that can be used for implementing 

post-processing techniques or efficient copy operations. There are some special limitations 

for rectangle primitives. They cannot be clipped, must be axis aligned and cannot have 

depth gradient. Failure to comply with these restrictions results in undefined rendering 

results. 

 QUERIES 
Explicit GL supports occlusion and pipeline statistics queries. Occlusion queries are only 

available on universal queues while pipeline statistic queries are available on universal and 

compute queues. 
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Queries in the Explicit GL API are managed using query pools – homogeneous collections 

of queries of a certain type. Query pools are represented by XGL_QUERY_POOL object 

handles. The query type and number of query slots in a pool is specified at creation time. 

The query pools are created with xglCreateQueryPool(). 

Occlusion queries are used for counting the number of samples that pass the depth and 

stencil tests. They could be helpful when an application needs to determine visibility of a 

certain object. The result of an occlusion query can be accessed by the CPU to let the 

application make rendering decisions based on visibility. 

Pipeline statistics queries can be used to retrieve shader execution statistics, as well as 

the number of invocations of some other fixed function parts of the geometry pipeline. 

Naturally, the compute queue statistics have only a compute related subset of statistics 

information available. 

A query needs to be reset after creation and binding to memory, or if a query has already 

been used before. Failing to reset a query prior to use produces undefined results. To 

reset queries in a pool an application uses xglCmdResetQueryPool(). Multiple queries in a 

pool could be reset in just one reset call by specifying a contiguous range of query slots to 

reset. 

 

Resetting a range of queries in one operation is a lot more optimal than resetting 
individual query slots. 

The query counts query-specific events between xglCmdBeginQuery() and 

xglCmdEndQuery() commands embedded in the command buffer. The query commands 

can only be issued in command buffers that support queries of the given type. 

The same query cannot be used in a command buffer more than once; otherwise the 

results of the query are undefined. Also, the query cannot span more than a single 

command buffer and should be explicitly terminated before the end of a command buffer. 

Failing to properly terminate a query, by matching every xglCmdBeginQuery() function call 

with xglCmdEndQuery(), results in an undetermined query result value, invalid query 

completion status, and could produce an undetermined rendering result. For example, 

calling xglCmdBeginQuery() twice in a row matched by a single xglCmdEndQuery() call, or 

matching a single xglCmdBeginQuery() call with multiple xglCmdEndQuery() is not 

allowed. 

Occlusion queries support an optional XGL_QUERY_IMPRECISE_DATA flag that could be 

used as an optimization hint by the GPU. If flag is set, the query value is only guaranteed 

to be zero when no samples pass depth or stencil test. In all other cases the query returns 

some non-zero value. 

An application retrieves results of any query in a pool by calling xglGetQueryPoolResults(). 
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One or multiple consecutive query results can be retrieved in a single function call. If any 

of the requested results are not yet available, which is indicated by the XGL_NOT_READY 

return code, the returned data is undefined for all requested query slots. An application 

must ensure there is enough space provided to store results for all requested query slots. 

Calling xglGetQueryPoolResults() with a NULL data pointer could be used to determine 

expected data size. 

 

To retrieve query results or to check for completion, the driver performs a memory map 
operation, which could be relatively expensive. If application needs to perform a lot of 

frequent query checks, and memory assignment for query pool objects allow it, the query 
pool objects can be bound to pinned memory. This ensures expensive memory map 

operations are not performed. 

The results for an occlusion query are returned as a 64-bit integer value and pipeline 

statistics are returned in XGL_PIPELINE_STATISTICS_DATA structure. 

 TIMESTAMPS 
For timing the execution of operations in command buffers, Explicit GL provides ability to 

write GPU timestamps to memory from command buffers using xglCmdWriteTimestamp() 

functions. The timestamps are 64-bit time values counted with a stable GPU clock 

independent of the GPU engine or memory clock. To time a GPU operation an application 

uses a difference of two timestamp values. The frequency of the timestamp clock is 

queried from the physical GPU information as described in GPU Identification and 

Initialization. 

There are two types of locations in a pipeline from where the timestamp could be 

generated: top of pipeline and bottom of pipeline. The top of pipeline timestamp is 

generated immediately when the timestamp write command is executed, while the bottom 

of pipe timestamp is written out when previously launched GPU work has finished 

execution. 

The timestamp destination memory offset for universal and compute queues has to be 

aligned to an 8-byte boundary. Other queue types might have different alignment 

requirements. Before a timestamp can be written out, the destination memory range has 

to be transitioned into the XGL_MEMORY_STATE_WRITE_TIMESTAMP state using an 

appropriate preparation operation. 

The bottom of pipe timestamps are supported on universal and compute queues, while 

the top of the pipe timestamps are supported on universal queues only. 
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 SYNCHRONIZATION 
The Explicit GL API provides a comprehensive set of synchronization primitives to 

synchronize between CPU and GPU, as well as between multiple GPU queues. 

 COMMAND BUFFER FENCES 
Command buffer fences provide a coarse level synchronization between a GPU and a CPU 

on command buffer boundaries by indicating completion of command buffer execution. 

Figure 4 demonstrates an example of a CPU waiting on a GPU fence before it performs a 

resource load operation. 

A fence object, represented by XGL_FENCE object handle, can be created by calling 

xglCreateFence() function and can optionally be attached to command buffer submissions 

as described in Command Buffer Submission. 

Once a command buffer with a fence is submitted, the fence status can be checked with 

xglGetFenceStatus() function. If the fence has not been reached, the XGL_NOT_READY 

code is returned to the application. An attempt to check fence status before it is submitted 

returns XGL_ERROR_UNAVAILABLE error code. 

An application can also sleep one of its threads while waiting for a fence or a group of 

fences to come back by calling xglWaitForFences(). If multiple fences are specified and 

the xglWaitForFences() is instructed to wait for all fences, the function waits for all the 

fences to complete, otherwise any returned fence wakes an application thread. A timeout 

in seconds can be specified on the fence wait to prevent a thread from sleeping for 

excessive periods of time. 

 EVENTS 
Events in Explicit GL can be used for more fine-grain synchronization between a GPU and 

a CPU than fences, as application could use events to monitor progress of the GPU 

execution inside of the command buffers. An event object can be set or reset by both the 

Figure 4. Synchronization with fences 
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CPU and GPU, and its status can be queried by CPU. The events in Explicit GL are 

represented by XGL_EVENT object handle. 

Event objects are created by calling xglCreateEvent() function, and are set and reset by 

the CPU by using xglSetEvent() and xglResetEvent() functions. From command buffers the 

events are similarly manipulated using xglCmdSetEvent() and xglCmdResetEvent() 

functions. Event operations are supported by both universal and compute queues. 

An application checks the event's state using the CPU by calling xglGetEventStatus(). 

When created, the event starts in undefined state and it should be explicitly set or reset 

before it can be queried. 

 

To retrieve event status with the CPU, the driver performs a memory map operation, which 
could be relatively expensive. If the application needs to perform a lot of frequent event 

status checks, and memory assignment for event objects allow it, the event objects can be 

bound to pinned memory. This ensures expensive memory map operations are not 
performed. 

 QUEUE SEMAPHORES 
Queue semaphores are used to synchronize command buffer execution between multiple 

queues and between capable GPUs in multi-GPU configurations. See Queue Semaphore 

Sharing for discussion on synchronization in multi-GPU configurations. The semaphores 

are also used for synchronizing virtual allocation remapping with other GPU operations. 

The following figure shows an example of synchronization between queues to guarantee a 

required order of execution. 

Queue semaphore objects are represented by XGL_QUEUE_SEMAPHORE object handles and 

are created by calling xglCreateQueueSemaphore(). At creation time an application can 

specify an initial semaphore count. 

Figure 5. Queue synchronization with semaphores 
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An application issues signal and wait operations on the queues by calling 

xglSignalQueueSemaphore() and xglWaitQueueSemaphore() functions. It is an 

application’s responsibility to ensure proper matching of signals and waits. In the case 

where a queue is stalled for excessive periods of time, the debug infrastructure is able to 

detect a timeout condition and reports an error to the application. 

 

For performance reasons it is recommended to ensure signal is issued before the wait on 
the Windows® platform. 

 DRAINING QUEUES 
For some operations it might be required to ensure a particular queue or even all of the 

device queues are completely drained before proceeding. The Explicit GL API provides 

functions xglQueueWaitIdle() and xglDeviceWaitIdle() to stall and wait for the queues to 

drain. These functions are not thread safe and all submissions and other API operations 

must be suspended while waiting for idle. xglDeviceWaitIdle() waits for all queues to fully 

drain and virtual memory remapping operations to complete. 

 

For performance reasons it is recommended to avoid draining queues unless absolutely 
necessary. 

 QUEUE MEMORY ATOMICS 
The Explicit GL GPU is capable of executing memory atomics operating on 32-bit and 64-

bit integers from the command buffer, similar to how memory atomic operations are 

performed in shaders. Besides synchronization, atomics can be used to perform some 

arithmetic operations on memory values directly from GPU queues. The memory location 

operated on by an atomic operation is provided by the memory object and the application 

is responsible for issuing appropriate memory preparation operations. The memory range 

for the queue atomic operation must to be in the XGL_MEMORY_STATE_QUEUE_ATOMIC 

state. 

An atomic operation can be recorded in a command buffer using xglCmdMemoryAtomic(). 

The memory offset for atomic location has to be aligned to 4-bytes for 32-bit integer 

atomics and 8-bytes for 64-bit atomics. The 32-bit atomic operations use the lower 32-bits 

of the literal value provided in the source data argument. Atomic operations performed on 

unaligned addresses cause undefined results. 



 

 

Explicit GL Proposal Khronos Group Confidential Page 48 of 112 

 SHADER ATOMIC COUNTERS 
The Explicit GL shader model exposes atomic counters that could be used for 

implementing unordered data queues using atomic increment and decrement operations. 

The atomicity of operations guarantees that no two shader threads see the same counter 

value returned. The underlying counter is 32-bits, representing a [0, 232-1] range of 

values. Going outside of this value range causes the counter to wrap. The atomic counters 

in Explicit GL are independent from images and other API objects. 

Each universal and compute queue has some number of independent atomic counter 

resources per pipeline type. There are guaranteed to be at least 64 atomic counters per 

pipeline type for universal queues, but for other queue types the atomic counters are 

optional and may be zero. The number of available atomic counters is queried in the 

queue properties as described in Queues. 

 

Before using atomic counters, an application should query a queue's properties to confirm 
the number of available counter slots. 

Atomic counters are referenced by a slot number varying from 0 to the number of 

available atomic counters for that queue minus one. If a number of counters reported for 

a particular queue is zero, atomic counters cannot be used in any of the shaders used by 

compute or graphics workloads executing on that queue. Attempting to use atomic 

counters outside of the available counter slot range results in undefined behavior. 

Atomic counter values are not preserved across command buffer boundaries, and it is an 

application’s responsibility to initialize the counters to a known value before the first use 

and later save them off to memory if necessary. 

Before accessing it from a shader, an atomic counter should be initialized to a specific 

value by loading data with xglCmdInitAtomicCounters() or by copying the data from a 

memory object using xglCmdLoadAtomicCounters(). An atomic counter value could also 

be saved into a memory location using xglCmdSaveAtomicCounters(). 

The GPU memory offsets for loading and storing counters have to be aligned to a 4-byte 

boundary. The source and destination memory for the counter values has to be in the 

XGL_MEMORY_STATE_DATA_TRANSFER state before issuing the load or save operation.
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Chapter IV.  
 
RESOURCE OBJECTS AND 

VIEWS 

The Explicit GL GPU operates on data stored in memory objects. There are several ways 

the data can be accessed depending on its intended use. Texture and Framebuffer 

Attachment data is represented by image objects and is accessed from shader and 

pipeline back-end using appropriate views. Many other operations work directly on raw 

data stored in memory objects, and shader access to raw memory is performed through 

memory views. 

 MEMORY VIEWS 
A buffer-like access to raw memory from shaders is performed using memory views. There 

are no objects in the Explicit GL API representing them due to often dynamic nature of 

such data. Shader memory views describe how raw memory is interpreted by the shader 

and are specified during descriptor set construction (see Resource Shader Binding) or 

bound dynamically using dynamic memory views (see Dynamic Memory View). 

A memory view describes a region of memory inside of the memory object that is made 

accessible to a shader. Additionally, memory view specifies how shader sees and interprets 

the raw data in memory: a format and element stride could be specified. The memory 

view is defined by XGL_DYNAMIC_MEMORY_VIEW_SLOT_INFO structure. 

Interpretation of memory view data depends on combination of view parameters and 
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shader instructions used for data access. Here are the rules for setting up memory views 

for different shader instruction types: 

▼ For typed buffer shader instructions the format has to be valid and stride has to be 
equal to the format element size. 

▼ For raw buffer shader instructions the format is irrelevant and the stride has to be 
equal to one. 

▼ For structured buffer shader instructions the format is irrelevant and the stride has to 
be equal to the structure stride. The actual structure or type of the data is expressed 
inside of the shader. 

Memory view offset, as well as the data accessed in the shader must be aligned to the 

smaller of the fetched element size or the 4-byte boundary. Memory accesses outside of 

the memory view boundaries or unaligned accesses produce undefined results. It is an 

application’s responsibility to avoid out of bounds memory access. 

 IMAGES 
Images in Explicit GL are containers used to store texture data. They are also used for 

color Attachments and depth-stencil buffers. 

Unlike many other graphic APIs where image objects refer to the actual data residing in 

video memory along with meta-data describing how that data is to be interpreted by the 

GPU, Explicit GL decouples the storage of the image data and the description of how the 

GPU is supposed to interpret it. Data storage is provided by memory objects, while Explicit 

GL images are just CPU side objects that reference the data in memory objects and store 

information about data layout and their other properties. With this approach, developers 

are able to manage video memory more efficiently. 

An image is composed of 1D, 2D or 3D subresources containing texels organized in a 

layout that depends on the type of image tiling selected as well as other image properties. 

At image creation time, a texel format is specified for the purpose of determining the 

storage requirements, however it can later be overwritten with a compatible format at 

view creation time. The image dimensions are specified in texels for the topmost mip level 

for all image formats. This applies to compressed images as well. The size of compressed 

images must be a multiple of the compression block size. 

An image of any supported type is created by calling xglCreateImage(). All appropriate 

usage flags are set at creation time and must match the expected image usage. For 

images that are not intended for view creation and used for data storage only, for 

example, data transfer, it is allowed to omit all usage flags. 
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Application should specify a minimal set of image usage flags. Specifying extra flags might 

result in suboptimal performance. 

Once an image object is created, an application queries its memory requirements at run-

time. The video memory requirements include the memory needed to store all 

subresources as well as internal image meta-data. An application either creates a new 

memory object for the image data, or sub-allocates a memory block from an existing 

memory object if the memory size allows. Before an image is used, it should be bound to 

an appropriate memory object and, if necessary, cleared and prepared according to the 

intended use. 

 IMAGE ORGANIZATION AND SUBRESOURCES 
The following image types are natively supported in Explicit GL: 

▼ 1D images 

▼ 2D images 

▼ 3D images 

Along with the image views, these types are used to represent all supported images, 

including cube-maps and image arrays. 

Image objects are composed of one or more subresources – image array slices, mip 

levels, etc. – that vary based on the resource type and dimensions. A subresource within 

an image is referenced by a descriptor defined as XGL_IMAGE_SUBRESOURCE structure. 

Some operations can be performed on a contiguous range of image subresources. Such 

subresource range is represented by XGL_IMAGE_SUBRESOURCE_RANGE structure. 

 IMAGE ASPECTS 
Some images could have multiple components: depth, stencil or color. Each of these 

components is represented by an image aspect. Each such image component or image 

aspect is logically represented by its own set of subresources. The image aspects are 

described by values in XGL_IMAGE_ASPECT enumeration. 

While some operations might refer to images in their entirety, some operations require 

specification of a particular image aspect. For example, rendering to a depth-stencil image 

uses the entire set of aspects (in this case depth and stencil), while a specific aspect is 

specified to access a depth or stencil image data from a shader. 
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 1D IMAGES 
1D image type objects can store 1D images or 1D image arrays, with or without mipmaps. 

1D images cannot be multisampled and cannot use block compression formats. 

An example of 1D image array organization is shown in Figure 6. 

 2D IMAGES 
2D image type objects can store 2D images, 2D image arrays, cubemaps, color targets 

and depth-stencil targets, including multisampled targets. Multisampled 2D images cannot 

have mipmap chains. 

An example of 2D image array organization is shown in Figure 7. 

2D images used as depth-stencil targets have separate subresources for its depth and 

stencil aspects. For GPUs that do not support separate depth and stencil image aspect 

storage, the same memory offsets might be reported for depth and stencil subresources. 

An example of depth-stencil image organization is shown in Figure 8. 

Figure 6. 1D image organization 

Figure 7. 2D image organization 
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 CUBEMAPS 
Cubemap images are a special case of 2D image arrays. From the storage perspective, 

cubemaps are essentially 2D image arrays with 6 slices. Arrays of cubemaps are also 2D 

image arrays with a number of slices equal to 6 times the number of cubemaps. The 

cubemap slices have to be square in terms of their dimensions. Cubemap images cannot 

be multisampled. 

The slice number within a cubemap or a cubemap array can be computed as follows: 

slice = 6 * cube_array_slice + faceID 

The cubemap face IDs and their orientation are listed in the following table. 

Figure 8. Depth-stencil image organization 
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Table 8. Cubemap face ID decoding from face orientation 

Direction Face ID 

Positive X 0 

Negative X 1 

Positive Y 2 

Negative Y 3 

Positive Z 4 

Negative Z 5 

 3D IMAGES 
3D image type objects can only store volume textures, and like other types of images can 

contain mipmaps. 3D images cannot be multisampled or created as arrays. 

In 3D images, each subresource represents a mip-mapped volume starting with the 

topmost mip-level. An example 3D image organization is show in the Figure 9. 

 IMAGE TILING AND IMAGE DATA ORGANIZATION 
There are several options available for internal image texel organization. In linear tiling, 

the texels are stored linearly within an image row and image width is padded to a 

required stride. While simple and efficient for CPU access, the linear tiling does not play 

well with GPU memory system. For the highest GPU performance an optimal tiling should 

be used. The internal implementation of the optimal tiling could vary depending on the 

image type and usage. The only reliable way to upload to or download data from 

optimally tiled images is to copy their data to and from linearly tiled images that could be 

Figure 9. 3D image 
organization 
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directly accessed by the CPU. Image tiling types are defined in XGL_IMAGE_TILING. 

Some image operations can only be performed on images of certain tiling. An application 

should check format capabilities for the tiling of interest to verify the tiling type is 

supported for the operations with the intended image usage. 

In Explicit GL, depending on the resource type and usage, images are broadly classified as 

transparent or opaque in terms of their data layout. Transparent images are non-target 

images with linear tiling. Memory contents of these images can be directly accessed by 

the CPU as the data layout is well defined. Opaque images, while technically accessible by 

the CPU in a raw form, do not make any guarantees about the data layout. Opaque 

images are the optimally tiled images as well any target images (color targets, depth-

stencil targets and multisampled images). The primary use for the transparent images is 

data transfer to and from the GPU. 

 RESOURCE FORMATS AND CAPABILITIES 
The resource format is used for specifying image element type and memory view element 

type for shader access. It is specified using a XGL_FORMAT format descriptor that 

contains information about the numeric format and the channel format. The numeric 

format describes how the data is to be interpreted while the channel specification 

describes the number of channels and their bit depth. The XGL_NUM_FMT_DS numeric 

format is a special case format used specifically for creating depth and stencil images. 

The channel layout in memory is specified in this particular order: R, G, B, A, with the 

leftmost channel stored at the lowest address. The exceptions are the compressed 

formats that have different encoding scheme per block, and formats with alternative 

channel ordering which are used to handle certain OS-specific interoperability issues, such 

as XGL_CH_FMT_B5G6R5 and XGL_CH_FMT_B8G8R8A8. 

Not all channel and numeric format combinations are valid and only a subset of them can 

be used for color and depth-stencil targets. An application can query format capabilities 

using xglGetFormatInfo(). A separate set of capabilities is reported for linear and optimal 

tiling modes in XGL_FORMAT_PROPERTIES structure.  

If no capabilities are reported for a given combination of channel format and numeric 

format, that format is unsupported. For formats with multisampling capabilities, more 

detailed support of multisampling can be validated as described in Multisampled Images. 

 COMPRESSED IMAGES 
Compressed images are the images that use block compression channel formats 

(XGL_CH_FMT_BC1 through XGL_CH_FMT_BC7). Compressed images have several 
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notable differences that an application should properly handle: 

▼ Image creation size is specified in texels, but size for copy operations is specified in 
compression blocks. 

▼ Compressed images can only use optimal tiling. Since linear tiling cannot be used for 
compressed images, their uploads should use non-compressed formats of the texel 
size equivalent to the block compression size. 

 MULTISAMPLED IMAGES 
Depth-stencil and color targets can be created as multisampled 2D images.  An application 

can check multisampled image support for various combinations of samples and other 

image creation parameters by attempting to create a multisampled image. The image 

creation is lightweight enough to not cause any performance concerns for performing 

these checks. 

 IMAGE VIEWS 
Image objects cannot be directly accessed by pipeline shaders for reading or writing 

image data. Instead, image views representing contiguous ranges of the image 

subresources and containing additional meta-data are used for that purpose. Views can 

only be created on images of compatible types and should represent a valid subset of 

image subresources. The resource usage flags should have 

XGL_IMAGE_USAGE_SHADER_ACCESS_READ and/or 

XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE set for successful creation of image views 

of all types. 

The types of the image views for shader access that can be created are listed below: 

▼ 1D image view 

▼ 1D image array view 

▼ 2D image view 

▼ 2D image array view 

▼ 2D MSAA image view 

▼ 2D MSAA image array view 

▼ Cubemap view 

▼ Cubemap array view 

▼ 3D image view. 

An image view is created by calling xglCreateImageView(). The exact image view type is 
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partially implicit, based on the resource characteristics — resource type, multisampling 

settings, and the number of array slices — as well as the view creation parameters. Some 

of the image creation parameters are inherited by the view. 

The Table 9 describes required image and view creation parameters compatible with 

shader resources of different types. Attempting to create a view with image formats or 

image types incompatible with the parent image resource fails view creation. 
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Table 9. Image and image view parameters for shader resource 
types 

Shader resource type Image creation 
parameters 

Image view creation 
parameters 

1D image imageType = 1D 

width >= 1 

height = 1 

depth = 1 

arraySize = 1 

samples = 1 

viewType = 1D 

baseArraySlice = 0 

arraySize = 1 

1D image array imageType = 1D 

width >= 1 

height = 1 

depth = 1 

arraySize > 1 

samples = 1 

viewType = 1D 

baseArraySlice >= 0 

arraySize > 1 

2D image imageType = 2D 

width >= 1 

height >= 1 

depth = 1 

arraySize >= 1 

samples = 1 

viewType = 2D 

baseArraySlice >= 0 

arraySize = 1 

2D image array imageType = 2D 

width >= 1 

height >= 1 

depth = 1 

arraySize > 1 

samples = 1 

viewType = 2D 

baseArraySlice >= 0 

arraySize > 1 

2D MSAA image imageType = 2D 

width >= 1 

height >= 1 

depth = 1 

arraySize = 1 

samples > 1 

viewType = 2D 

baseArraySlice = 0 

arraySize = 1 
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Shader resource type Image creation 
parameters 

Image view creation 
parameters 

2D MSAA image array imageType = 2D 

width >= 1 

height >= 1 

depth = 1 

arraySize > 1 

samples > 1 

viewType = 2D 

baseArraySlice >= 0 

arraySize > 1 

Cubemap image imageType = 2D 

width >= 1 

height = width 

depth = 1 

arraySize = 6 

samples = 1 

viewType = CUBE 

baseArraySlice = 0 

arraySize = 1 

Cubemap image array imageType = 2D 

width >= 1 

height = width 

depth = 1 

arraySize = 6*N 

samples = 1 

viewType = CUBE 

baseArraySlice >= 0 

arraySize = N 

3D image imageType = 3D 

width >= 1 

height >= 1 

depth >= 1 

arraySize = 1 

samples = 1 

viewType = 3D 

baseArraySlice = 0 

arraySize = 1 

The number of mip-map levels and array slices has to be a subset of the subresources in 

the parent image. If application wants to use all mip-levels or slices in an image, the 

number of mip-levels or slices can be set to a special value of XGL_LAST_MIP_OR_SLICE 

without knowing the exact number of mip-levels or slices. 

It is an application’s responsibility to correctly use image views based on the supported 

image format capabilities and usage flags requested at image creation time. For example, 

attempting to write to a resource of XGL_CH_FMT_R4G4 or compressed format from a 

shader results in undefined behavior. Similarly, attempting to write to an image that did 

not have XGL_IMAGE_USAGE_SHADER_ACCESS_WRITE flag specified on image creation 

results in undefined behavior. 
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An image view specifies image channel remapping in channels member of 

XGL_IMAGE_VIEW_CREATE_INFO structure that can be used to swizzle the channel data 

on shader access. This swizzling applies to both image read and write operations. 

 FRAMEBUFFER ATTACHMENTS 
In Explicit GL there are two different types of Framebuffer Attachments: 

▼ Color Attachments 

▼ Depth-stencil Framebuffer Attachments 

 COLOR ATTACHMENTS 
Color Attachments are 2D or 3D image objects created with the 

XGL_IMAGE_USAGE_COLOR_TARGET object usage flag that designates them as color 

targets. An image cannot be designated as both a color target and a depth-stencil target. 

Images cannot be directly bound as color targets, but rather their color target views are 

used for that purpose. A color target view is created by calling 

xglCreateColorTargetView(). A color target view can represent a contiguous range of 

image array slices at any particular mip level. A color target view cannot reference 

multiple mip levels. 

A variety of different formats is supported for color Attachments. A valid image format 

must be specified for the color target view. It can be different from image format, 

provided the view format is compatible with the format of the parent image. 

A color target image can be accessed from shaders by creating appropriate image views, 

provided the image has necessary shader access flags and formats are compatible. 

 DEPTH-STENCIL FRAMEBUFFER ATTACHMENTS 
The depth-stencil targets are represented by depth-stencil views created from 2D image 

marked with XGL_IMAGE_USAGE_DEPTH_STENCIL usage flag and could be created as 

depth-only, stencil-only and depth-stencil. The depth formats supported are 16-bit integer 

and 32-bit floating point formats, while stencil only supports 8-bit integer format. It is 

allowed to mix stencil with any of the supported depth formats. An image cannot be 

designated as both a color target and a depth-stencil target. 

Images cannot be directly bound as depth-stencil targets, but rather their depth-stencil 

views need to be created for that purpose. A depth-stencil view is created by calling 

xglCreateDepthStencilView(). 
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A depth-stencil target image can be accessed from shaders by creating appropriate image 

views, provided the image has necessary shader access flags and formats are compatible. 

The Table 10 list all supported depth-stencil formats and underlying storage formats for 

depth and stencil aspects. 

Table 10. Depth-stencil image formats 

Image format 
(channel/numeric 
format) 

Depth aspect format 
(channel/numeric 
format) 

Stencil aspect format 
(channel/numeric 
format) 

XGL_CH_FMT_R8 / 

XGL_NUM_FMT_DS 

N/A XGL_CH_FMT_R8 / 

XGL_NUM_FMT_UINT 

XGL_CH_FMT_R16 / 

XGL_NUM_FMT_DS 

XGL_CH_FMT_R16 / 

XGL_NUM_FMT_UINT 

N/A 

XGL_CH_FMT_R32 / 

XGL_NUM_FMT_DS 

XGL_CH_FMT_R32 / 

XGL_NUM_FMT_FLOAT 

N/A 

XGL_CH_FMT_R16G8 / 

XGL_NUM_FMT_DS 

XGL_CH_FMT_R16 / 

XGL_NUM_FMT_UINT 

XGL_CH_FMT_R8 / 

XGL_NUM_FMT_UINT 

XGL_CH_FMT_R32G8 / 

XGL_NUM_FMT_DS 

XGL_CH_FMT_R32 / 

XGL_NUM_FMT_FLOAT 

XGL_CH_FMT_R8 / 

XGL_NUM_FMT_UINT 

Only a single aspect: depth or stencil can be accessed by the shader through image view 

at a time. 

 TARGET BINDING 
All provided color targets and depth-stencil target are simultaneously bound to command 

buffer state with xglCmdBindTargets(). It is not required for all target information to be 

present for binding. Specifying the NULL target information unbinds previously bound 

targets, leaving them unbound until the next call to xglCmdBindTargets(). All targets have 

to match graphics pipeline expectations at the time of the draw call execution following 

the state binding. 

Along with target views, an application specifies per target image state that represents 

the expected state for all subresources in the view at the draw time. For depth-stencil 

view a separate state is specified for depth and stencil aspects. The depth and stencil 

states could be different, for example, in case of read-only depth or stencil. For unused 

color targets, as well as for unused depth-stencil aspects an application should specify 
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XGL_IMAGE_STATE_UNINITIALIZED_TARGET state. 

 READ-ONLY DEPTH-STENCIL VIEWS 
Read-only depth-stencil view allows rendering with read-only access to depth or stencil 

aspect of an image while it is also used for read access from the graphics pipeline 

shaders. Only one of the depth or stencil aspects can be designated as read-only, but not 

both at the same time. The read-only depth in a view is indicated by 

XGL_DEPTH_STENCIL_VIEW_CREATE_READ_ONLY_DEPTH flag and read-only stencil by 

XGL_DEPTH_STENCIL_VIEW_CREATE_READ_ONLY_STENCIL flag at depth-stencil creation 

time. 

If depth or stencil aspect is used for simultaneous read access as depth-stencil target and 

as an image view from the graphic shaders, it has to be in 

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY image state. The image 

subresources in a read-only depth stencil view that are read from shaders should be 

transitioned to that state, as well as this state should be used for binding image view and 

appropriate aspect for depth-stencil target. 

 VIEW FORMAT COMPATIBILITY 
An image view or color target view can be created with a format different from the 

original image format. Generally, the formats are compatible when they have the same 

texel bit-depth. Compressed formats for image views are compatible with uncompressed 

formats of the texel bit-depth equal to the compressed image block size. 

To verify a particular view format is compatible with a given image resource, an 

application attempts to create a view with the desired format. The view creation is 

lightweight enough not to cause any performance concerns for the compatibility checks. 

 DATA FEEDBACK LOOP 
There is the possibility that the same memory range, an image or its views could be 

bound to multiple parts of the pipeline for both read and output operations. An example 

would be an image simultaneously bound for Framebuffer Attachment output and texture 

fetch, or a memory range bound for index fetch while it is output from one of the pipeline 

shaders to a writable memory view. This causes data feedback loops in the pipeline that 

can compromise integrity of the data. The validation layer is capable of catching a number 

of feedback conditions; however, under normal operation the driver performs no checks 

and it is the developer’s responsibility to avoid creating any data feedback loops. Results 

are undefined in such cases. 
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 RESOURCE ALIASING 
With the flexible memory management in Explicit GL, it might be tempting to alias 

memory regions or images by associating them with the same memory location. Aliasing 

of raw memory or memory views is allowed and is encouraged as means of sharing data, 

saving memory and reducing memory copy operations. The subresources of transparent 

images (non-target images with linear tiling) can also be aliased in memory. From this 

perspective transparent images behave similarly to memory views due to well defined 

data layout. 

Different rules apply to opaque images. Because of hidden resource meta-data, tiling 

restrictions, and a possibility for introducing hard to track errors, it is illegal to directly 

alias opaque images. An application should use views to perform compatible format 

conversions for those images. The validation layer in the driver detects cases of aliased 

opaque images and reports an error. To avoid triggering this error when reusing memory 

for multiple image resources accessed at different times, the application must unbind 

memory from one image before rebinding it to the other. 

Figure 10 demonstrates examples of allowed memory view aliasing and image 

reinterpretation through views. 

No assumption about preserving memory contents should be made when reusing memory 

between multiple target images (for example, depth-stencil targets, color Attachments, 

including multisampled images), and the application should perform proper preparation to 

initialize newly memory-bound target image resources. 

One has to be careful about tracking memory and image state dependencies and properly 

handling their preparation (see Resource States and Preparation) when aliasing memory 

or using overlapping memory ranges for different purposes. 

Memory view aliasing could be the source of a data feedback loop when multiple aliased 

views or memory ranges are simultaneously bound to the graphics pipeline for both 

output and read operations (also see Data Feedback Loop). The consistency of data in 

that case cannot be guaranteed and results are undefined. 

Figure 10. 
Examples of data aliasing in Explicit GL 
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 INVARIANT IMAGE DATA 
For non-target images, the memory contents are preserved after unbinding memory if 

image is in XGL_IMAGE_STATE_DATA_TRANSFER state. Rebinding the same non-target 

image object to the previously used memory location preserves image contents. This 

generally is not true for binding image objects to image data left in memory from other 

image objects. Reusing image memory contents can be accomplished by using 

XGL_IMAGE_FLAG_INVARIANT_DATA flag. Creating a new image with exactly the same 

parameters and memory binding as an old image provides initial memory contents 

equivalent to the old image if XGL_IMAGE_FLAG_INVARIANT_DATA flag is specified at 

image creation time for both old and new image object. 

 RESOURCE STATES AND PREPARATION 
When the GPU accesses a memory or an image, the memory range or image is assumed 

to be in a particular state that matches the GPU expectations for its behavior with respect 

to cache residency, state of the meta-data, and so on. There has to be consistency 

between the memory state or the image state and its current GPU resource usage to 

produce correct results. The Explicit GL driver does not keep track of the persistent 

memory or image state, nor does it track hazard conditions for performance reasons. In 

Explicit GL, it becomes an application’s responsibility to track memory and image state 

states and ensure their consistency with operations performed by the GPU. For some 

operations, an application also must communicate to the driver the current state at the 

time of performing the operation. 

In Explicit GL, the memory and image state is expressed in terms of the resource usage. 

The resource state represents where an image or memory can be bound, what operations 

can be performed on it, and provides abstracted hints for the internal resource 

representation. The application transitions memory and images from one state to another 

to indicate the change in the GPU usage of applicable resources. 

 MEMORY AND IMAGE STATES 
There are separate states for memory and images, as they are representative of different 

usage and resource bind points. The memory states represented by XGL_MEMORY_STATE 

values are used for memory regions directly accessed by the GPU and for memory views 

accessed from shaders. The image states represented by XGL_IMAGE_STATE values are 

specially used for tracking not only memory state, but also internal image meta-data 

states for images. The image state can be thought of as a superset of memory state, and 

no separate memory range state needs to be tracked for memory associated with an 
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image object. 

When binding memory, memory views, or images to different parts of the pipeline, some 

of the attachment points are more restrictive in terms of the acceptable resource states 

than others. For example, shader resources could be in variety of states depending on the 

pipeline and resource access type, while memory containing draw index data has to be 

only in XGL_MEMORY_STATE_INDEX_DATA state. The color targets or depth-stencil 

images could be in either XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL or 

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL state, which is communicated 

to Explicit GL at the target bind time. Naturally, the 

XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL state for color targets and 

depth-stencil buffers provides the best performance for rendering, but might incur an 

overhead when converting to any other access state or when accessing from shaders. In 

cases when the application expects to have light rendering followed by image shader 

access, it has an option of using 

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL state for rendering. A list of 

allowed states modes for various operations in Explicit GL is presented in table below. 
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Table 11. Allowed resource states for various operations 

Operation or usage Allowed resource states 

CPU resource access XGL_MEMORY_STATE_DATA_TRANSFER 

XGL_IMAGE_STATE_DATA_TRANSFER 

GPU resource copy XGL_MEMORY_STATE_DATA_TRANSFER 

XGL_IMAGE_STATE_DATA_TRANSFER 

Immediate memory update XGL_MEMORY_STATE_DATA_TRANSFER 

Load/save atomic counter XGL_MEMORY_STATE_DATA_TRANSFER 

Copy occlusion data XGL_MEMORY_STATE_DATA_TRANSFER 

Queue atomics XGL_MEMORY_STATE_QUEUE_ATOMIC 

Write timestamp XGL_MEMORY_STATE_WRITE_TIMESTAMP 

Resource cloning Any image state except 
XGL_IMAGE_STATE_UNINITIALIZED_TARGET 

Indirect draw/dispatch argument 
data 

XGL_MEMORY_STATE_INDIRECT_ARG 

Index data XGL_MEMORY_STATE_INDEX_DATA 

Graphics shader access XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY 

XGL_MEMORY_STATE_GRAPHICS_SHADER_WRITE_ONLY 

XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_WRITE 

XGL_MEMORY_STATE_MULTI_SHADER_READ_ONLY 

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY 

XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY 

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_WRITE 

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY 

Compute shader access XGL_MEMORY_STATE_COMPUTE_SHADER_READ_ONLY 

XGL_MEMORY_STATE_COMPUTE_SHADER_WRITE_ONLY 

XGL_MEMORY_STATE_COMPUTE_SHADER_READ_WRITE 

XGL_MEMORY_STATE_MULTI_SHADER_READ_ONLY 

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_ONLY 

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY 

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_WRITE 

XGL_IMAGE_STATE_MULTI_SHADER_READ_ONLY 
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Operation or usage Allowed resource states 

Color targets XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL 

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL 

Depth-stencil targets XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL 

XGL_IMAGE_STATE_TARGET_SHADER_ACCESS_OPTIMAL 

XGL_IMAGE_STATE_TARGET_AND_SHADER_READ_ONLY 

Image clear XGL_IMAGE_STATE_CLEAR 

Resolve source XGL_IMAGE_STATE_RESOLVE_SOURCE 

Resolve destination XGL_IMAGE_STATE_RESOLVE_DESTINATION 

When memory objects are created or non-target images are bound to memory, they are 

assumed to be in XGL_MEMORY_STATE_DATA_TRANSFER or 

XGL_IMAGE_STATE_DATA_TRANSFER state. Images that could be used as color 

Attachments or depth-stencil buffers are assumed to be in 

XGL_IMAGE_STATE_UNINITIALIZED_TARGET state when bound to memory and have to 

be transitioned to an appropriate state on a graphics capable queue. 

Before unbinding GPU updated images from memory, an application transitions target 

images to XGL_IMAGE_STATE_UNINITIALIZED_TARGET state and non-target images to 

XGL_IMAGE_STATE_DATA_TRANSFER state. This ensures the GPU caches are properly 

flushed and avoids a possibility of data corruption. 

 STATE PREPARATIONS 
An application indicates a memory range or an image state transition by adding special 

preparation commands into the GPU command buffer before the expected change of the 

memory or image usage model. A preparation command specifies how a memory range or 

an image was used previously (since the last preparation command) and its new usage. 

The non-rendering and non-compute operations that affect memory contents, such as 

copies, clears, and so on also participate in the change of resource usage and require 

preparation commands before and after the operation. The preparation of a list of 

memory ranges is added to a command buffer by calling xglCmdPrepareMemoryRegions(). 

Images are similarly prepared by using xglCmdPrepareImages(). 

On memory and image preparation, the driver internally generates appropriate GPU stalls, 

cache flushes, surface decompressions, and other required operations according to the 

resource state transition and the expected usage model. Some of the transitions might be 

“no-op” from the hardware perspective, however all preparations have to be performed 
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for compatibility with a wide range of GPUs, including future generations. 

 

It is more optimal to prepare memory or images in batches, rather than executing 
preparations on individual resources. 

Image preparation is performed at a subresource granularity, according to the specified 

range of subresources. Any given subresource must only be referenced once in a 

preparation call. Referencing a subresource multiple times within a preparation operation 

produces undefined results. 

When an image preparation operation is executed, the Framebuffer Attachment and 

depth-stencil view of that image cannot be bound in a command buffer, as it causes 

undefined rendering behavior following the preparation. The application must rebind 

target views that are based on images that have been prepared before the draw. 

All memory and image states are available for transitions executed on the graphics and 

universal queues, but only a subset is available for transitions executed on compute 

queues. The queues defined in extensions might have a different set of rules regarding 

the preparations. 

When preparing memory ranges or images for transitioning use between queues, the 

preparation has to be performed on the queue that was last to use the resource. For 

example, if the universal queue was used to render to a color target that is used next for 

shader read on a compute queue, the universal queue has to execute a 

XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL to 

XGL_IMAGE_STATE_COMPUTE_SHADER_READ_ONLY transition. The only exceptions to 

this are that transitions from any of the XGL_MEMORY_STATE_DATA_TRANSFER, 

XGL_IMAGE_STATE_DATA_TRANSFER and XGL_IMAGE_STATE_UNINITIALIZED_TARGET 

states should be performed on the queue that will use resources next. 

 

Failing to prepare memory range or image on the queue that was last to update or 
otherwise use resource might result in corruption due to residual data in caches. 

Additionally, the queue intended for the next operation might not have hardware capability 
to properly perform state transition. 

 MULTISAMPLED IMAGE PREPARATION 
Preparation of multisampled images requires a correct MSAA state object (see 

Multisampling State) to be bound to the current command buffer state. The MSAA state 

object used for preparation should be with exactly the same configuration as the one used 

for rendering to the multisampled image. If multiple multisampled images with different 

MSAA configurations have to be processed, they cannot be prepared on the same 

invocation of xglCmdPrepareImages() function. 
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 HAZARDS 
The Explicit GL driver does not track any potential resource access hazards such as read-

after-write (RAW), write-after-write (WAW) or write-after-read (WAR) that could result 

from resources being written and read by different parts of the pipeline and by the 

overlapping nature of the shader execution in draws and compute dispatches. The 

resource hazard conditions are expressed in Explicit GL using the preparation operations. 

In most cases, the graphics pipeline does not guarantee ordering of element processing in 

the pipeline. The ordering of execution between the draw calls is only guaranteed for color 

target and Depth Stencil Attachment writes – the Fragments of the second draw are not 

written until all of the Fragments from the first draw are written to the targets. Explicit GL 

also guarantees ordering of copy operations for memory ranges in 

XGL_MEMORY_STATE_DATA_TRANSFER state and images in 

XGL_IMAGE_STATE_DATA_TRANSFER state. In all other cases hazards must be addressed 

by the application. For example, image writes from shaders could cause write-after-write 

hazards. 

The read-after-write hazards must to be addressed whenever there is a possibility of the 

GPU reading resource data produced by the GPU. Likewise, write-after-write and write-

after-read hazards must be resolved when there is a possibility of concurrent or out-of-

order writes. In case of back-to-back image clears, without transition to any other state, 

there is also a possibility of write-after-write hazard that must be resolved by an 

application. 

Some of the write-after-write hazards, such as executing back to back compute dispatches 

that write to the same resource or memory range, do not represent actual change in 

image or memory state. These can be resolved by performing a transition to the same 

state the image or memory is in. For example, the write-after-write hazard for image 

writes from the compute pipeline in the case above can be resolved by a preparation call 

with a state transition from the XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY to 

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY. While there is not an actual 

transition of state, such preparation would be an indication to the Explicit GL driver of a 

write-after-write hazard condition. Inserting hazard processing ensures non-overlapping 

nature of the copy operations. 

 

There is never a write-after-write hazard when performing operations on memory in 

XGL_MEMORY_STATE_DATA_TRANSFER state and on images in 
XGL_IMAGE_STATE_DATA_TRANSFER state. When performing back-to-back copies of 

data, the Explicit GL driver ensures there are no hazards by ensuring each copy function 

call has finished before continuing with the next operation. 

Some typical examples of hazard conditions and state transitions are listed in Table 12. 
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Note that preparations are not only used for handling hazard conditions, but to indicate 

actual resource usage transition – for example, change from shader readable state to 

Framebuffer Attachment use. 

Table 12. Hazard and state transition examples 

Usage scenario Hazard Transition 

Read the Framebuffer 

Attachment previously in render-

optimal state 

RAW XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL 

to 

XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY 

Write to image from compute 

shader after it was read by 

graphics pipeline 

WAR XGL_IMAGE_STATE_GRAPHICS_SHADER_READ_ONLY 

to 

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY 

Write to image from compute 

shader on consecutive 

dispatches 

WAW XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY 

to 

XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY 

Write to image from Fragment 

shader (non-target write) on 

consecutive draws 

WAW XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY 

to 

XGL_IMAGE_STATE_GRAPHICS_SHADER_WRITE_ONLY 

Draw indirect with data 

generated by the compute 

shader 

RAW XGL_IMAGE_STATE_COMPUTE_SHADER_WRITE_ONLY 

to 

XGL_MEMORY_STATE_INDIRECT_ARG 

Draw indirect with data loaded 

by the CPU 

N/A XGL_MEMORY_STATE_DATA_TRANSFER 

to 
XGL_MEMORY_STATE_INDIRECT_ARG 

Draw with indices output by the 

compute shader 

RAW XGL_MEMORY_STATE_COMPUTE_SHADER_WRITE_ONLY 

to 
XGL_MEMORY_STATE_INDEX_DATA 

Back-to-back image clears WAW XGL_IMAGE_STATE_CLEAR 

to 

XGL_IMAGE_STATE_CLEAR 

Reading the GPU timestamp 

data by the CPU 

N/A XGL_MEMORY_STATE_WRITE_TIMESTAMP 

to 

XGL_MEMORY_STATE_DATA_TRANSFER 

The list of the hazard conditions in the table above is non-exhaustive and all hazards must 

be addressed whenever there is a possibility of reading or writing resource data in 

different parts of the pipeline or by different GPU engines, or in case of race conditions. 
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 RESOURCE OPERATIONS 
In the Explicit GL API, images and memory content are operated on by resource operation 

commands recorded in command buffers. Using command buffers submitted on multiple 

queues allows some resource operations to be asynchronous with respect to rendering 

and dispatch commands. It is an application’s responsibility to ensure proper 

synchronization and preparation of images and memory on accesses from compute and 

graphic pipelines and asynchronous resource operations executed on other queues. An 

application must make no assumptions about the order in which command buffers 

containing resource operations are executed between queues (ordering of command 

buffers is guaranteed only within a queue) and should rely on synchronization objects to 

ensure command buffer completion before proceeding with dependent operations. 

The following operations can be performed on memory and images: 

▼ Clearing images and memory 

▼ Copying data in memory and images 

▼ Updating memory 

▼ Resolving multisampled images 

▼ Cloning images 

 RESOURCE COPIES 
An application can copy memory and image data using several methods depending on the 

type of data transfer. The memory data can be copied between memory objects with 

xglCmdCopyMemory() and a portion of an image could be copied to another image with 

xglCmdCopyImage(). The image data can also be copied to and from memory using 

xglCmdCopyImageToMemory() and xglCmdCopyMemoryToImage(). Multiple memory or 

image regions can be specified in the same function call. None of the source and 

destination regions can overlap – overlapping any of the source or destination regions 

within a single copy operation produces undefined results. It is also invalid to specify 

empty memory region or zero image extents. 

Not all image types can be used for copy operations. While images designated as depth 

targets can be used as copy source, but they cannot be used as copy destination. An 

attempt to copy to a depth image produces undefined behavior. 

  

If application needs to copy data into a depth image, it can do so by rendering a rectangle 

that covers the copy region and exporting depth information with Fragment shader. 

When copying memory to and from images, the memory offsets have to be aligned to the 
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image texel size (or compression block size for compressed images). 

When copying data between images, the source and destination image type must match. 

That is, a part of a 2D image can be copied to another 2D image, but it is not allowed to 

copy a part of a 1D image to a 2D image. The multisampled images can only be copied 

when source and destination images they have the same number of samples. Source and 

destination formats do not have to match and appropriate format conversion is performed 

automatically if both source and destination image formats support conversion, which is 

indicated by XGL_FORMAT_CONVERSION format capability flag. In that case the Fragment 

size (or compression block size for compressed images) has to match, and raw image data 

is copied. 

For compressed image formats the conversion cannot be performed and the image 

extents are specified in compression blocks. 

Before any of the copy operations can be used, the memory ranges involved in copy 

operations must be transitioned to the XGL_MEMORY_STATE_DATA_TRANSFER and 

images must be transitioned to the XGL_IMAGE_STATE_DATA_TRANSFER state using an 

appropriate preparation command. After the memory or image copy is done, a preparation 

command indicating transition of usage from the XGL_MEMORY_STATE_DATA_TRANSFER 

or XGL_IMAGE_STATE_DATA_TRANSFER state must be performed before a source or a 

destination memory or image can be used for rendering or other operations. With back-to-

back copies to the same resource there is no need to deal with write-after-write hazards 

as each copy is guaranteed to finish before starting the next one. 

 

Whenever possible, an application should combine copy operations using the same image 

or memory objects, provided the copy regions do not overlap. Batching reduces the 
overhead of copy operations. 

 RESOURCE CLONING 
The image copy operations described in Resource Copies, while flexible, require images to 

be put into the XGL_IMAGE_STATE_DATA_TRANSFER state for the duration of the copy 

operation. That state transition might incur some overhead and in many cases for target 

images might be suboptimal. If a whole resource needs to be copied without a change of 

its state, a special optimized clone operation can be used. Images are cloned by calling 

xglCmdCloneImageData(). 

The clone operation can only be performed on images with the same creation parameters; 

and memory objects must be bound to the source and destination image before executing 

a clone operation. Both source and destination image must be created with 

XGL_IMAGE_CREATE_CLONEABLE flag. After cloning, the application should assume the 

destination image object is in the same state as the source image before the clone 
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operation. The source resource state is left intact after the cloning. 

 

Even though an application has direct access to the memory store of all resources, it 
should not rely on direct memory copy for cloning opaque objects, but should instead use 

the specially provided function to properly clone all image meta-data. 

If the destination image for cloning operation was bound to a device state as a target 

during the clone operation, it needs to be re-bound before the next draw, otherwise 

rendering produces undefined results. 

 IMMEDIATE MEMORY UPDATES 
Sometimes it is necessary to inline small memory updates in command buffers, for 

example to quickly feed new parameter values into shaders. In the Explicit GL API this can 

be accomplished by using xglCmdUpdateMemory(). The update is performed 

synchronously with other operations in a command buffer. 

 

While immediate memory update is a convenient mechanism for small data updates, it can 

be relatively slow and inefficient. Use immediate memory update sparingly. 

The data size and destination offset for immediate memory updates have to be 4-byte 

aligned. The memory range must be in the XGL_MEMORY_STATE_DATA_TRANSFER state 

for the immediate updates to work correctly. These updates can be executed on queues of 

all types. There is a limit on the maximum size of the uploaded data that can be queried 

from the physical GPU properties (see GPU Identification and Initialization); however it is 

guaranteed to be at least 256 DWORDs. 

 RESOURCE UPLOAD STRATEGIES 
Explicit GL provides a number of different data upload options that can be selected to 

satisfy a particular set of requirements or tradeoffs. For small infrequent updates 

Immediate Memory Updates might be an acceptable choice. For larger uploads there are 

generally two methods: direct memory update or indirect update. 

To implement direct update method an application maps the CPU accessible memory and 

directly loads memory and image data using a CPU memory copy. This method generally 

works well for non-image dynamic data, provided the destination memory resides in a 

CPU visible heap. 

The indirect update method uses two steps for loading data. First, the non-local (remote) 

memory object is mapped (or alternatively a pinned memory is used) and data is loaded 

into that staging area using the CPU memory copy. Second, the memory or image data is 

copied to the final destination using the GPU. If a DMA queue is available, it can be used 
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to upload the memory or image data in parallel with rendering and compute operations. 

The indirect update method is particularly useful for loading the data to CPU invisible 

heaps and to load data for optimally tiled images. If necessary, the tiling conversion is 

performed during the GPU copy. 

  

Since compressed images can only use optimal tiling, the indirect update is the only 

suitable method for loading compressed images. 

 MEMORY FILL 
A range of memory could be cleared by the GPU by filling it with the provided 4-byte value 

using xglCmdFillMemory(). The destination and fill size have to be 4-byte aligned. The 

memory range needs to be in the XGL_MEMORY_STATE_DATA_TRANSFER state for the fill 

operation to work correctly. The memory fill can be executed on queues of all types. 

 

The memory objects in system memory heaps probably can be cleared faster by the CPU 
than the GPU. 

 IMAGE CLEARS 
Image clears are optimized operations to set a clear value to all elements of an aspect or 

set of aspects in the image. Both target and non-target image clears are supported by 

calling xglCmdClearColorImage() or xglCmdClearColorImageRaw(). Depth-stencil targets 

can be cleared by calling xglCmdClearDepthStencil(). These clear operations for target 

images are only available in universal command buffers. Non-target color images can also 

be cleared in compute command buffers. 

Before a color image or depth-stencil clear operation is performed, an application should 

ensure the image is in the XGL_IMAGE_STATE_CLEAR state by issuing an appropriate 

resource preparation command. 

The granularity of clears for non-target images is a subresource. For target images the 

granularity depends on the GPU capabilities and number of unique clear colors per image. 

If multiColorTargetClears in GPU properties reports XGL_FALSE, only a single clear color (or a 

single set of depth and stencil clear values) can be used per target image. In that case, 

the whole image first is cleared to a clear color and then subsequently parts of the image 

are cleared to exactly the same color. If application would like to use a different clear 

color, the whole target image must be cleared. Clearing image to multiple values on GPUs 

that do not support that capability produces undefined results. 
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When only a subset of a resource needs to be cleared is smaller than allowed granularity 

or multiple clear values per image need to be used, but they are not supported by the 
GPU, an application should use the graphics or compute pipeline for the purpose of image 

clears by rendering a constant shaded rectangle covering the cleared area. 

Clearing an image with xglCmdClearColorImage() automatically performs value conversion 

on the application-provided floating point color values as is appropriate for the image 

format used. These clears are only allowed for formats that have 

XGL_FORMAT_CONVERSION capability flag exposed. For the sRGB formats the clear color 

is specified in a linear space, which is appropriately converted by the Explicit GL driver to 

sRGB color space. Raw clears perform no format conversion and are available for all image 

formats. The provided clear data is directly stored regardless of the format’s numeric type 

(including sRGB formats). xglCmdClearColorImageRaw() takes a number of least 

significant bits from per-channel UINT color values as appropriate for the image format bit 

depth and stores them in the channels that are present in the format. The order of color 

channel data specified for clear functions is R, G, B, A. 

To clear a depth-stencil image, an application uses xglCmdClearDepthStencil() with 

specified depth and stencil clear values. The decision to clear depth or stencil parts of the 

image is made according to provided subresource range aspects. If application wants to 

clear both depth and stencil, it needs to provide separate subresource ranges for depth 

and stencil aspects. The ranges for depth and stencil aspects are fully independent and it 

is not required to specify the matching ranges of depth and stencil subresource in one 

clear call. It is also allowed to clear depth and stencil separately. 

 

For performance reasons it is advised to clear depth and stencil in the same operation with 

matching subresource ranges. 

Before clearing a resource, an application must ensure it is not bound to a command 

buffer state in the command buffer where it is cleared. If necessary, a resource could be 

rebound again after the clear and appropriate preparation operations. Clearing a resource 

while it is bound to a GPU state causes undefined results in subsequent rendering 

operations. 

 MULTISAMPLED IMAGE RESOLVES 
An application could implement its own resolve operations using shaders, but for 

convenience an optimized resolve implementation is provided in Explicit GL. The built-in 

implementation understands all sample counts and is guaranteed to work on a variety of 

formats. The resolve operation could be recorded into a command buffer using 

xglCmdResolveImage(). The built-in resolve operation can only be executed on universal 

queue. 
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The source image must be a 2D multisampled image and the destination must be a single 

sample image. The formats of the source and destination image subresources should 

match; otherwise the results of the resolve operation are undefined. It is not necessary to 

cover the whole destination subresource with the resolve rectangle – an application can 

perform partial subresource resolves. 

The resolve operation is also supported for depth-stencil images, in which case it is 

performed by copying the first sample from the target image to the destination image. 

Before a resolve operation can take a place, the source and destination image 

subresources must be processed using an appropriate preparation commands, designating 

them as resolve source and destination using the XGL_IMAGE_STATE_RESOLVE_SOURCE 

and XGL_IMAGE_STATE_RESOLVE_DESTINATION image states, respectively. At the time 

of a resource resolve execution, the color target and depth-stencil view of the source and 

destination resources must not be bound in a command buffer, otherwise the rendering 

that follows the resolve causes undefined behavior. The application should rebind target 

views that are based on images that are used as a source or destination of the resolve 

operation. 

 IMAGE SAMPLERS 
Sampler objects, represented in Explicit GL by XGL_SAMPLER handle, describe how images 

are processed (for example filtered, converted and so on) on a texture fetch operation. A 

sampler object is created by calling xglCreateSampler(). 

The core Explicit GL specification defines a limited support for border colors available to 

application when XGL_TEX_ADDRESS_CLAMP_BORDER addressing mode is used. 

Available border colors are specified using XGL_BORDER_COLOR_TYPE. More options for 

border colors may be exposed through an extension. 

 RESOURCE SHADER BINDING 
Shader resources such as memory views and images, as well as the sampler object 

references are not directly bound to pipeline shaders; they are grouped into monolithic 

descriptor sets that are bound to a command buffer state. Pipeline Resource Access 

discusses in greater detail how descriptor sets are mapped to shaders and bound to the 

state. In addition to descriptor sets, an application can use the Dynamic Memory View. 

 DESCRIPTOR SETS 
A descriptor set is a special state object that conceptually can be viewed as an array of 

shader resource or sampler object descriptors or pointers to other descriptor sets. A 
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portion of the descriptor set is bound to command buffer state to be accessed by the 

shaders of the currently active pipeline. A descriptor set is created by calling 

xglCreateDescriptorSet(). 

There could be several descriptor sets available to the pipeline. Shader resources and 

samplers referenced in descriptor sets are shared by all shaders forming a pipeline. The 

number of descriptor sets that can be bound to a command buffer state is can be queried 

from physical GPU properties, but it is guaranteed to be at least 2. Additionally, more 

descriptor sets can be accessed hierarchically through the descriptor sets directly bound to 

the pipeline. An example of descriptor set and its bindings is shown in Figure 11. 

Explicit GL imposes no limits on the size of the descriptor set or the total number of 

created descriptor sets, provided they fit in memory. An application can create larger 

descriptor sets than necessary for a given pipeline, sub-allocate a range of slots and bind 

descriptor set ranges to a pipeline with an offset. Ability to create large descriptor sets 

and sub-allocate descriptor set chunks provides a potential tradeoff between memory 

usage and complexity of descriptor set management. 

When a descriptor set is created and its memory is bound, the contents of a descriptor set 

are not initialized. An application should explicitly initialize a descriptor set by binding 

Figure 11. 
Descriptor set binding example 
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shader resources and samplers or by clearing descriptor set slots as described in 

Descriptor Set Updates. 

There are many strategies for organizing shader resources in descriptor sets, which 

provides a wide range of CPU and GPU performance trade-offs. One example of such 

strategy is to divide sampler and resource objects into separate descriptor sets: one 

dedicated to resources and another for samplers – for simplicity of object management. 

Another strategy is to mix resources and samplers in the same descriptor set, but group 

them into descriptor sets according to the frequency of update. For example, one 

descriptor set could be dedicated for frequently changing memory views and images. 

Using multiple directly bound descriptor sets provides a lot of freedom in managing 

resources and samplers for shader access. 

 DESCRIPTOR SET UPDATES 
Descriptor sets can be initially constructed and later updated by an application outside of 

command buffer execution. Sets can be updated multiple times; however, when updating, 

an application should ensure they are not currently used for rendering. 

An update for a descriptor set is initiated by calling xglBeginDescriptorSetUpdate(), 

followed by calls to one of the following functions to update ranges of descriptor set slots 

with objects that need to be bound to them – xglAttachMemoryViewDescriptors() for 

memory views, xglAttachImageViewDescriptors() for image views, 

xglAttachSamplerDescriptors() for samplers and xglAttachNestedDescriptors() for building 

hierarchical descriptor sets. After an update is complete, an application calls 

xglEndDescriptorSetUpdate(). Failure to match xglBeginDescriptorSetUpdate() with a call 

to xglEndDescriptorSetUpdate(), or performing an update without beginning the update, 

results in undefined behavior. 

Image objects cannot be directly bound to resource descriptor sets; image views are used 

instead. An image view always references the most recent memory association of the 

parent image object. Binding an image to a descriptor set takes a snapshot of the memory 

association as it was defined at the time of the binding. Later changes to images memory 

binding are not reflected in previously built descriptor sets. The memory for shader access 

is bound as described in Memory Views. 

 

For performance reasons it is recommended to avoid calling 
xglBeginDescriptorSetUpdate() and updating descriptor set while the memory object 

associated with descriptor set is used for rendering. 

To create complex descriptor set hierarchies as shown in Figure 11, descriptor set ranges 

are hierarchically bound to slots of other descriptor sets. It is allowed to reference 

descriptor sets hierarchically within the same descriptor set. 
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The descriptor set update operation produces undefined results if the application attempts 

to bind a sampler or shader resource to a slot that does not exist in a descriptor set. 

To reset a range of descriptor set slots to an unbound state, an application calls 

xglClearDescriptorSetSlots(). There is no requirement for clearing descriptor set slots 

before binding new objects, but it could be useful for assisting in debugging an 

unexpected behavior related to bound descriptor set objects. 

 

Each individual descriptor set update might be fairly CPU-heavy due to a possibility of a 
memory mapping operation on a call to xglBeginDescriptorSetUpdate() and memory 

unmapping on a call to xglEndDescriptorSetUpdate(). In case of heavy dynamic descriptor 
set updates it is recommended to create larger descriptor sets and use them as pools of 

descriptor slots in ranges that are individually bound to the GPU state. In case of a large 
descriptor set used as a pool, only a single set of xglBeginDescriptorSetUpdate() and 

xglEndDescriptorSetUpdate() calls per large descriptor set should be necessary. 

An application can create and initialize descriptor set objects ahead of time or it can 

update them on the fly as necessary. Ranges of descriptor set slots must not be updated if 

they are referenced in command buffers scheduled for execution. An application is 

responsible for tracking the lifetime of descriptor sets and their slot reuse.
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Chapter V.  
 
STATE, SHADERS, AND 

PIPELINES 

 EXPLICIT GL STATE OVERVIEW 
The configuration of the GPU device and how rendering happens is described by the state 

data. State is specified by binding various state objects and setting state values in 

command buffers. When command buffer recording starts, all GPU state is undefined and 

an application should explicitly initialize all relevant state before the first draw or dispatch 

call. Failing to bind all required state produces undefined results. State is persistent only 

within the boundaries of a command buffer. For performance reasons the application 

should avoid binding state redundantly. 

The compute command buffers have only one instance of the GPU state – compute. The 

universal command buffers have two separate GPU states for tracking compute and 

graphics related state information. 

 STATIC VS. DYNAMIC STATE 
Conceptually there are several types of state data in Explicit GL – the dynamic state that is 

a configurable part of the state that is set in command buffers, and the static state used 

for the pipeline construction. The dynamic state is represented by state block objects, 

pipelines objects and others. 
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Table 13 provides a summary of the dynamic state that can be bound or set in command 

buffers for graphics and compute operations. 

Table 13. Summary of dynamic command buffer state 

Dynamic state type Graphics operations Compute operations 

Index data YES NO 

Pipeline YES YES 

Descriptor sets YES YES 

Dynamic memory view YES YES 

Framebuffer Attachments YES NO 

Rasterizer state YES NO 

Viewport and scissor state YES NO 

Color blender state YES NO 

Depth-stencil state YES NO 

Multisampling state YES NO 

Static state in graphic pipelines is discussed in Graphics Pipeline State. 

 DYNAMIC STATE OBJECTS 
The dynamic state is represented by state objects. The state objects are created by the 

driver from the application provided state descriptions and are referenced using handles. 

There are separate state objects for different fixed function blocks. The following types of 

dynamic state objects exist in Explicit GL : 

▼ Rasterizer state (XGL_RASTER_STATE_OBJECT) 

▼ Viewport and scissor state (XGL_VIEWPORT_STATE_OBJECT) 

▼ Color blender state (XGL_COLOR_BLEND_STATE_OBJECT) 

▼ Depth-stencil state (XGL_DEPTH_STENCIL_STATE_OBJECT) 

▼ Multisampling state (XGL_MSAA_STATE_OBJECT) 

Explicit GL API specifies a set of matching bind points that state objects blocks can be 

attached to using xglCmdBindStateObject(). All state bind points must have dynamic state 

objects bound for rendering operations. The state specified in the state blocks has to 
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match pipeline expectations at the draw time. 

 RASTERIZER STATE 
The rasterizer state object is represented by XGL_RASTER_STATE_OBJECT handle. It describes 

primitive screen space orientation and rasterization rules, as well as specifies used depth 

bias. The raster state object is created by calling xglCreateRasterState(). The rasterizer 

state is bound to XGL_STATE_BIND_RASTER binding point. 

 VIEWPORT AND SCISSOR STATE 
The viewport state object is represented by XGL_VIEWPORT_STATE_OBJECT handle. It 

describes viewports used for rendering and optional scissors corresponding to the 

viewports. The viewport state object is created by calling xglCreateViewportState(). The 

viewport state is bound to XGL_STATE_BIND_VIEWPORT binding point. 

 COLOR BLENDER STATE 
The color blender state object is represented by XGL_COLOR_BLEND_STATE_OBJECT handle. It 

describes color blending state for the pipelines that enable blending operations. The color 

blender state is created by calling xglCreateColorBlendState(). The color blender state is 

bound to XGL_STATE_BIND_COLOR_BLEND binding point. 

A blender state defined to use the second Fragment shader output is considered to be the 

dual source blender state. Dual-source blending is specified by one of the following blend 

values: 

▼ XGL_BLEND_SRC1_COLOR 

▼ XGL_BLEND_ONE_MINUS_SRC1_COLOR 

▼ XGL_BLEND_SRC1_ALPHA 

▼ XGL_BLEND_ONE_MINUS_SRC1_ALPHA 

A blender state object with dual-source blending must only be used with pipelines 

enabling dual source blend. 

The blend enable specified in color blender state for each color target must match the 

blend state defined in the pipelines it is used with. Mismatches between pipeline 

declarations and actually bound blender state objects causes undefined results. 
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 DEPTH-STENCIL STATE 
The depth-stencil state object is represented by XGL_DEPTH_STENCIL_STATE_OBJECT handle. 

It describes depth-stencil test operations in the graphics pipeline. The depth-stencil state 

is created by calling xglCreateDepthStencilState(). The depth-stencil state is bound to 

XGL_STATE_BIND_DEPTH_STENCIL binding point. 

 MULTISAMPLING STATE 
The multisampling state object is represented by XGL_MSAA_STATE_OBJECT handle. It 

describes the multisampling anti-aliasing (MSAA) options for the graphics rendering. The 

multisampling state is created by calling xglCreateMsaaState(). The multisampling state is 

bound to XGL_STATE_BIND_MSAA binding point. 

Specifying one sample in a multisampling state disables multisampling. A valid 

multisampling state must be bound even when rendering to single sampled images. The 

sampling rates defined in the multisampling state are uniform throughout the graphics 

pipeline. 

Using multisampling state objects that have different sample pattern or different 

configuration for rendering to the same set of color or depth-stencil targets produces an 

undefined result. 

 DEFAULT SAMPLE PATTERNS 
In Explicit GL the application cannot query sample positions for the rasterizer or images 

from within a shader, but rather should rely on the knowledge of the patterns. Figure 12 

defines default sample patterns in Explicit GL for 2-sample, 4-samples and 8-samples. 
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 SHADERS 
Shader objects are used to represent code executing on programmable pipeline stages. 

The input shaders in Explicit GL are specified in binary intermediate language (IL) format. 

The currently supported intermediate language is a subset of XGL IL. The shaders can be 

developed in IL assembly or high-level languages and compiled off-line to a binary IL. The 

Explicit GL API can be considered language agnostic as it could support other IL options in 

the future, provided that they expose a full shader feature set required by Explicit GL. 

Shader objects, represented by XGL_SHADER handles, are not directly used for rendering 

and are never bound to a command buffer state. Their only purpose is to serve as helper 

objects for pipeline creation. During the pipeline creation, shaders are converted to native 

GPU shader instruction set architecture (ISA) along with the relevant shader state. Once a 

pipeline is formed from the shader objects, the shader objects can be destroyed since the 

pipeline contains its own compiled and optimized shader representation. Shader objects 

help to reduce pipeline construction time when the same shader is used in multiple 

pipelines. Some of the compilation and pre-linking steps can be performed by the Explicit 

GL driver only once on shader object construction instead of during each pipeline creation. 

Since shaders are not directly used by the GPU, they never require GPU video memory 

binding. 

A shader object for any shader stage is created by calling xglCreateShader(). 

 PIPELINES 
The Explicit GL API supports two principal types of pipelines – compute and graphics. In 

Figure 12. 
Default sample patterns 
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the future more types of pipelines could be added to support new GPU architectures. All 

of the pipeline objects in Explicit GL, regardless of their type, are represented by 

XGL_PIPELINE handle. There are separate pipeline creation functions for different pipeline 

types. 

The compute pipeline represents a compute shader operation. The graphics pipeline 

encapsulates the fixed function state and shader based stages, all linked together into a 

special monolithic state object. It defines the communication between the pipeline stages 

and the flow of data within a graphics pipeline for rendering operations. Linking the whole 

pipeline together allows the optimization of shaders based on their input/outputs and 

eliminates expensive draw time state validation. This monolithic pipeline representation is 

bound to the GPU state in command buffers just like any other dynamic state. 

Currently, the majority of developers create many thousands of different shaders and 

experience difficulties in managing this shader variety. In fact, shader management has 

been identified by many developers as one of their top problems. Given the combinatorial 

explosion that can otherwise occur, Explicit GL’s programming model is designed with the 

expectation that future applications create a moderate number of linked pipelines 

(possibly hundreds or low thousands) to cover a variety of rendering scenarios and rely 

more on uber-shader and data driven approaches to manage the variety of rendering 

options. 

 COMPUTE PIPELINES 
The compute pipeline encapsulates a compute shader and is created by calling 

xglCreateComputePipeline() with a compute shader object handle in the pipeline creation 

parameters. It is invalid to specify XGL_NULL_HANDLE for the compute shader. 

 GRAPHICS PIPELINES 
The graphics pipeline is created by calling xglCreateGraphicsPipeline() according to the 

shader objects and the fixed function pipeline static state specified at creation time. An 

example of a full graphics pipeline configuration and its bound state is shown in Figure 13. 
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The nomenclature for shaders and fixed function blocks from the pipeline diagram are 

explained in Table 14. 

Figure 13. Graphics pipeline and its state 
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Table 14. Graphics pipeline stages 

Stage Type Description 

IA Fixed function Input assembler 

VS Shader Vertex shader 

HS Shader Tessellation control shader 

TESS Fixed function Tessellator 

DS Shader Tessellation evaluation shader 

GS Shader Geometry shader 

RS Fixed function Rasterizer 

PS Shader Fragment shader 

DB Fixed function Depth-stencil test and output 

CB Fixed function Color blender and output 

The following are the rules for building valid graphics pipelines: 

▼ a vertex shader is always required, while other shaders might be optional, depending 
on pipeline configuration; 

▼ a fragment shader is always required for color output and blending, but is optional for 
depth-only rendering; 

▼ both tessellation control and tessellation evaluation shaders must be present at the 
same time to enable tessellation. 

Presence of the shader stage in a pipeline is indicated by specifying a valid shader object. 

The application uses XGL_NULL_HANDLE value to indicate the shader stage is not needed. 

Presence of some of the fixed function stages in the pipeline is implicitly derived from 

enabled shaders and provided state. For example, the fixed function tessellator is always 

present when the pipeline has valid Tessellation Control  and Tessellation Evaluation  

shaders. 

The following table lists the most common examples of valid graphics pipeline 

configurations. 
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Table 15. Examples of valid graphics pipeline configurations 

Pipeline configuration Description 

IA-VS-RS-DB Depth-stencil only rendering pipeline. 

IA-VS-RS-PS-DB Depth/stencil only rendering pipeline with Fragment shader 
(for example, using Fragment shader for alpha test). 

IA-VS-RS-PS-CB Color only rendering pipeline. 

IA-VS-RS-PS-DB-CB Color and depth-stencil rendering pipeline. 

IA-VS-GS-RS-PS-DB-CB Rendering pipeline with geometry shader. 

IA-VS-HS-TESS-DS-RS-PS-DB-CB Rendering pipeline with tessellation. 

IA-VS-HS-TESS-DS-GS-RS-PS-DB-CB Rendering pipeline with tessellation and geometry shader. 

Other pipeline configurations are possible, as long as they follow the rules outlined in this 

section of the document. 

 GRAPHICS PIPELINE OPERATION 
In the Explicit GL environment, rendering is initiated by draw operations from a command 

buffer. Depending on the topology specified in a pipeline, the type of draw operation, and 

presence of index data, the vertex IDs are determined and provided to vertex shader 

threads. The vertex shader explicitly fetches vertices from bound resources or generates 

vertex data analytically, performs necessary computations and outputs data. The vertex 

shader outputs are automatically forwarded to subsequent stages in the pipeline. 

Optionally, geometry could be further processed by tessellator and geometry shaders 

before it is rasterized. After geometry is rasterized, it is processed by the Fragment shader 

and optionally forwarded to the color and depth fixed function units for processing and 

output. 

 VERTEX FETCH IN GRAPHICS PIPELINE 
Unlike other APIs, Explicit GL does not provide special handling for vertex buffers and 

does not implicitly fetch vertex data before it is passed to the vertex shader. It is an 

application’s responsibility to treat vertex buffers as any other memory views and 

generate vertex shaders to fetch them. 

The vertex or index offset as well instance offset, in case of instanced rendering, are 

passed as inputs to the vertex shader to compute a proper vertex ID. 
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 GRAPHICS PIPELINE STATE 
Each of the fixed-function stages of the pipeline has the static part of the state that is 

included in the pipeline. 

Input Assembler Static State 

The input assembler static state for the graphics pipeline is specified using 

XGL_PIPELINE_IA_STATE structure. The state includes information about primitive 

topology and vertex reuse. 

The XGL_TOPOLOGY_PATCH primitive topology is only valid for tessellation pipelines; 

likewise, non-patch topologies cannot be used with tessellation pipelines. Mismatching 

primitive topology and tessellation fails graphics pipeline creation. 

An application can use disableVertexReuse in the input assembler state to indicate that post-

transform vertex reuse should be disabled. Normally vertex reuse should be enabled for 

better performance; however there might be cases where more predictable execution of 

vertex or geometry shader is needed. This setting is just a hint and does not guarantee 

vertex reuse. Under some circumstances, vertex reuse might be disabled by the driver, 

even if the application allows it. 

 

Vertex reuse should generally be disabled if vertex, or geometry shader, or any of the 
tessellation shaders write data out to memory or images. 

enablePrimitiveRestart and primitiveRestartIndex allow a particular index value to be specified that will 

trigger a new primitive to be started with the following index.  This is useful to drawing multiple 

triangle strips from a single draw command.  Enabling this feature may have a negative 

performance impact on some implications, and should be left disabled unless the feature is 

required. 

provokingVertex chooses whether the first or last vertex in a primitive supplies the values for flat 

shaded attributes, among other things.  The default, should the value be left set to 0, is 

XGL_PROVOKING_VERTEX_LAST. 

Tessellator Static State 

The tessellator static state for the graphics pipeline is specified using 

XGL_PIPELINE_TESS_STATE structure. The state includes information about the 

tessellation patches. 

The tessellator static state is only used when valid Tessellation Control  and Tessellation 

Evaluation  shaders are specified in the graphics pipeline. The patchControlPoints parameter 

is used to define the number of control points used by the pipeline. The number of control 

points must be greater than 0 and less than or equal to 32 when tessellation is enabled. It 
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must be zero when tessellation is disabled. 

The tessellator state includes ability to specify the optimization hint that indicates to the 

Explicit GL driver what target tessellation factor to optimize the pipeline for. For example, 

if an average tessellation factor for a set of objects rendering with the pipeline is expected 

to be around 7.0, the application could specify that value in optimalTessFactor. If application 

is unsure of optimal tessellation factor for the pipeline, the value should be left at zero. 

Rasterizer Static State 

The rasterizer static state for the graphics pipeline is specified using 

XGL_PIPELINE_RS_STATE structure. The state includes information about the depth clip 

mode and rasterization discard. Rasterization discard is a feature that allows rasterization 

to be disabled even when a fragment shader is otherwise bound and enabled. It is useful 

when the front-end of the pipeline has visible side effects such as writing to images or 

modifying atomic counters, but fragment shader execution is not required. It is also used 

in some performance analysis tools to override application state and disable rasterization 

during bottleneck analysis. 

Depth-stencil Static State 

The depth-stencil static state for the graphics pipeline is specified using 

XGL_PIPELINE_DB_STATE structure. The state includes information about the depth-

stencil target format that is used with the pipeline. 

The pipeline depth-stencil format specification must match the actual depth-stencil target 

format bound at draw time. Mismatch of the depth-stencil target and pipeline format 

expectations results in undefined behavior. If no depth-stencil is bound for rendering, the 

pipeline should specify XGL_CH_FMT_UNDEFINED channel format and 

XGL_NUM_FMT_UNDEFINED numeric format. 

Color Output and Blender Static State 

The color output and blender static state for the graphics pipeline is specified using 

XGL_PIPELINE_CB_STATE structure. The state includes information about color target 

formats, blending and other color output options. 

The blend enable and the color target format specified at pipeline creation must match 

the formats of the color target views bound at draw time. Mismatch of target formats or 

blend enable flags results in undefined rendering. If a target is not bound at draw time, its 

write mask has to be set to zero and the pipeline should specify 

XGL_CH_FMT_UNDEFINED as the channel format and XGL_NUM_FMT_UNDEFINED as the 

numeric format for the target. For a valid color target output the write mask should 

contain only channels present in the format. 

When dual source blending is enabled (see Color Blender State), only a single color target 
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can be specified and it must have blend enabled. A dynamic blender state object with dual 

source blending modes should only be used with pipelines enabling dual source blending. 

Any mismatch between the dual source blending pipeline declaration and the bound 

blender state object causes undefined results. 

XGL_LOGIC_OP_COPY is the default logic operation, choosing the unmodified source 

value. When the logic op is non-default, blending must be disabled for all color 

Attachments. The logic operation may only be non-default on targets of 

XGL_NUM_FMT_UINT and XGL_NUM_FMT_SINT numeric formats, other formats fail 

pipeline creation. 

 GRAPHICS PIPELINE SHADER LINKING 
Shaders in the pipeline are linked through matching the shader input and output registers 

by index. There is no semantic matching and it is a responsibility of the high-level 

compiler, or IL translator, or an application to guarantee compatible shader inputs and 

outputs. 

 PIPELINE SERIALIZATION 
For large and complex shaders, the shader compilation and pipeline construction could be 

quite a lengthy process. To avoid this costly pipeline construction every time an 

application links a pipeline, Explicit GL allows applications to save the pre-compiled 

pipelines as opaque binary objects and later load them back. An application only needs to 

incur a one-time pipeline construction cost on the first application run or even at 

application installation time. It is the application’s responsibility to implement a pipeline 

cache and save/load binary pipeline objects. 

A pipeline is saved to memory by calling xglStorePipeline(). Before calling 

xglStorePipeline(), the application should initialize the available data buffer size in the 

location pointed to by pDataSize. Upon completion, that location contains the amount of 

data stored in the buffer. To determine the exact buffer requirements an application can 

call xglStorePipeline() function with NULL value in pData. xglStorePipeline() fails if 

insufficient data buffer space is specified. 

A pipeline object is loaded from memory with xglLoadPipeline(). On loading a pipeline 

object the driver performs a hardware and driver version compatibility check. If the 

versions of the current hardware and the driver do not match those of the saved pipeline, 

the pipeline load fails. The application is required to gracefully handle the failed pipeline 

loads and recreate the pipelines from scratch. 
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A pipeline can be saved and loaded with debug infrastructure enabled, which keeps 

internal data pertaining to debugging and validation in the serialized pipeline object. These 
versions of pipeline objects are intended for debugging only and cannot be loaded when 

validation is disabled. Mismatching debug capabilities of pipelines with validation currently 
enabled on device results in error. 

 CONSTANT BASED PIPELINE COMPILATION 
There are some cases when it is not desirable to use uber-shaders for performance 

reasons and an application prefers to create variety of slightly specialized shaders. One 

way to implement such variety of shader pipelines would be to pre-compile all possible 

shader versions off-line and use them for pipeline creation. The constant based pipeline 

compilation feature available in Explicit GL reduces the need for off-line creation of large 

number of similar shaders and simplifies the application’s task of managing shaders when 

constructing pipelines. 

The application is able to build uber-shaders with some constants that are not known at 

shader compilation time and are provided at the pipeline linkage time. Explicit GL uses 

Uniform Buffer facilities available in shader IL to designate shader data that would be 

specified at pipeline linkage. The IL Uniform Buffers in Explicit GL shaders can only be 

used for this purpose; an application must use conventional memory views for passing 

run-time data to shaders. Multiple link Uniform Buffers per shader can be used, and each 

shader in a pipeline could have its own set of link time Uniform Buffers. The constant data 

layout provided at pipeline link time must match the shader expectations, and all of the 

shader referenced constant data must be available for linking. Failing to match constant 

data layout or to provide sufficient amount of data results in undefined behavior. 

The link time constants are specified per shader stage as a part of the 

XGL_PIPELINE_SHADER structure when creating the pipeline. 

 PIPELINE BINDING 
A pipeline object is bound to one of the pipeline bind points in the command buffer state 

by calling the xglCmdBindPipeline() function. The pipeline bind point is specified in 

pipelineBindPoint parameter and must match the creation type of the pipeline object being 

bound. Compute command buffers can only have compute pipelines bound and universal 

command buffers can have both graphics and pipeline bound. 

As soon as a new pipeline object is bound within a command buffer, it remains in effect 

until another pipeline is bound or the command buffer is terminated. A pipeline object can 

be explicitly unbound by using XGL_NULL_HANDLE for the pipeline parameter, leaving the 

pipeline in an undefined state. Pipeline unbinding is optional and should mainly be used 
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for debugging. 

 PIPELINE DELTAS 
Graphics pipeline objects represent the entire graphics pipeline as a large, monolithic 
object.  Binding a new graphics pipeline may require a large amount of state commands 
to be sent to the GPU by the driver, consuming driver CPU overhead and front-end 
overhead in the GPU.  Explicit GL offers a way to reduce these overheads with pipeline 
delta objects. 
 
A pipeline delta object is created by specifying two existing XGL_PIPELINE objects, p1 and 
p2.  The driver will examine these two objects and compute the least amount of state 
possible to transition from p1 to p2.  While building a command buffer, if p1 is the current 
pipeline state, the application can choose apply this pipeline delta in lieu of binding p2. 
 
For implementations where this up front optimization is not helpful, applying the delta 
may simply bind p2.  If the application applies a delta whose p1 state does not match the 
currently bound pipeline, results are undefined. 

 PIPELINE RESOURCE ACCESS 
Pipeline shaders access shader resources specified in descriptor sets bound to the 

command buffer state at the time of executing a draw or dispatch command. Additionally, 

a dynamic memory view can be used for buffer-like access to memory. The expected 

descriptor set layout and its mapping to shader resources is specified by the application at 

pipeline creation time. 

 PIPELINE RESOURCE MAPPING 
On the one hand, hierarchical descriptor set structures bound to the pipeline are shared 

by all shaders forming the pipeline. On the other hand, the shaders themselves use flat 

resource addressing scheme with different resource namespaces for distinct resource 

usages (read-only textures, UAVs, Uniform Buffers and etc.), as specified in the IL 

definition, and have these separate namespaces for each pipeline shader. To reconcile 

these differences, mapping of shader resources and samplers to the descriptor sets is 

performed at pipeline construction time by means of the descriptor set remapping 

structures. If no mapping is specified, the pipeline creation fails. The mapping has to be 

provided for all resources that are used by a given IL shader for all active shader stages. 

Even if it is known that resource access is optimized out by the Explicit GL driver, it has to 

be present in remapping data if it is declared in IL. Failing to specify all shader resource 

mappings to the expected descriptor set hierarchy results in a pipeline creation failure. 
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The resource remapping structure can be different per shader stage, such that different 

shader resource slots can be mapped to the same descriptor set slot in a descriptor set 

hierarchy. If multiple shaders in a pipeline resolve to the same resource, their resource 

type expectations must match, otherwise pipeline creation fails. For example, a cubemap 

image from a Fragment shader cannot be aliased to a resource slot that is expected to 

provide a buffer reference for a vertex shader. 

The CPU side structures, used to describe descriptor set mapping, closely follow the 

desired descriptor set hierarchy as is referenced by the GPU. Each of the descriptor set 

slots in a bound range is represented by a structure describing the shader IL object type 

and the shader resource slot it maps to. If a descriptor set element does not map to any 

IL shader resource, it must have the XGL_SLOT_UNUSED object type specified. An 

indirection to the next level of descriptor set hierarchy is specified by using the 

XGL_SLOT_NEXT_DESCRIPTOR_SET object type and a pointer to an array of next level 

descriptor set elements. A shader resource slot can be referenced only once in the whole 

descriptor set hierarchy. Specifying multiple references to a resource slot produce 

undefined results. 
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Figure 14 shows an example of the descriptor set remapping structures for a simple 

pipeline consisting of vertex and Fragment shaders and a two level resource descriptor set 

hierarchy. An application should ensure there are no circular dependencies in the 

remapping structure or a soft hang in the driver might occur. 

 DESCRIPTOR SET BINDING 
Descriptor sets are bound to command buffer state using xglCmdBindDescriptorSet(). 

There are separate descriptor sets for each pipeline type – graphics and compute. The 

pipeline bind point specified in the xglCmdBindDescriptorSet() indicates whether the 

descriptor sets should be available to the graphics or compute pipeline. For command 

buffers to be executed on compute queues, the only valid pipeline type option is 

XGL_PIPELINE_BIND_POINT_COMPUTE. 

Specifying XGL_NULL_HANDLE for the descriptor set object unbinds the previously bound 

descriptor set. Failing to bind a descriptor set hierarchy that is compatible with the 

Figure 14. Descriptor set mapping to pipeline shaders 
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pipeline shader requirements produces undefined results. 

 DYNAMIC MEMORY VIEW 
One of the memory views referenced in a pipeline shader can be mapped to a dynamic 

memory view. The dynamic memory view can be used to send some frequently changing 

constants and other data to pipeline shaders without a need to manage descriptor sets. 

The dynamic memory view is directly bound to the command buffer state for a given 

pipeline type by describing the view defined by XGL_MEMORY_VIEW_ATTACH_INFO 

structure passed to xglCmdBindDynamicMemoryView() function. Use of the dynamic 

memory view is optional, but is highly encouraged. 

The resource mapping for dynamic memory view is specified individually per shader stage. 

The dynamic memory view can be mapped to an IL resource slot or IL UAV slot by 

specifying the shader object type as XGL_SLOT_SHADER_RESOURCE or 

XGL_SLOT_SHADER_UAV, respectively. If a shader does not need to use a dynamic 

memory view, the shader object type in the mapping must be set to XGL_SLOT_UNUSED. 

The same shader resource cannot be specified in dynamic memory view mapping and 

descriptor set mapping of pipeline configuration info in the same shader. Specifying 

resource in both mappings fails the pipeline creation. However, multiple shaders withing a 

pipeline might map resources differently. 

It is invalid to specify dynamic memory view mapping for a shader resource slot that is 

used for non-buffer shader resources. Failure to match shader resource type produces 

undefined results.
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Chapter VI.  
 
MULTI-DEVICE OPERATION 

 OVERVIEW 
Explicit GL empowers applications to explicitly control multi-GPU operation and enables 

highly flexible and sophisticated solutions that could go far beyond alternate frame 

rendering (AFR) functionality. At the API level, each Explicit GL capable GPU in a system is 

presented as an independent device that is managed by an application. 

The following features are exposed by the Explicit GL API for implementing multi-device 

functionality at the application level: 

▼ Device discovery and identification 

▼ Memory sharing 

▼ Synchronization object sharing 

▼ Peer-to-peer transfers 

▼ Composition and cross-device presentation 

 MULTIPLE DEVICES 
The overview of GPU device discovery and initialization was covered in GPU Identification 

and Initialization. Several additional aspects of device discovery have to be considered in 

the case of multiple Explicit GL GPUs. First, if multiple Explicit GL capable GPU devices are 

present in the system, the application must decide which GPU or multiple GPUs are the 
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best choice for executing rendering or other operations, and how to split workloads across 

devices, should it choose to target rendering on multiple GPUs. Some platforms may 

provide additional multi-device functionality depending on a system’s GPU topology, so the 

application must also query and consider the availability of these features as well. 

 

GPU DEVICE SELECTION 

When deciding what GPU to use for rendering or other operations, an application looks at 

a number of different factors: 

▼ Display connectivity 

▼ General GPU capabilities 

▼ Type of the GPU 

▼ Performance 

▼ Multi-device capabilities 

The discovery of display connectivity must be provided via an OS-specified Window 

System Interface (WSI) extension. In addition to display connectivity, a WSI extension 

must report what displays can be used for cross-device presentation. 

The general GPU capabilities and performance are reported by the Explicit GL core API 

using xglGetGpuInfo() function as described in GPU Identification and Initialization. Along 

with that information, the device compatibility information allows applications to decide 

how to implement multi-device operation in a best possible way. 

There are two aspects to device compatibility. The first aspect is matching GPU features 

and image quality. Second is the ability to use advanced multi-device functionality:the  

ability to share memory and synchronization objects and to composite displayable output. 

Not all GPUs or GPU combinations could expose these extra features. Multi-device 

compatibility can be queried with xglGetMultiGpuCompatibility(). The compatibility 

information is returned in the XGL_GPU_COMPATIBILITY_INFO structure containing 

various compatibility flags. 

Any devices created on compatible GPUs are considered compatible devices, inheriting the 

compatibility flags of the physical GPUs. 

 IMAGE QUALITY MATCHING 
Different generations of GPUs might produce images of slightly different quality. In 

particular, texture filtering is one area that is under constant improvement, both in terms 

of quality and performance. When using alternate frame rendering mode it is important to 
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produce images of similar quality on the alternating frames. 

If GPUs expose XGL_GPU_COMPAT_FLAG_IQ_MATCH flag in the multi-device capability 

info, they can be configured to produce similar image quality at device creation time by 

specifying XGL_DEVICE_CREATE_MGPU_IQ_MATCH in the device creation flags on all 

compatible GPUs. The Explicit GL driver attempts to match rendering quality between the 

supported GPUs as much as possible. 

 SHARING MEMORY BETWEEN GPUS 
Memory objects residing in some non-local memory heaps can be made shareable across 

devices if the GPUs have the XGL_GPU_COMPAT_SHARED_MEMORY flag set in the GPU 

compatibility information. A shared memory object is created on one device and opened 

on any other compatible device. Only the memory object associated with a particular 

device must be used, and it is not allowed to directly share memory object handles across 

devices. 

There are several parts to enabling memory sharing across multiple Explicit GL devices: 

▼ Discovery of heaps for shared memory. 

▼ Creation of shared memory object on one device. 

▼ Opening of shared memory object on another device. 

 DISCOVERY OF SHAREABLE HEAPS 
Memory heaps that could be used for creating shared memory objects are identified by 

the XGL_MEMORY_HEAP_FLAG_SHAREABLE flag reported in heap properties. See GPU 

Memory Heaps for information on heap properties. If no heaps expose 

XGL_MEMORY_HEAP_FLAG_SHAREABLE, shared memory objects cannot be created. For 

devices with compatible memory capabilities it is guaranteed that at least one heap is 

shareable. 

 SHARED MEMORY CREATION 
A shared memory object is created just like any other regular memory objects using the 

xglAllocMemory() function. A shared memory object is marked by the 

XGL_MEMORY_ALLOC_SHAREABLE flag in its creation information and can only be created 

in heaps marked by the XGL_MEMORY_HEAP_FLAG_SHAREABLE heap property flag. 

A shared memory object created on one device can be opened on another compatible 

device using xglOpenSharedMemory(). The shared memory object cannot be opened on 

the device on which it was created. 
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The opened memory object is associated with memory heaps of the second device 

equivalent to the heaps used for original shared object creation on the first device. Either 

device can be used for creating a shared memory objects. The shared memory object 

created on the first device and opened on the second is functionally equivalent to the 

memory object created on the second device and opened on the first. 

Opened memory objects have some limitations. They cannot have priority changed and 

they cannot be used for virtual allocation remapping. 

Once no longer needed, opened memory objects are destroyed with xglFreeMemory(). An 

opened memory object cannot be used once its corresponding shared memory object is 

freed, thus the shared memory object should not be freed until any of devices stop using 

the corresponding opened memory objects. 

 SHARED IMAGES 
The image data located in shared memory objects can be made shareable across multiple 

compatible devices by using shared images. The shared images are created on both 

devices with exactly the same creation parameters that include 

XGL_IMAGE_CREATE_SHAREABLE image creation flag. Then these images must be bound 

to a shared and opened memory object at the same offset. Shared images can only be 

used when XGL_GPU_COMPAT_ASIC_FEATURES flag is reported in GPU compatibility 

information. 

 QUEUE SEMAPHORE SHARING 
Queue semaphores can be made shareable across devices if the GPUs have the 

XGL_GPU_COMPAT_SHARED_SYNC flag set in the GPU compatibility information. A shared 

semaphore should be created on one device and opened on other compatible devices. 

Only the semaphore object associated with the particular device can be used, and it is not 

allowed to directly share semaphore object handles across devices. 

There are several parts to enabling creation of shared semaphores across multiple Explicit 

GL devices: 

▼ Creation of shared queue semaphores on one device 

▼ Opening of shared queue semaphores on another device. 

 SHARED SEMAPHORE CREATION 
Shared queue semaphores are created just like any other regular semaphores using the 

xglCreateQueueSemaphore() function. The shared queue semaphore object is marked by 
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XGL_SEMAPHORE_CREATE_SHAREABLE in creation info. A shared queue semaphore 

behaves just like a regular queue semaphore object, but it could be signaled/waited on by 

queues from other compatible devices through their opened semaphore objects. 

A shared queue semaphore created on one device can be opened on another compatible 

device using xglOpenSharedQueueSemaphore(). 

The shared semaphore cannot be opened on the device on which it was created. Just like 

with any other Explicit GL object, an application must query memory requirements for 

opened semaphore objects. 

Either device can be used for creating a shared semaphore. The shared semaphore 

created on the first device and opened on the second is functionally equivalent to the 

semaphore created on the second device and opened on the first. 

Once no longer needed, opened semaphores are destroyed with xglDestroyObject(). An 

opened semaphore cannot be used, once a corresponding shared semaphore is destroyed. 

Thus, the shared semaphore must not be destroyed while any of corresponding opened 

semaphores are used on any of the devices. 

 PEER-TO-PEER TRANSFERS 
It is not possible to transfer data between the memory and image objects from different 

GPUs by directly referencing their handles, since only objects local to device can be used 

for the copy operations. For optimal copying of image and other data between GPUs, an 

application uses peer-to-peer transfers. These allow direct device-to-device 

communication over a system bus without intermediate storage of data in system 

memory. Explicit GL supports peer-to-peer transfers between GPUs if the 

XGL_GPU_COMPAT_FLAG_PEER_TRANSFER flag is reported in the GPU compatibility 

information. 

There are several parts to enabling peer-to-peer transfers across multiple Explicit GL 

devices: 

▼ Creation of proxy peer memory and optionally image objects on one of the devices, 
representing those objects from another device 

▼ Executing transfers between memory or image local to the device and a peer memory 
or image. 

If an application wants to transfer memory from GPU0 to GPU1, it should create a proxy 

peer memory object on GPU0 for the target memory destination from GPU1. Then it 

should transfer data on GPU0 using the proxy peer memory as a copy operation 

destination. 
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 OPENING PEER MEMORY 
A memory object created on one device can be opened on another compatible device for 

peer access using xglOpenPeerMemory(). A peer memory object cannot be opened on the 

device on which it was originally created. The original memory object has to be a real 

allocation. 

Peer memory objects have some limitations. They cannot have priority changed, cannot 

be mapped and they shouldn’t be used for virtual allocation remapping. They should only 

be used as a destination for memory transfers. 

Once no longer needed, peer memory objects are destroyed with xglFreeMemory(). An 

opened peer memory object must be freed before a corresponding original memory object 

is freed. An original memory object should not be freed while any devices use 

corresponding peer memory objects for transfers. 

 OPENING PEER IMAGES 
An image object created on one device can be opened on another compatible device for 

peer access using xglOpenPeerImage(). 

The xglOpenPeerImage() returns a peer image and a peer memory object associated with 

the peer image at the time of opening it. These are associated with the original image and 

memory bound to it at the time of opening peer image. A valid memory object has to be 

bound to an original image before opening peer image, and the memory binding cannot 

be changed until associated peer images and memory objects are destroyed. A peer 

image object cannot be opened on the device on which it was originally created. 

If both GPUs involved in a peer transfer have the XGL_GPU_COMPAT_ASIC_FEATURES 

compatibility flag set, the peer transfer destination image can use XGL_OPTIMAL_TILING 

tiling, otherwise only XGL_LINEAR_TILING must be used for the destination image. 

Peer memory objects returned by xglOpenPeerImage() have limitations regarding their 

use. These memory objects must only be used for memory references in command 

buffers that perform peer-to-peer image transfers. Peer images cannot be rebound to 

other memory objects. 

Once no longer needed, peer images are destroyed with xglDestroyObject(). An opened 

peer image object must be destroyed before a corresponding original image object is 

destroyed. An original image object must not be destroyed while any devices use 

corresponding peer image objects for transfers. The memory objects returned for peer 

images should not be freed by the application and are automatically disposed of by the 

driver on peer image destruction. 
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 PEER TRANSFER EXECUTION 
The peer memory or image object should only be used as a destination for peer-to-peer 

transfers. They should not be used for any other purpose, such as binding as shader 

resources and so on. 

 

An application should be careful with selection of the GPU used for execution of peer-to-
peer transfer of data. The peer opened memory and image objects should only be used as 

a destination for writing data. Reading of peer memory or image may result in very slow 
read transactions across a system bus and should be avoided for performance reasons. 

Before a peer transfer can take place, the source and destination memory or images have 

to be transferred to XGL_MEMORY_STATE_DATA_TRANSFER and 

XGL_IMAGE_STATE_DATA_TRANSFER states. The state transitions for peer transfer have 

to be performed on devices owning the original memory objects or images. There is no 

need to prepare peer objects as they inherit the state of the original objects. 

 COMPOSITING AND CROSS-DEVICE PRESENTATION 
Some multi-device Explicit GL configurations might include the display compositing 

capabilities for automatically transferring and displaying images between the GPUs using 

dedicated hardware. The hardware compositor in Explicit GL is abstracted with cross-

device presentation functionality. 

The automatic cross-device presentation is only available on compatible devices and only 

in full screen mode. In windowed mode it is an application’s responsibility to transfer, 

composite and present rendered images across the GPUs. In some display modes the 

automatic cross-device presentation might not be available due to hardware compositor 

restrictions. 

The cross-device presentation is based on the following steps: 

▼ Discovering devices capable of sharing displays 

▼ Checking if desired display modes supports cross-device presentation 

▼ Creating special presentable images local to each of the compatible devices 

▼ Presenting from compatible devices to a shared display 

Figure 16 shows a conceptual diagram of cross-device presentation in a multi-device 

configuration with a single logical Explicit GL display. 
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 DISCOVERING CROSS-DEVICE DISPLAY CAPABILITIES 
An application detects if a GPU can present to a display from another GPU by examining 

the XGL_GPU_COMPAT_FLAG_SHARED_GPU0_DISPLAY and 

XGL_GPU_COMPAT_FLAG_SHARED_GPU1_DISPLAY compatibility flags. If neither flag is 

present, software compositing should be used. If cross-device presentation is supported, 

an application should further check if it is available for a particular display mode through 

the appropriate WSI extension. 

Without cross-device presentation support, an application needs to transfer the final 

image across devices and present it locally on the desired device through a standard WSI 

full screen presentation mechanism. 

 CROSS-DEVICE PRESENTABLE IMAGES 
Cross-device presentable images created through a WSI extension could be used for 

cross-device presentation. Any presentable image created for a display that belongs to 

another device is assumed to be cross-device presentation compatible. Cross-device 

presentable image creation fails if hardware compositing between the necessary devices is 

not available for the requested resolution. In case a presentable image cannot be created, 

an application must fall back to a software compositing. 

If multiple Explicit GL display objects are present in the system, it is an application’s 

responsibility to split rendering on a per-display basis and manage separate presentable 

images for each of the displays. 

Figure 16. 
Conceptual view of cross-device presentation 
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 CROSS-DEVICE PRESENTATION 
From the application's perspective the cross-device presentation is performed just like in a 

single device scenario. If there are multiple shared displays in a system, multiple 

presentation calls should be made – one per display. 

Cross-device presentable images must only be presented from the device on which they 

were created. If the display associated with a presentable image is a display from another 

device, the presentation must only be performed in full screen mode. An attempt to 

present across devices in windowed mode fails. 
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Chapter VII.  
 
DEBUGGING AND 

VALIDATION LAYER 

The debug features are fundamental to the successful use of the Explicit GL API due to its 

lower-level nature – there are a lot of features that might be hard to get right in Explicit 

GL without proper debugging and validation support. Additionally, for performance 

reasons, Explicit GL drivers perform only a very limited set of checks under normal 

circumstances, so it becomes even more important to validate application operation with 

Explicit GL debug options enabled. 

The Explicit GL debug infrastructure is layered on top of the core Explicit GL 

implementation and is enabled by specifying a debug flag at device creation time. The 

debug infrastructure provides a variety of additional checks and options to validate the 

use of the Explicit GL API and facilitate debugging of intermittent issues. The layered 

implementation allows significantly reducing the cost of debugging in release builds of the 

application. 

 DEBUG DEVICE INITIALIZATION 
The debugging and profiling infrastructure can be enabled on a per device basis by 

specifying the XGL_DEVICE_CREATE_VALIDATION flag at device creation. Additionally, a 

maximum validation level that can be enabled at run time is specified at device creation. 

Without the XGL_DEVICE_CREATE_VALIDATION flag the maximum debug level has to be 

set to XGL_VALIDATION_LEVEL_0. 
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 VALIDATION LEVELS 
The debugging infrastructure is capable of detecting a variety of errors and suboptimal 

performance conditions, ranging from invalid function parameters to issues with object 

and memory dependencies. The cost of the error checking can also vary from very 

lightweight operations to some really expensive and thorough checking. To provide control 

over the performance and safety tradeoffs, Explicit GL introduces a concept of validation 

levels. Lower validation levels perform relatively lightweight checks, while higher levels 

perform increasingly more expensive validation. 

There are two parts to specifying a desired validation level. First, the maximum validation 

level that can later be enabled has to be specified at device creation time. Setting the 

maximum validation level does not perform the validation, but internally enables tracking 

of additional object meta-data that are required for the validation at that level. This 

internal tracking introduces some additional CPU overhead and maximum validation level 

should be only as high as you actually intend to validate at run-time. Requesting higher 

than necessary maximum validation level has a higher impact on performance. 

The second part is actually enabling a particular level of validation at run-time by calling 

xglDbgSetValidationLevel(). 

Setting the validation level is not a thread safe operation. Additionally, when changing 

validation level an application should ensure it is not in the middle of building any 

command buffers. Switching validation level while constructing command buffers leads to 

undefined results. 

 

Since higher validation level used at run-time causes bigger performance impact, it is 
recommended to avoid running with high validation levels if performing performance 

profiling. Validation should not be enabled in the publicly available builds of your 
application. 

It is invalid to set the validation level higher than the maximum level specified at device 

creation and the function call fails in that case. A particular level of validation implies that 

all lower level validations are also performed. See XGL_VALIDATION_LEVEL for description 

of various validation levels. 

 DEBUGGER CALLBACK 
When running with the debugging infrastructure enabled and an error or a warning 

condition is encountered, the error or warning message could be logged to debug output. 

Additionally, an application or debugging tools could register a debug message callback 

function to be notified about the error or warning condition. The callbacks are globally 

registered across all devices enumerated by the Explicit GL environment and multiple 
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callbacks can be simultaneously registered. For example, an application could 

independently register a callback, as well as the debugger could register its own callback 

function. If multiple callback functions are registered, their execution order is not defined. 

An application registers a debug message callback by calling 

xglDbgRegisterMsgCallback(). The callback function is an application’s function defined of 

XGL_DBG_MSG_CALLBACK_FUNCTION type. A callback function provided by an 

application must be re-entrant as it might be simultaneously called from multiple threads 

and on multiple devices. It is allowed to register debug message callback before Explicit 

GL is initialized. 

When it no longer needs to receive debug messages, an application unregisters the 

callback with xglDbgUnregisterMsgCallback(). These functions are valid even when debug 

features are not enabled on a device, however only functions related to device creation 

and ICD loader operation generate callback messages and message filtering is not 

available. 

These debugger callback handling functions are not thread safe. If an error occurs inside 

of the xglDbgRegisterMsgCallback() or xglDbgUnregisterMsgCallback() functions, an error 

code is returned, but it is not reported back to an application via a callback. 

 DEBUG MESSAGE FILTERING 
Sometimes the volume of error or warning messages can be overwhelming and an 

application might chose to temporarily ignore some of them during a debugging session. 

For example, during development one might want to temporarily disregard specific 

performance warnings. An application filters the messages by calling 

xglDbgSetMessageFilter(). Previously disabled messages are re-enabled at any time by 

specifying XGL_DBG_MSG_FILTER_NONE. This function is only valid for devices created 

with debug features enabled. 

The debug message filtering function is not thread safe. If an error occurs inside of the 

function an error code is returned, but it is not reported back to an application via a 

callback. The errors generated by the ICD loader cannot be filtered. 

 

Debug message filtering should be considered a special debug feature that should be 
carefully used only when absolutely necessary during development and debugging. It 

should not be used when validating an application for correctness. 

 OBJECT DEBUG DATA 
The validation infrastructure provides a wealth of debugging information to assist tools 

and applications with debugging and analysis of rendering. The following information can 
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be retrieved: 

▼ Application set object tags. 

▼ Internal debug and validation information. 

 OBJECT TAGGING 
When the debug infrastructure is enabled, an application can tag any Explicit GL object 

other than the XGL_PHYSICAL_GPU by attaching a binary data structure containing 

application specific object information. One use of such annotations could be for 

identifying the objects reported by the debug infrastructure to an application on the 

debug callback execution. When the debug infrastructure is disabled, tagging functionality 

has no effect. 

An application tags an object with its custom data by calling xglDbgSetObjectTag(). 

Specifying a NULL pointer for the tag data removes any previously set application data. 

Only one tag can be attached to an object at any given time. The tag data is copied by 

the Explicit GL driver when xglDbgSetObjectTag() is called. 

To retrieve a previously set object tag an application calls xglGetObjectInfo() with the 

XGL_DBG_DATA_OBJECT_TAG debug data type. 

 INTERNAL DEBUG AND VALIDATION INFORMATION 

 COMMAND BUFFER MARKERS 
For debugging and inspection purposes, an application could retrieve a list of API 

operations recorded in a command buffer as described in Internal Debug and Validation 

Information. To aid with command buffer inspection and add some context to recorded 

commands, an application could record command buffer markers – arbitrary strings that 

have a meaning to an application or tools. These markers have no effect on the actual 

content of the command buffer data executed by the GPU, and with validation layer 

enabled the markers are just kept along with other CPU side meta-data for command 

buffers. The command buffer markers can be inserted using the xglCmdDbgMarkerBegin() 

and xglCmdDbgMarkerEnd() functions. 

 DEBUG INFRASTRUCTURE SETTINGS 
The debug infrastructure has various settings that can be used during debugging to force 

specific Explicit GL driver and GPU behaviors. Some of the options are set globally for all 

devices and some are set per device. The per-device settings functionality is only available 
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on devices created with debug features enabled. The global optional settings are 

configured using xglDbgSetGlobalOption() and per-device settings are configured with 

xglDbgSetDeviceOption(). These functions are not thread safe. If an error occurs inside of 

these functions, an error code is returned, but it is not reported back to an application via 

a callback.
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Chapter VIII. FEATURE 

ADDITIONS TO MATCH 

OPENGL NEEDS  

In order to be able to implement the current core profile of OpenGL on top of Explicit GL, and 
to not propose feature loss moving from OpenGL to Explicit GL, several feature additions to 
the proposed spec should be addressed. 

FEATURES SUPPORTED BY CURRENT OPENGL 
The following features are present in existing core profile OpenGL and should be considered 
for support in Explicit GL to allow an OpenGL driver to be implemented on top of it. 

POINT SPRITES 

Point sprites allow hardware generation of a UV coordinate that varies across a point 
primitive. The Explicit GL proposal does not expose point sprites, but they are a mandatory 
feature of core profile OpenGL and OpenGL ES, and will be required. 
 
Fortunately, point sprite coordinate generation does not require any API changes as it is 
possible to enable it solely in the fragment shader. In OpenGL, the built-in variable 
“gl_PointCoord” contains the generated hardware point sprite UV. Generation of this 
coordinate is implicitly enabled by its access in a shader. Though the Explicit GL proposal does 
not have a high level shading language, it should be possible to reference the point 
coordinate system value in a shader to enable the feature. We simply need to document an 
affirmation that this works in Explicit GL. 

TRANSFORM FEEDBACK 

Transform feedback is a pipeline stage that appears logically after all vertex and geometry 
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processing but before primitive assembly and rasterization. This feature is known as “stream-
out” in DirectX and is sometimes shortened to XFB in OpenGL literature. This feature is not 
supported in the Explicit GL proposal, with a suggestion that UAV writes from early pipeline 
stages covers most of the offered functionality.  This may not be sufficient for Explicit GL as 
the stream compaction offered by geometry shader decimation is not possible. 
 
A detailed proposal for XFB support in Explicit GL is not available at this time.  Most likely, it 
would involve creating XFB memory views including vertex stride, size, etc. and attaching 
them to descriptor sets.  Analysis would need to be done to determine which states are 
needed in the graphics pipeline state to enable proper pipeline creation; it may be that all 
necessary state can be inferred by the shaders themselves.  Additional work will need to be 
done to support XFB PRIMITIVES_WRITTEN and a new draw interface would be needed to 
mimic glDrawTransformFeedback. 

UNSIGNED BYTE INDICES 

All versions of OpenGL and OpenGL ES support 8-bit unsigned index data whereas the Explicit 
GL proposal currently does not. Some hardware may not have native support for this index 
format.  Emulating that support in the driver is possible in OpenGL, but not with the proposed 
Explicit GL model.  This support should be added to the API as an optional feature. 
 

FEATURE MODIFICATIONS 
The following suggestions are on the removal, modification or replacement of existing Mantle 
features. 

FLEXIBLE QUEUE TYPES 

The current Explicit GL core proposal only includes support for two types of queues, universal 
and compute, and at least one universal queue must be exposed.  This is not flexible enough 
to match the restrinctions and capabilities of a large range of hardware.  For example, an 
implementation may need to expose a graphics-only queue, or a compute-only device might 
need to expose only a compute queue. 
 
Instead: 

 The XGL device should expose the ability to query how many queues are supported. 

 The XGL queue should expose the ability to query extensible caps flags reporting support for 

at least: 

o Graphics 

o Compute 

o DMA 

 An implementation is only required to export support for at least 1 queue. 

 


