Adds trunk/talk folder of revision 359 from libjingles google code to
trunk/talk


git-svn-id: http://webrtc.googlecode.com/svn/trunk@4318 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/talk/base/virtualsocket_unittest.cc b/talk/base/virtualsocket_unittest.cc
new file mode 100644
index 0000000..244568e
--- /dev/null
+++ b/talk/base/virtualsocket_unittest.cc
@@ -0,0 +1,1016 @@
+/*
+ * libjingle
+ * Copyright 2006, Google Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ *  1. Redistributions of source code must retain the above copyright notice,
+ *     this list of conditions and the following disclaimer.
+ *  2. Redistributions in binary form must reproduce the above copyright notice,
+ *     this list of conditions and the following disclaimer in the documentation
+ *     and/or other materials provided with the distribution.
+ *  3. The name of the author may not be used to endorse or promote products
+ *     derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <time.h>
+#ifdef POSIX
+#include <netinet/in.h>
+#endif
+#include <cmath>
+
+#include "talk/base/logging.h"
+#include "talk/base/gunit.h"
+#include "talk/base/testclient.h"
+#include "talk/base/testutils.h"
+#include "talk/base/thread.h"
+#include "talk/base/timeutils.h"
+#include "talk/base/virtualsocketserver.h"
+
+using namespace talk_base;
+
+// Sends at a constant rate but with random packet sizes.
+struct Sender : public MessageHandler {
+  Sender(Thread* th, AsyncSocket* s, uint32 rt)
+      : thread(th), socket(new AsyncUDPSocket(s)),
+        done(false), rate(rt), count(0) {
+    last_send = Time();
+    thread->PostDelayed(NextDelay(), this, 1);
+  }
+
+  uint32 NextDelay() {
+    uint32 size = (rand() % 4096) + 1;
+    return 1000 * size / rate;
+  }
+
+  void OnMessage(Message* pmsg) {
+    ASSERT_EQ(1u, pmsg->message_id);
+
+    if (done)
+      return;
+
+    uint32 cur_time = Time();
+    uint32 delay = cur_time - last_send;
+    uint32 size = rate * delay / 1000;
+    size = std::min<uint32>(size, 4096);
+    size = std::max<uint32>(size, sizeof(uint32));
+
+    count += size;
+    memcpy(dummy, &cur_time, sizeof(cur_time));
+    socket->Send(dummy, size);
+
+    last_send = cur_time;
+    thread->PostDelayed(NextDelay(), this, 1);
+  }
+
+  Thread* thread;
+  scoped_ptr<AsyncUDPSocket> socket;
+  bool done;
+  uint32 rate;  // bytes per second
+  uint32 count;
+  uint32 last_send;
+  char dummy[4096];
+};
+
+struct Receiver : public MessageHandler, public sigslot::has_slots<> {
+  Receiver(Thread* th, AsyncSocket* s, uint32 bw)
+      : thread(th), socket(new AsyncUDPSocket(s)), bandwidth(bw), done(false),
+        count(0), sec_count(0), sum(0), sum_sq(0), samples(0) {
+    socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
+    thread->PostDelayed(1000, this, 1);
+  }
+
+  ~Receiver() {
+    thread->Clear(this);
+  }
+
+  void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size,
+                    const SocketAddress& remote_addr) {
+    ASSERT_EQ(socket.get(), s);
+    ASSERT_GE(size, 4U);
+
+    count += size;
+    sec_count += size;
+
+    uint32 send_time = *reinterpret_cast<const uint32*>(data);
+    uint32 recv_time = Time();
+    uint32 delay = recv_time - send_time;
+    sum += delay;
+    sum_sq += delay * delay;
+    samples += 1;
+  }
+
+  void OnMessage(Message* pmsg) {
+    ASSERT_EQ(1u, pmsg->message_id);
+
+    if (done)
+      return;
+
+    // It is always possible for us to receive more than expected because
+    // packets can be further delayed in delivery.
+    if (bandwidth > 0)
+      ASSERT_TRUE(sec_count <= 5 * bandwidth / 4);
+    sec_count = 0;
+    thread->PostDelayed(1000, this, 1);
+  }
+
+  Thread* thread;
+  scoped_ptr<AsyncUDPSocket> socket;
+  uint32 bandwidth;
+  bool done;
+  size_t count;
+  size_t sec_count;
+  double sum;
+  double sum_sq;
+  uint32 samples;
+};
+
+class VirtualSocketServerTest : public testing::Test {
+ public:
+  VirtualSocketServerTest() : ss_(new VirtualSocketServer(NULL)),
+                              kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
+                              kIPv6AnyAddress(IPAddress(in6addr_any), 0) {
+  }
+
+  void CheckAddressIncrementalization(const SocketAddress& post,
+                                      const SocketAddress& pre) {
+    EXPECT_EQ(post.port(), pre.port() + 1);
+    IPAddress post_ip = post.ipaddr();
+    IPAddress pre_ip = pre.ipaddr();
+    EXPECT_EQ(pre_ip.family(), post_ip.family());
+    if (post_ip.family() == AF_INET) {
+      in_addr pre_ipv4 = pre_ip.ipv4_address();
+      in_addr post_ipv4 = post_ip.ipv4_address();
+      int difference = ntohl(post_ipv4.s_addr) - ntohl(pre_ipv4.s_addr);
+      EXPECT_EQ(1, difference);
+    } else if (post_ip.family() == AF_INET6) {
+      in6_addr post_ip6 = post_ip.ipv6_address();
+      in6_addr pre_ip6 = pre_ip.ipv6_address();
+      uint32* post_as_ints = reinterpret_cast<uint32*>(&post_ip6.s6_addr);
+      uint32* pre_as_ints = reinterpret_cast<uint32*>(&pre_ip6.s6_addr);
+      EXPECT_EQ(post_as_ints[3], pre_as_ints[3] + 1);
+    }
+  }
+
+  void BasicTest(const SocketAddress& initial_addr) {
+    AsyncSocket* socket = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_DGRAM);
+    socket->Bind(initial_addr);
+    SocketAddress server_addr = socket->GetLocalAddress();
+    // Make sure VSS didn't switch families on us.
+    EXPECT_EQ(server_addr.family(), initial_addr.family());
+
+    TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
+    AsyncSocket* socket2 =
+        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
+    TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
+
+    SocketAddress client2_addr;
+    EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
+    EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
+
+    SocketAddress client1_addr;
+    EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
+    EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
+    EXPECT_EQ(client1_addr, server_addr);
+
+    SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
+    for (int i = 0; i < 10; i++) {
+      client2 = new TestClient(AsyncUDPSocket::Create(ss_, empty));
+
+      SocketAddress next_client2_addr;
+      EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
+      EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
+      CheckAddressIncrementalization(next_client2_addr, client2_addr);
+      // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);
+
+      SocketAddress server_addr2;
+      EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
+      EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
+      EXPECT_EQ(server_addr2, server_addr);
+
+      client2_addr = next_client2_addr;
+    }
+  }
+
+  // initial_addr should be made from either INADDR_ANY or in6addr_any.
+  void ConnectTest(const SocketAddress& initial_addr) {
+    testing::StreamSink sink;
+    SocketAddress accept_addr;
+    const SocketAddress kEmptyAddr =
+        EmptySocketAddressWithFamily(initial_addr.family());
+
+    // Create client
+    AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(client);
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_TRUE(client->GetLocalAddress().IsNil());
+
+    // Create server
+    AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(server);
+    EXPECT_NE(0, server->Listen(5));  // Bind required
+    EXPECT_EQ(0, server->Bind(initial_addr));
+    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+    EXPECT_EQ(0, server->Listen(5));
+    EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING);
+
+    // No pending server connections
+    EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
+    EXPECT_TRUE(NULL == server->Accept(&accept_addr));
+    EXPECT_EQ(AF_UNSPEC, accept_addr.family());
+
+    // Attempt connect to listening socket
+    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+    EXPECT_NE(client->GetLocalAddress(), kEmptyAddr);  // Implicit Bind
+    EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family());  // Implicit Bind
+    EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());
+
+    // Client is connecting
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
+    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
+    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Client still connecting
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
+    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
+    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
+
+    // Server has pending connection
+    EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
+    Socket* accepted = server->Accept(&accept_addr);
+    EXPECT_TRUE(NULL != accepted);
+    EXPECT_NE(accept_addr, kEmptyAddr);
+    EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);
+
+    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
+    EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
+    EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Client has connected
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED);
+    EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
+    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
+    EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
+    EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
+  }
+
+  void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
+    testing::StreamSink sink;
+    SocketAddress accept_addr;
+    const SocketAddress nil_addr;
+    const SocketAddress empty_addr =
+        EmptySocketAddressWithFamily(initial_addr.family());
+
+    // Create client
+    AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(client);
+
+    // Create server
+    AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(server);
+    EXPECT_EQ(0, server->Bind(initial_addr));
+    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+    // Attempt connect to non-listening socket
+    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // No pending server connections
+    EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
+    EXPECT_TRUE(NULL == server->Accept(&accept_addr));
+    EXPECT_EQ(accept_addr, nil_addr);
+
+    // Connection failed
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
+    EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR));
+    EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
+  }
+
+  void CloseDuringConnectTest(const SocketAddress& initial_addr) {
+    testing::StreamSink sink;
+    SocketAddress accept_addr;
+    const SocketAddress empty_addr =
+        EmptySocketAddressWithFamily(initial_addr.family());
+
+    // Create client and server
+    AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(client);
+    AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(server);
+
+    // Initiate connect
+    EXPECT_EQ(0, server->Bind(initial_addr));
+    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, server->Listen(5));
+    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+    // Server close before socket enters accept queue
+    EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
+    server->Close();
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Result: connection failed
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR));
+
+    // New server
+    delete server;
+    server = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(server);
+
+    // Initiate connect
+    EXPECT_EQ(0, server->Bind(initial_addr));
+    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, server->Listen(5));
+    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Server close while socket is in accept queue
+    EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
+    server->Close();
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Result: connection failed
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR));
+
+    // New server
+    delete server;
+    server = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(server);
+
+    // Initiate connect
+    EXPECT_EQ(0, server->Bind(initial_addr));
+    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, server->Listen(5));
+    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Server accepts connection
+    EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
+    AsyncSocket* accepted = server->Accept(&accept_addr);
+    ASSERT_TRUE(NULL != accepted);
+    sink.Monitor(accepted);
+
+    // Client closes before connection complets
+    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
+
+    // Connected message has not been processed yet.
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
+    client->Close();
+
+    ss_->ProcessMessagesUntilIdle();
+
+    // Result: accepted socket closes
+    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_TRUE(sink.Check(accepted, testing::SSE_CLOSE));
+    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
+  }
+
+  void CloseTest(const SocketAddress& initial_addr) {
+    testing::StreamSink sink;
+    const SocketAddress kEmptyAddr;
+
+    // Create clients
+    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(a);
+    a->Bind(initial_addr);
+    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+
+    AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(b);
+    b->Bind(initial_addr);
+    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    EXPECT_TRUE(sink.Check(a, testing::SSE_OPEN));
+    EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED);
+    EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());
+
+    EXPECT_TRUE(sink.Check(b, testing::SSE_OPEN));
+    EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED);
+    EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());
+
+    EXPECT_EQ(1, a->Send("a", 1));
+    b->Close();
+    EXPECT_EQ(1, a->Send("b", 1));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    char buffer[10];
+    EXPECT_FALSE(sink.Check(b, testing::SSE_READ));
+    EXPECT_EQ(-1, b->Recv(buffer, 10));
+
+    EXPECT_TRUE(sink.Check(a, testing::SSE_CLOSE));
+    EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);
+
+    EXPECT_FALSE(sink.Check(b, testing::SSE_CLOSE));  // No signal for Closer
+    EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
+  }
+
+  void TcpSendTest(const SocketAddress& initial_addr) {
+    testing::StreamSink sink;
+    const SocketAddress kEmptyAddr;
+
+    // Connect two sockets
+    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(a);
+    a->Bind(initial_addr);
+    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+    AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
+    sink.Monitor(b);
+    b->Bind(initial_addr);
+    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+
+    ss_->ProcessMessagesUntilIdle();
+
+    const size_t kBufferSize = 2000;
+    ss_->set_send_buffer_capacity(kBufferSize);
+    ss_->set_recv_buffer_capacity(kBufferSize);
+
+    const size_t kDataSize = 5000;
+    char send_buffer[kDataSize], recv_buffer[kDataSize];
+    for (size_t i = 0; i < kDataSize; ++i)
+      send_buffer[i] = static_cast<char>(i % 256);
+    memset(recv_buffer, 0, sizeof(recv_buffer));
+    size_t send_pos = 0, recv_pos = 0;
+
+    // Can't send more than send buffer in one write
+    int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+    EXPECT_EQ(static_cast<int>(kBufferSize), result);
+    send_pos += result;
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
+    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
+
+    // Receive buffer is already filled, fill send buffer again
+    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+    EXPECT_EQ(static_cast<int>(kBufferSize), result);
+    send_pos += result;
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
+    EXPECT_FALSE(sink.Check(b, testing::SSE_READ));
+
+    // No more room in send or receive buffer
+    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+    EXPECT_EQ(-1, result);
+    EXPECT_TRUE(a->IsBlocking());
+
+    // Read a subset of the data
+    result = b->Recv(recv_buffer + recv_pos, 500);
+    EXPECT_EQ(500, result);
+    recv_pos += result;
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_TRUE(sink.Check(a, testing::SSE_WRITE));
+    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
+
+    // Room for more on the sending side
+    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+    EXPECT_EQ(500, result);
+    send_pos += result;
+
+    // Empty the recv buffer
+    while (true) {
+      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
+      if (result < 0) {
+        EXPECT_EQ(-1, result);
+        EXPECT_TRUE(b->IsBlocking());
+        break;
+      }
+      recv_pos += result;
+    }
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
+
+    // Continue to empty the recv buffer
+    while (true) {
+      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
+      if (result < 0) {
+        EXPECT_EQ(-1, result);
+        EXPECT_TRUE(b->IsBlocking());
+        break;
+      }
+      recv_pos += result;
+    }
+
+    // Send last of the data
+    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
+    EXPECT_EQ(500, result);
+    send_pos += result;
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));
+
+    // Receive the last of the data
+    while (true) {
+      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
+      if (result < 0) {
+        EXPECT_EQ(-1, result);
+        EXPECT_TRUE(b->IsBlocking());
+        break;
+      }
+      recv_pos += result;
+    }
+
+    ss_->ProcessMessagesUntilIdle();
+    EXPECT_FALSE(sink.Check(b, testing::SSE_READ));
+
+    // The received data matches the sent data
+    EXPECT_EQ(kDataSize, send_pos);
+    EXPECT_EQ(kDataSize, recv_pos);
+    EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
+  }
+
+  void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
+    const SocketAddress kEmptyAddr;
+
+    // Connect two sockets
+    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(),
+                                            SOCK_STREAM);
+    AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(),
+                                            SOCK_STREAM);
+    a->Bind(initial_addr);
+    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());
+
+    b->Bind(initial_addr);
+    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());
+
+    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
+    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
+    ss_->ProcessMessagesUntilIdle();
+
+    // First, deliver all packets in 0 ms.
+    char buffer[2] = { 0, 0 };
+    const char cNumPackets = 10;
+    for (char i = 0; i < cNumPackets; ++i) {
+      buffer[0] = '0' + i;
+      EXPECT_EQ(1, a->Send(buffer, 1));
+    }
+
+    ss_->ProcessMessagesUntilIdle();
+
+    for (char i = 0; i < cNumPackets; ++i) {
+      EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer)));
+      EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
+    }
+
+    // Next, deliver packets at random intervals
+    const uint32 mean = 50;
+    const uint32 stddev = 50;
+
+    ss_->set_delay_mean(mean);
+    ss_->set_delay_stddev(stddev);
+    ss_->UpdateDelayDistribution();
+
+    for (char i = 0; i < cNumPackets; ++i) {
+      buffer[0] = 'A' + i;
+      EXPECT_EQ(1, a->Send(buffer, 1));
+    }
+
+    ss_->ProcessMessagesUntilIdle();
+
+    for (char i = 0; i < cNumPackets; ++i) {
+      EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer)));
+      EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
+    }
+  }
+
+  void BandwidthTest(const SocketAddress& initial_addr) {
+    AsyncSocket* send_socket =
+        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
+    AsyncSocket* recv_socket =
+        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
+    ASSERT_EQ(0, send_socket->Bind(initial_addr));
+    ASSERT_EQ(0, recv_socket->Bind(initial_addr));
+    EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
+    EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
+    ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
+
+    uint32 bandwidth = 64 * 1024;
+    ss_->set_bandwidth(bandwidth);
+
+    Thread* pthMain = Thread::Current();
+    Sender sender(pthMain, send_socket, 80 * 1024);
+    Receiver receiver(pthMain, recv_socket, bandwidth);
+
+    pthMain->ProcessMessages(5000);
+    sender.done = true;
+    pthMain->ProcessMessages(5000);
+
+    ASSERT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
+    ASSERT_TRUE(receiver.count <= 6 * bandwidth);  // queue could drain for 1s
+
+    ss_->set_bandwidth(0);
+  }
+
+  void DelayTest(const SocketAddress& initial_addr) {
+    time_t seed = ::time(NULL);
+    LOG(LS_VERBOSE) << "seed = " << seed;
+    srand(static_cast<unsigned int>(seed));
+
+    const uint32 mean = 2000;
+    const uint32 stddev = 500;
+
+    ss_->set_delay_mean(mean);
+    ss_->set_delay_stddev(stddev);
+    ss_->UpdateDelayDistribution();
+
+    AsyncSocket* send_socket =
+        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
+    AsyncSocket* recv_socket =
+        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
+    ASSERT_EQ(0, send_socket->Bind(initial_addr));
+    ASSERT_EQ(0, recv_socket->Bind(initial_addr));
+    EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
+    EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
+    ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));
+
+    Thread* pthMain = Thread::Current();
+    // Avg packet size is 2K, so at 200KB/s for 10s, we should see about
+    // 1000 packets, which is necessary to get a good distribution.
+    Sender sender(pthMain, send_socket, 100 * 2 * 1024);
+    Receiver receiver(pthMain, recv_socket, 0);
+
+    pthMain->ProcessMessages(10000);
+    sender.done = receiver.done = true;
+    ss_->ProcessMessagesUntilIdle();
+
+    const double sample_mean = receiver.sum / receiver.samples;
+    double num =
+        receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
+    double den = receiver.samples * (receiver.samples - 1);
+    const double sample_stddev = std::sqrt(num / den);
+    LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev;
+
+    EXPECT_LE(500u, receiver.samples);
+    // We initially used a 0.1 fudge factor, but on the build machine, we
+    // have seen the value differ by as much as 0.13.
+    EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
+    EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);
+
+    ss_->set_delay_mean(0);
+    ss_->set_delay_stddev(0);
+    ss_->UpdateDelayDistribution();
+  }
+
+  // Test cross-family communication between a client bound to client_addr and a
+  // server bound to server_addr. shouldSucceed indicates if communication is
+  // expected to work or not.
+  void CrossFamilyConnectionTest(const SocketAddress& client_addr,
+                                 const SocketAddress& server_addr,
+                                 bool shouldSucceed) {
+    testing::StreamSink sink;
+    SocketAddress accept_address;
+    const SocketAddress kEmptyAddr;
+
+    // Client gets a IPv4 address
+    AsyncSocket* client = ss_->CreateAsyncSocket(client_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(client);
+    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+    EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
+    client->Bind(client_addr);
+
+    // Server gets a non-mapped non-any IPv6 address.
+    // IPv4 sockets should not be able to connect to this.
+    AsyncSocket* server = ss_->CreateAsyncSocket(server_addr.family(),
+                                                 SOCK_STREAM);
+    sink.Monitor(server);
+    server->Bind(server_addr);
+    server->Listen(5);
+
+    if (shouldSucceed) {
+      EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
+      ss_->ProcessMessagesUntilIdle();
+      EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
+      Socket* accepted = server->Accept(&accept_address);
+      EXPECT_TRUE(NULL != accepted);
+      EXPECT_NE(kEmptyAddr, accept_address);
+      ss_->ProcessMessagesUntilIdle();
+      EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
+      EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
+    } else {
+      // Check that the connection failed.
+      EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
+      ss_->ProcessMessagesUntilIdle();
+
+      EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
+      EXPECT_TRUE(NULL == server->Accept(&accept_address));
+      EXPECT_EQ(accept_address, kEmptyAddr);
+      EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
+      EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
+      EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
+    }
+  }
+
+  // Test cross-family datagram sending between a client bound to client_addr
+  // and a server bound to server_addr. shouldSucceed indicates if sending is
+  // expected to succed or not.
+  void CrossFamilyDatagramTest(const SocketAddress& client_addr,
+                               const SocketAddress& server_addr,
+                               bool shouldSucceed) {
+    AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM);
+    socket->Bind(server_addr);
+    SocketAddress bound_server_addr = socket->GetLocalAddress();
+    TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
+
+    AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM);
+    socket2->Bind(client_addr);
+    TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
+    SocketAddress client2_addr;
+
+    if (shouldSucceed) {
+      EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
+      EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
+      SocketAddress client1_addr;
+      EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
+      EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
+      EXPECT_EQ(client1_addr, bound_server_addr);
+    } else {
+      EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
+      EXPECT_FALSE(client1->CheckNextPacket("foo", 3, 0));
+    }
+  }
+
+ protected:
+  virtual void SetUp() {
+    Thread::Current()->set_socketserver(ss_);
+  }
+  virtual void TearDown() {
+    Thread::Current()->set_socketserver(NULL);
+  }
+
+  VirtualSocketServer* ss_;
+  const SocketAddress kIPv4AnyAddress;
+  const SocketAddress kIPv6AnyAddress;
+};
+
+TEST_F(VirtualSocketServerTest, basic_v4) {
+  SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
+  BasicTest(ipv4_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, basic_v6) {
+  SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
+  BasicTest(ipv6_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, connect_v4) {
+  ConnectTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_v6) {
+  ConnectTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
+  ConnectToNonListenerTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
+  ConnectToNonListenerTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
+  CloseDuringConnectTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
+  CloseDuringConnectTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_v4) {
+  CloseTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, close_v6) {
+  CloseTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, tcp_send_v4) {
+  TcpSendTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, tcp_send_v6) {
+  TcpSendTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
+  TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
+  TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
+}
+
+TEST_F(VirtualSocketServerTest, bandwidth_v4) {
+  SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000);
+  BandwidthTest(ipv4_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, bandwidth_v6) {
+  SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000);
+  BandwidthTest(ipv6_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, delay_v4) {
+  SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000);
+  DelayTest(ipv4_test_addr);
+}
+
+TEST_F(VirtualSocketServerTest, delay_v6) {
+  SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000);
+  DelayTest(ipv6_test_addr);
+}
+
+// Works, receiving socket sees 127.0.0.2.
+TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
+  CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
+                            SocketAddress("0.0.0.0", 5000),
+                            true);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
+  CrossFamilyConnectionTest(SocketAddress("::2", 0),
+                            SocketAddress("0.0.0.0", 5000),
+                            false);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
+  CrossFamilyConnectionTest(SocketAddress("::2", 0),
+                            SocketAddress("::ffff:127.0.0.1", 5000),
+                            false);
+}
+
+// Works. receiving socket sees ::ffff:127.0.0.2.
+TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
+  CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
+                            SocketAddress("::", 5000),
+                            true);
+}
+
+// Fails.
+TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
+  CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
+                            SocketAddress("::1", 5000),
+                            false);
+}
+
+// Works. Receiving socket sees ::ffff:127.0.0.1.
+TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
+  CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
+                            SocketAddress("::ffff:127.0.0.2", 5000),
+                            true);
+}
+
+// Works, receiving socket sees a result from GetNextIP.
+TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
+  CrossFamilyConnectionTest(SocketAddress("::", 0),
+                            SocketAddress("0.0.0.0", 5000),
+                            true);
+}
+
+// Works, receiving socket sees whatever GetNextIP gave the client.
+TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
+  CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
+                            SocketAddress("::", 5000),
+                            true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
+  CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
+                          SocketAddress("::", 5000),
+                          true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
+  CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
+                          SocketAddress("0.0.0.0", 5000),
+                          true);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
+  CrossFamilyDatagramTest(SocketAddress("::2", 0),
+                          SocketAddress("0.0.0.0", 5000),
+                          false);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
+  CrossFamilyDatagramTest(SocketAddress("::2", 0),
+                          SocketAddress("::ffff:127.0.0.1", 5000),
+                          false);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
+  CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
+                          SocketAddress("::", 5000),
+                          true);
+}
+
+TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
+  CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
+                          SocketAddress("::1", 5000),
+                          false);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
+  CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
+                          SocketAddress("::ffff:127.0.0.2", 5000),
+                          true);
+}
+
+TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
+  CrossFamilyDatagramTest(SocketAddress("::", 0),
+                          SocketAddress("0.0.0.0", 5000),
+                          true);
+}
+
+TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
+  const uint32 kTestMean[] = { 10, 100, 333, 1000 };
+  const double kTestDev[] = { 0.25, 0.1, 0.01 };
+  // TODO: The current code only works for 1000 data points or more.
+  const uint32 kTestSamples[] = { /*10, 100,*/ 1000 };
+  for (size_t midx = 0; midx < ARRAY_SIZE(kTestMean); ++midx) {
+    for (size_t didx = 0; didx < ARRAY_SIZE(kTestDev); ++didx) {
+      for (size_t sidx = 0; sidx < ARRAY_SIZE(kTestSamples); ++sidx) {
+        ASSERT_LT(0u, kTestSamples[sidx]);
+        const uint32 kStdDev =
+            static_cast<uint32>(kTestDev[didx] * kTestMean[midx]);
+        VirtualSocketServer::Function* f =
+            VirtualSocketServer::CreateDistribution(kTestMean[midx],
+                                                    kStdDev,
+                                                    kTestSamples[sidx]);
+        ASSERT_TRUE(NULL != f);
+        ASSERT_EQ(kTestSamples[sidx], f->size());
+        double sum = 0;
+        for (uint32 i = 0; i < f->size(); ++i) {
+          sum += (*f)[i].second;
+        }
+        const double mean = sum / f->size();
+        double sum_sq_dev = 0;
+        for (uint32 i = 0; i < f->size(); ++i) {
+          double dev = (*f)[i].second - mean;
+          sum_sq_dev += dev * dev;
+        }
+        const double stddev = std::sqrt(sum_sq_dev / f->size());
+        EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
+          << "M=" << kTestMean[midx]
+          << " SD=" << kStdDev
+          << " N=" << kTestSamples[sidx];
+        EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
+          << "M=" << kTestMean[midx]
+          << " SD=" << kStdDev
+          << " N=" << kTestSamples[sidx];
+        delete f;
+      }
+    }
+  }
+}