blob: f556d71aedcffcc2bc7dca623a511637b0fa86d8 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware.camera2;
import android.hardware.camera2.impl.CameraMetadataNative;
/**
* <p>The results of a single image capture from the image sensor.</p>
*
* <p>Contains the final configuration for the capture hardware (sensor, lens,
* flash), the processing pipeline, the control algorithms, and the output
* buffers.</p>
*
* <p>CaptureResults are produced by a {@link CameraDevice} after processing a
* {@link CaptureRequest}. All properties listed for capture requests can also
* be queried on the capture result, to determine the final values used for
* capture. The result also includes additional metadata about the state of the
* camera device during the capture.</p>
*
*/
public final class CaptureResult extends CameraMetadata {
private final CameraMetadataNative mResults;
private final CaptureRequest mRequest;
private final int mSequenceId;
/**
* Takes ownership of the passed-in properties object
* @hide
*/
public CaptureResult(CameraMetadataNative results, CaptureRequest parent, int sequenceId) {
if (results == null) {
throw new IllegalArgumentException("results was null");
}
if (parent == null) {
throw new IllegalArgumentException("parent was null");
}
mResults = results;
mRequest = parent;
mSequenceId = sequenceId;
}
@Override
public <T> T get(Key<T> key) {
return mResults.get(key);
}
/**
* Get the request associated with this result.
*
* <p>Whenever a request is successfully captured, with
* {@link CameraDevice.CaptureListener#onCaptureCompleted},
* the {@code result}'s {@code getRequest()} will return that {@code request}.
* </p>
*
* <p>In particular,
* <code><pre>cameraDevice.capture(someRequest, new CaptureListener() {
* {@literal @}Override
* void onCaptureCompleted(CaptureRequest myRequest, CaptureResult myResult) {
* assert(myResult.getRequest.equals(myRequest) == true);
* }
* };
* </code></pre>
* </p>
*
* @return The request associated with this result. Never {@code null}.
*/
public CaptureRequest getRequest() {
return mRequest;
}
/**
* Get the frame number associated with this result.
*
* <p>Whenever a request has been processed, regardless of failure or success,
* it gets a unique frame number assigned to its future result/failure.</p>
*
* <p>This value monotonically increments, starting with 0,
* for every new result or failure; and the scope is the lifetime of the
* {@link CameraDevice}.</p>
*
* @return int frame number
*/
public int getFrameNumber() {
return get(REQUEST_FRAME_COUNT);
}
/**
* The sequence ID for this failure that was returned by the
* {@link CameraDevice#capture} family of functions.
*
* <p>The sequence ID is a unique monotonically increasing value starting from 0,
* incremented every time a new group of requests is submitted to the CameraDevice.</p>
*
* @return int The ID for the sequence of requests that this capture result is a part of
*
* @see CameraDevice.CaptureListener#onCaptureSequenceCompleted
*/
public int getSequenceId() {
return mSequenceId;
}
/*@O~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~
* The key entries below this point are generated from metadata
* definitions in /system/media/camera/docs. Do not modify by hand or
* modify the comment blocks at the start or end.
*~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~*/
/**
* <p>A color transform matrix to use to transform
* from sensor RGB color space to output linear sRGB color space</p>
* <p>This matrix is either set by the camera device when the request
* {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is not TRANSFORM_MATRIX, or
* directly by the application in the request when the
* {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is TRANSFORM_MATRIX.</p>
* <p>In the latter case, the camera device may round the matrix to account
* for precision issues; the final rounded matrix should be reported back
* in this matrix result metadata. The transform should keep the magnitude
* of the output color values within <code>[0, 1.0]</code> (assuming input color
* values is within the normalized range <code>[0, 1.0]</code>), or clipping may occur.</p>
*
* @see CaptureRequest#COLOR_CORRECTION_MODE
*/
public static final Key<Rational[]> COLOR_CORRECTION_TRANSFORM =
new Key<Rational[]>("android.colorCorrection.transform", Rational[].class);
/**
* <p>Gains applying to Bayer raw color channels for
* white-balance</p>
* <p>The 4-channel white-balance gains are defined in
* the order of <code>[R G_even G_odd B]</code>, where <code>G_even</code> is the gain
* for green pixels on even rows of the output, and <code>G_odd</code>
* is the gain for green pixels on the odd rows. if a HAL
* does not support a separate gain for even/odd green channels,
* it should use the <code>G_even</code> value, and write <code>G_odd</code> equal to
* <code>G_even</code> in the output result metadata.</p>
* <p>This array is either set by HAL when the request
* {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is not TRANSFORM_MATRIX, or
* directly by the application in the request when the
* {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is TRANSFORM_MATRIX.</p>
* <p>The output should be the gains actually applied by the HAL to
* the current frame.</p>
*
* @see CaptureRequest#COLOR_CORRECTION_MODE
*/
public static final Key<float[]> COLOR_CORRECTION_GAINS =
new Key<float[]>("android.colorCorrection.gains", float[].class);
/**
* <p>The ID sent with the latest
* CAMERA2_TRIGGER_PRECAPTURE_METERING call</p>
* <p>Must be 0 if no
* CAMERA2_TRIGGER_PRECAPTURE_METERING trigger received yet
* by HAL. Always updated even if AE algorithm ignores the
* trigger</p>
* @hide
*/
public static final Key<Integer> CONTROL_AE_PRECAPTURE_ID =
new Key<Integer>("android.control.aePrecaptureId", int.class);
/**
* <p>The desired mode for the camera device's
* auto-exposure routine.</p>
* <p>This control is only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} is
* AUTO.</p>
* <p>When set to any of the ON modes, the camera device's
* auto-exposure routine is enabled, overriding the
* application's selected exposure time, sensor sensitivity,
* and frame duration ({@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime},
* {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}, and
* {@link CaptureRequest#SENSOR_FRAME_DURATION android.sensor.frameDuration}). If one of the FLASH modes
* is selected, the camera device's flash unit controls are
* also overridden.</p>
* <p>The FLASH modes are only available if the camera device
* has a flash unit ({@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} is <code>true</code>).</p>
* <p>If flash TORCH mode is desired, this field must be set to
* ON or OFF, and {@link CaptureRequest#FLASH_MODE android.flash.mode} set to TORCH.</p>
* <p>When set to any of the ON modes, the values chosen by the
* camera device auto-exposure routine for the overridden
* fields for a given capture will be available in its
* CaptureResult.</p>
*
* @see CaptureRequest#CONTROL_MODE
* @see CameraCharacteristics#FLASH_INFO_AVAILABLE
* @see CaptureRequest#FLASH_MODE
* @see CaptureRequest#SENSOR_EXPOSURE_TIME
* @see CaptureRequest#SENSOR_FRAME_DURATION
* @see CaptureRequest#SENSOR_SENSITIVITY
* @see #CONTROL_AE_MODE_OFF
* @see #CONTROL_AE_MODE_ON
* @see #CONTROL_AE_MODE_ON_AUTO_FLASH
* @see #CONTROL_AE_MODE_ON_ALWAYS_FLASH
* @see #CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE
*/
public static final Key<Integer> CONTROL_AE_MODE =
new Key<Integer>("android.control.aeMode", int.class);
/**
* <p>List of areas to use for
* metering.</p>
* <p>Each area is a rectangle plus weight: xmin, ymin,
* xmax, ymax, weight. The rectangle is defined to be inclusive of the
* specified coordinates.</p>
* <p>The coordinate system is based on the active pixel array,
* with (0,0) being the top-left pixel in the active pixel array, and
* ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1,
* {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the
* bottom-right pixel in the active pixel array. The weight
* should be nonnegative.</p>
* <p>If all regions have 0 weight, then no specific metering area
* needs to be used by the HAL. If the metering region is
* outside the current {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion}, the HAL
* should ignore the sections outside the region and output the
* used sections in the frame metadata.</p>
*
* @see CaptureRequest#SCALER_CROP_REGION
* @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE
*/
public static final Key<int[]> CONTROL_AE_REGIONS =
new Key<int[]>("android.control.aeRegions", int[].class);
/**
* <p>Current state of AE algorithm</p>
* <p>Switching between or enabling AE modes ({@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode}) always
* resets the AE state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode},
* or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all
* the algorithm states to INACTIVE.</p>
* <p>The camera device can do several state transitions between two results, if it is
* allowed by the state transition table. For example: INACTIVE may never actually be
* seen in a result.</p>
* <p>The state in the result is the state for this image (in sync with this image): if
* AE state becomes CONVERGED, then the image data associated with this result should
* be good to use.</p>
* <p>Below are state transition tables for different AE modes.</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center"></td>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device auto exposure algorithm is disabled</td>
* </tr>
* </tbody>
* </table>
* <p>When {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is AE_MODE_ON_*:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device initiates AE scan</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values changing</td>
* </tr>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">SEARCHING</td>
* <td align="center">Camera device finishes AE scan</td>
* <td align="center">CONVERGED</td>
* <td align="center">Good values, not changing</td>
* </tr>
* <tr>
* <td align="center">SEARCHING</td>
* <td align="center">Camera device finishes AE scan</td>
* <td align="center">FLASH_REQUIRED</td>
* <td align="center">Converged but too dark w/o flash</td>
* </tr>
* <tr>
* <td align="center">SEARCHING</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">CONVERGED</td>
* <td align="center">Camera device initiates AE scan</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values changing</td>
* </tr>
* <tr>
* <td align="center">CONVERGED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">FLASH_REQUIRED</td>
* <td align="center">Camera device initiates AE scan</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values changing</td>
* </tr>
* <tr>
* <td align="center">FLASH_REQUIRED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">LOCKED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values not good after unlock</td>
* </tr>
* <tr>
* <td align="center">LOCKED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td>
* <td align="center">CONVERGED</td>
* <td align="center">Values good after unlock</td>
* </tr>
* <tr>
* <td align="center">LOCKED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td>
* <td align="center">FLASH_REQUIRED</td>
* <td align="center">Exposure good, but too dark</td>
* </tr>
* <tr>
* <td align="center">PRECAPTURE</td>
* <td align="center">Sequence done. {@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td>
* <td align="center">CONVERGED</td>
* <td align="center">Ready for high-quality capture</td>
* </tr>
* <tr>
* <td align="center">PRECAPTURE</td>
* <td align="center">Sequence done. {@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Ready for high-quality capture</td>
* </tr>
* <tr>
* <td align="center">Any state</td>
* <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is START</td>
* <td align="center">PRECAPTURE</td>
* <td align="center">Start AE precapture metering sequence</td>
* </tr>
* </tbody>
* </table>
*
* @see CaptureRequest#CONTROL_AE_LOCK
* @see CaptureRequest#CONTROL_AE_MODE
* @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER
* @see CaptureRequest#CONTROL_MODE
* @see CaptureRequest#CONTROL_SCENE_MODE
* @see #CONTROL_AE_STATE_INACTIVE
* @see #CONTROL_AE_STATE_SEARCHING
* @see #CONTROL_AE_STATE_CONVERGED
* @see #CONTROL_AE_STATE_LOCKED
* @see #CONTROL_AE_STATE_FLASH_REQUIRED
* @see #CONTROL_AE_STATE_PRECAPTURE
*/
public static final Key<Integer> CONTROL_AE_STATE =
new Key<Integer>("android.control.aeState", int.class);
/**
* <p>Whether AF is currently enabled, and what
* mode it is set to</p>
* <p>Only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} = AUTO.</p>
* <p>If the lens is controlled by the camera device auto-focus algorithm,
* the camera device will report the current AF status in android.control.afState
* in result metadata.</p>
*
* @see CaptureRequest#CONTROL_MODE
* @see #CONTROL_AF_MODE_OFF
* @see #CONTROL_AF_MODE_AUTO
* @see #CONTROL_AF_MODE_MACRO
* @see #CONTROL_AF_MODE_CONTINUOUS_VIDEO
* @see #CONTROL_AF_MODE_CONTINUOUS_PICTURE
* @see #CONTROL_AF_MODE_EDOF
*/
public static final Key<Integer> CONTROL_AF_MODE =
new Key<Integer>("android.control.afMode", int.class);
/**
* <p>List of areas to use for focus
* estimation.</p>
* <p>Each area is a rectangle plus weight: xmin, ymin,
* xmax, ymax, weight. The rectangle is defined to be inclusive of the
* specified coordinates.</p>
* <p>The coordinate system is based on the active pixel array,
* with (0,0) being the top-left pixel in the active pixel array, and
* ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1,
* {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the
* bottom-right pixel in the active pixel array. The weight
* should be nonnegative.</p>
* <p>If all regions have 0 weight, then no specific focus area
* needs to be used by the HAL. If the focusing region is
* outside the current {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion}, the HAL
* should ignore the sections outside the region and output the
* used sections in the frame metadata.</p>
*
* @see CaptureRequest#SCALER_CROP_REGION
* @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE
*/
public static final Key<int[]> CONTROL_AF_REGIONS =
new Key<int[]>("android.control.afRegions", int[].class);
/**
* <p>Current state of AF algorithm</p>
* <p>Switching between or enabling AF modes ({@link CaptureRequest#CONTROL_AF_MODE android.control.afMode}) always
* resets the AF state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode},
* or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all
* the algorithm states to INACTIVE.</p>
* <p>The camera device can do several state transitions between two results, if it is
* allowed by the state transition table. For example: INACTIVE may never actually be
* seen in a result.</p>
* <p>The state in the result is the state for this image (in sync with this image): if
* AF state becomes FOCUSED, then the image data associated with this result should
* be sharp.</p>
* <p>Below are state transition tables for different AF modes.</p>
* <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_OFF or AF_MODE_EDOF:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center"></td>
* <td align="center">INACTIVE</td>
* <td align="center">Never changes</td>
* </tr>
* </tbody>
* </table>
* <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_AUTO or AF_MODE_MACRO:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">Start AF sweep, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">AF sweep done</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">Focused, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">AF sweep done</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">Not focused, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Cancel/reset AF, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Cancel/reset AF</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">Start new sweep, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Cancel/reset AF</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">ACTIVE_SCAN</td>
* <td align="center">Start new sweep, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">Any state</td>
* <td align="center">Mode change</td>
* <td align="center">INACTIVE</td>
* <td align="center"></td>
* </tr>
* </tbody>
* </table>
* <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_CONTINUOUS_VIDEO:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF state query, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Camera device completes current scan</td>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">End AF scan, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Camera device fails current scan</td>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">End AF scan, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. If focus is good, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. if focus is bad, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Reset lens position, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. Lens now locked</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">No effect</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Restart AF scan</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">No effect</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Restart AF scan</td>
* </tr>
* </tbody>
* </table>
* <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_CONTINUOUS_PICTURE:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF state query, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Camera device completes current scan</td>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">End AF scan, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Camera device fails current scan</td>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">End AF scan, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">Eventual trans. once focus good, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">Eventual trans. if cannot focus, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Reset lens position, Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">Camera device initiates new scan</td>
* <td align="center">PASSIVE_SCAN</td>
* <td align="center">Start AF scan, Lens now moving</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_FOCUSED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. Lens now locked</td>
* </tr>
* <tr>
* <td align="center">PASSIVE_UNFOCUSED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">Immediate trans. Lens now locked</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">No effect</td>
* </tr>
* <tr>
* <td align="center">FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Restart AF scan</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_TRIGGER</td>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">No effect</td>
* </tr>
* <tr>
* <td align="center">NOT_FOCUSED_LOCKED</td>
* <td align="center">AF_CANCEL</td>
* <td align="center">INACTIVE</td>
* <td align="center">Restart AF scan</td>
* </tr>
* </tbody>
* </table>
*
* @see CaptureRequest#CONTROL_AF_MODE
* @see CaptureRequest#CONTROL_MODE
* @see CaptureRequest#CONTROL_SCENE_MODE
* @see #CONTROL_AF_STATE_INACTIVE
* @see #CONTROL_AF_STATE_PASSIVE_SCAN
* @see #CONTROL_AF_STATE_PASSIVE_FOCUSED
* @see #CONTROL_AF_STATE_ACTIVE_SCAN
* @see #CONTROL_AF_STATE_FOCUSED_LOCKED
* @see #CONTROL_AF_STATE_NOT_FOCUSED_LOCKED
* @see #CONTROL_AF_STATE_PASSIVE_UNFOCUSED
*/
public static final Key<Integer> CONTROL_AF_STATE =
new Key<Integer>("android.control.afState", int.class);
/**
* <p>The ID sent with the latest
* CAMERA2_TRIGGER_AUTOFOCUS call</p>
* <p>Must be 0 if no CAMERA2_TRIGGER_AUTOFOCUS trigger
* received yet by HAL. Always updated even if AF algorithm
* ignores the trigger</p>
* @hide
*/
public static final Key<Integer> CONTROL_AF_TRIGGER_ID =
new Key<Integer>("android.control.afTriggerId", int.class);
/**
* <p>Whether AWB is currently setting the color
* transform fields, and what its illumination target
* is</p>
* <p>This control is only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} is AUTO.</p>
* <p>When set to the ON mode, the camera device's auto white balance
* routine is enabled, overriding the application's selected
* {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform}, {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} and
* {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode}.</p>
* <p>When set to the OFF mode, the camera device's auto white balance
* routine is disabled. The applicantion manually controls the white
* balance by {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform}, android.colorCorrection.gains
* and {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode}.</p>
* <p>When set to any other modes, the camera device's auto white balance
* routine is disabled. The camera device uses each particular illumination
* target for white balance adjustment.</p>
*
* @see CaptureRequest#COLOR_CORRECTION_GAINS
* @see CaptureRequest#COLOR_CORRECTION_MODE
* @see CaptureRequest#COLOR_CORRECTION_TRANSFORM
* @see CaptureRequest#CONTROL_MODE
* @see #CONTROL_AWB_MODE_OFF
* @see #CONTROL_AWB_MODE_AUTO
* @see #CONTROL_AWB_MODE_INCANDESCENT
* @see #CONTROL_AWB_MODE_FLUORESCENT
* @see #CONTROL_AWB_MODE_WARM_FLUORESCENT
* @see #CONTROL_AWB_MODE_DAYLIGHT
* @see #CONTROL_AWB_MODE_CLOUDY_DAYLIGHT
* @see #CONTROL_AWB_MODE_TWILIGHT
* @see #CONTROL_AWB_MODE_SHADE
*/
public static final Key<Integer> CONTROL_AWB_MODE =
new Key<Integer>("android.control.awbMode", int.class);
/**
* <p>List of areas to use for illuminant
* estimation.</p>
* <p>Only used in AUTO mode.</p>
* <p>Each area is a rectangle plus weight: xmin, ymin,
* xmax, ymax, weight. The rectangle is defined to be inclusive of the
* specified coordinates.</p>
* <p>The coordinate system is based on the active pixel array,
* with (0,0) being the top-left pixel in the active pixel array, and
* ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1,
* {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the
* bottom-right pixel in the active pixel array. The weight
* should be nonnegative.</p>
* <p>If all regions have 0 weight, then no specific metering area
* needs to be used by the HAL. If the metering region is
* outside the current {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion}, the HAL
* should ignore the sections outside the region and output the
* used sections in the frame metadata.</p>
*
* @see CaptureRequest#SCALER_CROP_REGION
* @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE
*/
public static final Key<int[]> CONTROL_AWB_REGIONS =
new Key<int[]>("android.control.awbRegions", int[].class);
/**
* <p>Current state of AWB algorithm</p>
* <p>Switching between or enabling AWB modes ({@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode}) always
* resets the AWB state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode},
* or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all
* the algorithm states to INACTIVE.</p>
* <p>The camera device can do several state transitions between two results, if it is
* allowed by the state transition table. So INACTIVE may never actually be seen in
* a result.</p>
* <p>The state in the result is the state for this image (in sync with this image): if
* AWB state becomes CONVERGED, then the image data associated with this result should
* be good to use.</p>
* <p>Below are state transition tables for different AWB modes.</p>
* <p>When <code>{@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} != AWB_MODE_AUTO</code>:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center"></td>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device auto white balance algorithm is disabled</td>
* </tr>
* </tbody>
* </table>
* <p>When {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} is AWB_MODE_AUTO:</p>
* <table>
* <thead>
* <tr>
* <th align="center">State</th>
* <th align="center">Transition Cause</th>
* <th align="center">New State</th>
* <th align="center">Notes</th>
* </tr>
* </thead>
* <tbody>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">Camera device initiates AWB scan</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values changing</td>
* </tr>
* <tr>
* <td align="center">INACTIVE</td>
* <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">SEARCHING</td>
* <td align="center">Camera device finishes AWB scan</td>
* <td align="center">CONVERGED</td>
* <td align="center">Good values, not changing</td>
* </tr>
* <tr>
* <td align="center">SEARCHING</td>
* <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">CONVERGED</td>
* <td align="center">Camera device initiates AWB scan</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values changing</td>
* </tr>
* <tr>
* <td align="center">CONVERGED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td>
* <td align="center">LOCKED</td>
* <td align="center">Values locked</td>
* </tr>
* <tr>
* <td align="center">LOCKED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is OFF</td>
* <td align="center">SEARCHING</td>
* <td align="center">Values not good after unlock</td>
* </tr>
* <tr>
* <td align="center">LOCKED</td>
* <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is OFF</td>
* <td align="center">CONVERGED</td>
* <td align="center">Values good after unlock</td>
* </tr>
* </tbody>
* </table>
*
* @see CaptureRequest#CONTROL_AWB_LOCK
* @see CaptureRequest#CONTROL_AWB_MODE
* @see CaptureRequest#CONTROL_MODE
* @see CaptureRequest#CONTROL_SCENE_MODE
* @see #CONTROL_AWB_STATE_INACTIVE
* @see #CONTROL_AWB_STATE_SEARCHING
* @see #CONTROL_AWB_STATE_CONVERGED
* @see #CONTROL_AWB_STATE_LOCKED
*/
public static final Key<Integer> CONTROL_AWB_STATE =
new Key<Integer>("android.control.awbState", int.class);
/**
* <p>Overall mode of 3A control
* routines</p>
* <p>High-level 3A control. When set to OFF, all 3A control
* by the camera device is disabled. The application must set the fields for
* capture parameters itself.</p>
* <p>When set to AUTO, the individual algorithm controls in
* android.control.* are in effect, such as {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode}.</p>
* <p>When set to USE_SCENE_MODE, the individual controls in
* android.control.* are mostly disabled, and the camera device implements
* one of the scene mode settings (such as ACTION, SUNSET, or PARTY)
* as it wishes. The camera device scene mode 3A settings are provided by
* android.control.sceneModeOverrides.</p>
* <p>When set to OFF_KEEP_STATE, it is similar to OFF mode, the only difference
* is that this frame will not be used by camera device background 3A statistics
* update, as if this frame is never captured. This mode can be used in the scenario
* where the application doesn't want a 3A manual control capture to affect
* the subsequent auto 3A capture results.</p>
*
* @see CaptureRequest#CONTROL_AF_MODE
* @see #CONTROL_MODE_OFF
* @see #CONTROL_MODE_AUTO
* @see #CONTROL_MODE_USE_SCENE_MODE
* @see #CONTROL_MODE_OFF_KEEP_STATE
*/
public static final Key<Integer> CONTROL_MODE =
new Key<Integer>("android.control.mode", int.class);
/**
* <p>Operation mode for edge
* enhancement</p>
* <p>Edge/sharpness/detail enhancement. OFF means no
* enhancement will be applied by the HAL.</p>
* <p>FAST/HIGH_QUALITY both mean camera device determined enhancement
* will be applied. HIGH_QUALITY mode indicates that the
* camera device will use the highest-quality enhancement algorithms,
* even if it slows down capture rate. FAST means the camera device will
* not slow down capture rate when applying edge enhancement.</p>
* @see #EDGE_MODE_OFF
* @see #EDGE_MODE_FAST
* @see #EDGE_MODE_HIGH_QUALITY
*/
public static final Key<Integer> EDGE_MODE =
new Key<Integer>("android.edge.mode", int.class);
/**
* <p>The desired mode for for the camera device's flash control.</p>
* <p>This control is only effective when flash unit is available
* (<code>{@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} == true</code>).</p>
* <p>When this control is used, the {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} must be set to ON or OFF.
* Otherwise, the camera device auto-exposure related flash control (ON_AUTO_FLASH,
* ON_ALWAYS_FLASH, or ON_AUTO_FLASH_REDEYE) will override this control.</p>
* <p>When set to OFF, the camera device will not fire flash for this capture.</p>
* <p>When set to SINGLE, the camera device will fire flash regardless of the camera
* device's auto-exposure routine's result. When used in still capture case, this
* control should be used along with AE precapture metering sequence
* ({@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger}), otherwise, the image may be incorrectly exposed.</p>
* <p>When set to TORCH, the flash will be on continuously. This mode can be used
* for use cases such as preview, auto-focus assist, still capture, or video recording.</p>
* <p>The flash status will be reported by {@link CaptureResult#FLASH_STATE android.flash.state} in the capture result metadata.</p>
*
* @see CaptureRequest#CONTROL_AE_MODE
* @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER
* @see CameraCharacteristics#FLASH_INFO_AVAILABLE
* @see CaptureResult#FLASH_STATE
* @see #FLASH_MODE_OFF
* @see #FLASH_MODE_SINGLE
* @see #FLASH_MODE_TORCH
*/
public static final Key<Integer> FLASH_MODE =
new Key<Integer>("android.flash.mode", int.class);
/**
* <p>Current state of the flash
* unit.</p>
* <p>When the camera device doesn't have flash unit
* (i.e. <code>{@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} == false</code>), this state will always be UNAVAILABLE.
* Other states indicate the current flash status.</p>
*
* @see CameraCharacteristics#FLASH_INFO_AVAILABLE
* @see #FLASH_STATE_UNAVAILABLE
* @see #FLASH_STATE_CHARGING
* @see #FLASH_STATE_READY
* @see #FLASH_STATE_FIRED
*/
public static final Key<Integer> FLASH_STATE =
new Key<Integer>("android.flash.state", int.class);
/**
* <p>List of <code>(x, y)</code> coordinates of hot/defective pixels on the
* sensor, where <code>(x, y)</code> lies between <code>(0, 0)</code>, which is the top-left
* of the pixel array, and the width,height of the pixel array given in
* {@link CameraCharacteristics#SENSOR_INFO_PIXEL_ARRAY_SIZE android.sensor.info.pixelArraySize}. This may include hot pixels
* that lie outside of the active array bounds given by
* android.sensor.activeArraySize.</p>
*
* @see CameraCharacteristics#SENSOR_INFO_PIXEL_ARRAY_SIZE
*/
public static final Key<int[]> HOT_PIXEL_MAP =
new Key<int[]>("android.hotPixel.map", int[].class);
/**
* <p>Set operational mode for hot pixel correction.</p>
* <p>Hotpixel correction interpolates out, or otherwise removes, pixels
* that do not accurately encode the incoming light (i.e. pixels that
* are stuck at an arbitrary value).</p>
* @see #HOT_PIXEL_MODE_OFF
* @see #HOT_PIXEL_MODE_FAST
* @see #HOT_PIXEL_MODE_HIGH_QUALITY
*/
public static final Key<Integer> HOT_PIXEL_MODE =
new Key<Integer>("android.hotPixel.mode", int.class);
/**
* <p>GPS coordinates to include in output JPEG
* EXIF</p>
*/
public static final Key<double[]> JPEG_GPS_COORDINATES =
new Key<double[]>("android.jpeg.gpsCoordinates", double[].class);
/**
* <p>32 characters describing GPS algorithm to
* include in EXIF</p>
*/
public static final Key<String> JPEG_GPS_PROCESSING_METHOD =
new Key<String>("android.jpeg.gpsProcessingMethod", String.class);
/**
* <p>Time GPS fix was made to include in
* EXIF</p>
*/
public static final Key<Long> JPEG_GPS_TIMESTAMP =
new Key<Long>("android.jpeg.gpsTimestamp", long.class);
/**
* <p>Orientation of JPEG image to
* write</p>
*/
public static final Key<Integer> JPEG_ORIENTATION =
new Key<Integer>("android.jpeg.orientation", int.class);
/**
* <p>Compression quality of the final JPEG
* image</p>
* <p>85-95 is typical usage range</p>
*/
public static final Key<Byte> JPEG_QUALITY =
new Key<Byte>("android.jpeg.quality", byte.class);
/**
* <p>Compression quality of JPEG
* thumbnail</p>
*/
public static final Key<Byte> JPEG_THUMBNAIL_QUALITY =
new Key<Byte>("android.jpeg.thumbnailQuality", byte.class);
/**
* <p>Resolution of embedded JPEG thumbnail</p>
* <p>When set to (0, 0) value, the JPEG EXIF will not contain thumbnail,
* but the captured JPEG will still be a valid image.</p>
* <p>When a jpeg image capture is issued, the thumbnail size selected should have
* the same aspect ratio as the jpeg image.</p>
*/
public static final Key<android.hardware.camera2.Size> JPEG_THUMBNAIL_SIZE =
new Key<android.hardware.camera2.Size>("android.jpeg.thumbnailSize", android.hardware.camera2.Size.class);
/**
* <p>The ratio of lens focal length to the effective
* aperture diameter.</p>
* <p>This will only be supported on the camera devices that
* have variable aperture lens. The aperture value can only be
* one of the values listed in {@link CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES android.lens.info.availableApertures}.</p>
* <p>When this is supported and {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is OFF,
* this can be set along with {@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime},
* {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}, and android.sensor.frameDuration
* to achieve manual exposure control.</p>
* <p>The requested aperture value may take several frames to reach the
* requested value; the camera device will report the current (intermediate)
* aperture size in capture result metadata while the aperture is changing.
* While the aperture is still changing, {@link CaptureResult#LENS_STATE android.lens.state} will be set to MOVING.</p>
* <p>When this is supported and {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is one of
* the ON modes, this will be overridden by the camera device
* auto-exposure algorithm, the overridden values are then provided
* back to the user in the corresponding result.</p>
*
* @see CaptureRequest#CONTROL_AE_MODE
* @see CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES
* @see CaptureResult#LENS_STATE
* @see CaptureRequest#SENSOR_EXPOSURE_TIME
* @see CaptureRequest#SENSOR_SENSITIVITY
*/
public static final Key<Float> LENS_APERTURE =
new Key<Float>("android.lens.aperture", float.class);
/**
* <p>State of lens neutral density filter(s).</p>
* <p>This will not be supported on most camera devices. On devices
* where this is supported, this may only be set to one of the
* values included in {@link CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES android.lens.info.availableFilterDensities}.</p>
* <p>Lens filters are typically used to lower the amount of light the
* sensor is exposed to (measured in steps of EV). As used here, an EV
* step is the standard logarithmic representation, which are
* non-negative, and inversely proportional to the amount of light
* hitting the sensor. For example, setting this to 0 would result
* in no reduction of the incoming light, and setting this to 2 would
* mean that the filter is set to reduce incoming light by two stops
* (allowing 1/4 of the prior amount of light to the sensor).</p>
* <p>It may take several frames before the lens filter density changes
* to the requested value. While the filter density is still changing,
* {@link CaptureResult#LENS_STATE android.lens.state} will be set to MOVING.</p>
*
* @see CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES
* @see CaptureResult#LENS_STATE
*/
public static final Key<Float> LENS_FILTER_DENSITY =
new Key<Float>("android.lens.filterDensity", float.class);
/**
* <p>The current lens focal length; used for optical zoom.</p>
* <p>This setting controls the physical focal length of the camera
* device's lens. Changing the focal length changes the field of
* view of the camera device, and is usually used for optical zoom.</p>
* <p>Like {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance} and {@link CaptureRequest#LENS_APERTURE android.lens.aperture}, this
* setting won't be applied instantaneously, and it may take several
* frames before the lens can change to the requested focal length.
* While the focal length is still changing, {@link CaptureResult#LENS_STATE android.lens.state} will
* be set to MOVING.</p>
* <p>This is expected not to be supported on most devices.</p>
*
* @see CaptureRequest#LENS_APERTURE
* @see CaptureRequest#LENS_FOCUS_DISTANCE
* @see CaptureResult#LENS_STATE
*/
public static final Key<Float> LENS_FOCAL_LENGTH =
new Key<Float>("android.lens.focalLength", float.class);
/**
* <p>Distance to plane of sharpest focus,
* measured from frontmost surface of the lens</p>
* <p>Should be zero for fixed-focus cameras</p>
*/
public static final Key<Float> LENS_FOCUS_DISTANCE =
new Key<Float>("android.lens.focusDistance", float.class);
/**
* <p>The range of scene distances that are in
* sharp focus (depth of field)</p>
* <p>If variable focus not supported, can still report
* fixed depth of field range</p>
*/
public static final Key<float[]> LENS_FOCUS_RANGE =
new Key<float[]>("android.lens.focusRange", float[].class);
/**
* <p>Sets whether the camera device uses optical image stabilization (OIS)
* when capturing images.</p>
* <p>OIS is used to compensate for motion blur due to small movements of
* the camera during capture. Unlike digital image stabilization, OIS makes
* use of mechanical elements to stabilize the camera sensor, and thus
* allows for longer exposure times before camera shake becomes
* apparent.</p>
* <p>This is not expected to be supported on most devices.</p>
* @see #LENS_OPTICAL_STABILIZATION_MODE_OFF
* @see #LENS_OPTICAL_STABILIZATION_MODE_ON
*/
public static final Key<Integer> LENS_OPTICAL_STABILIZATION_MODE =
new Key<Integer>("android.lens.opticalStabilizationMode", int.class);
/**
* <p>Current lens status.</p>
* <p>For lens parameters {@link CaptureRequest#LENS_FOCAL_LENGTH android.lens.focalLength}, {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance},
* {@link CaptureRequest#LENS_FILTER_DENSITY android.lens.filterDensity} and {@link CaptureRequest#LENS_APERTURE android.lens.aperture}, when changes are requested,
* they may take several frames to reach the requested values. This state indicates
* the current status of the lens parameters.</p>
* <p>When the state is STATIONARY, the lens parameters are not changing. This could be
* either because the parameters are all fixed, or because the lens has had enough
* time to reach the most recently-requested values.
* If all these lens parameters are not changable for a camera device, as listed below:</p>
* <ul>
* <li>Fixed focus (<code>{@link CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE android.lens.info.minimumFocusDistance} == 0</code>), which means
* {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance} parameter will always be 0.</li>
* <li>Fixed focal length ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS android.lens.info.availableFocalLengths} contains single value),
* which means the optical zoom is not supported.</li>
* <li>No ND filter ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES android.lens.info.availableFilterDensities} contains only 0).</li>
* <li>Fixed aperture ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES android.lens.info.availableApertures} contains single value).</li>
* </ul>
* <p>Then this state will always be STATIONARY.</p>
* <p>When the state is MOVING, it indicates that at least one of the lens parameters
* is changing.</p>
*
* @see CaptureRequest#LENS_APERTURE
* @see CaptureRequest#LENS_FILTER_DENSITY
* @see CaptureRequest#LENS_FOCAL_LENGTH
* @see CaptureRequest#LENS_FOCUS_DISTANCE
* @see CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES
* @see CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES
* @see CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS
* @see CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE
* @see #LENS_STATE_STATIONARY
* @see #LENS_STATE_MOVING
*/
public static final Key<Integer> LENS_STATE =
new Key<Integer>("android.lens.state", int.class);
/**
* <p>Mode of operation for the noise reduction
* algorithm</p>
* <p>Noise filtering control. OFF means no noise reduction
* will be applied by the HAL.</p>
* <p>FAST/HIGH_QUALITY both mean camera device determined noise filtering
* will be applied. HIGH_QUALITY mode indicates that the camera device
* will use the highest-quality noise filtering algorithms,
* even if it slows down capture rate. FAST means the camera device should not
* slow down capture rate when applying noise filtering.</p>
* @see #NOISE_REDUCTION_MODE_OFF
* @see #NOISE_REDUCTION_MODE_FAST
* @see #NOISE_REDUCTION_MODE_HIGH_QUALITY
*/
public static final Key<Integer> NOISE_REDUCTION_MODE =
new Key<Integer>("android.noiseReduction.mode", int.class);
/**
* <p>Whether a result given to the framework is the
* final one for the capture, or only a partial that contains a
* subset of the full set of dynamic metadata
* values.</p>
* <p>The entries in the result metadata buffers for a
* single capture may not overlap, except for this entry. The
* FINAL buffers must retain FIFO ordering relative to the
* requests that generate them, so the FINAL buffer for frame 3 must
* always be sent to the framework after the FINAL buffer for frame 2, and
* before the FINAL buffer for frame 4. PARTIAL buffers may be returned
* in any order relative to other frames, but all PARTIAL buffers for a given
* capture must arrive before the FINAL buffer for that capture. This entry may
* only be used by the HAL if quirks.usePartialResult is set to 1.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
* @hide
*/
public static final Key<Boolean> QUIRKS_PARTIAL_RESULT =
new Key<Boolean>("android.quirks.partialResult", boolean.class);
/**
* <p>A frame counter set by the framework. This value monotonically
* increases with every new result (that is, each new result has a unique
* frameCount value).</p>
* <p>Reset on release()</p>
*/
public static final Key<Integer> REQUEST_FRAME_COUNT =
new Key<Integer>("android.request.frameCount", int.class);
/**
* <p>An application-specified ID for the current
* request. Must be maintained unchanged in output
* frame</p>
* @hide
*/
public static final Key<Integer> REQUEST_ID =
new Key<Integer>("android.request.id", int.class);
/**
* <p>Specifies the number of pipeline stages the frame went
* through from when it was exposed to when the final completed result
* was available to the framework.</p>
* <p>Depending on what settings are used in the request, and
* what streams are configured, the data may undergo less processing,
* and some pipeline stages skipped.</p>
* <p>See {@link CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH android.request.pipelineMaxDepth} for more details.</p>
*
* @see CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH
*/
public static final Key<Byte> REQUEST_PIPELINE_DEPTH =
new Key<Byte>("android.request.pipelineDepth", byte.class);
/**
* <p>(x, y, width, height).</p>
* <p>A rectangle with the top-level corner of (x,y) and size
* (width, height). The region of the sensor that is used for
* output. Each stream must use this rectangle to produce its
* output, cropping to a smaller region if necessary to
* maintain the stream's aspect ratio.</p>
* <p>HAL2.x uses only (x, y, width)</p>
* <p>Any additional per-stream cropping must be done to
* maximize the final pixel area of the stream.</p>
* <p>For example, if the crop region is set to a 4:3 aspect
* ratio, then 4:3 streams should use the exact crop
* region. 16:9 streams should further crop vertically
* (letterbox).</p>
* <p>Conversely, if the crop region is set to a 16:9, then 4:3
* outputs should crop horizontally (pillarbox), and 16:9
* streams should match exactly. These additional crops must
* be centered within the crop region.</p>
* <p>The output streams must maintain square pixels at all
* times, no matter what the relative aspect ratios of the
* crop region and the stream are. Negative values for
* corner are allowed for raw output if full pixel array is
* larger than active pixel array. Width and height may be
* rounded to nearest larger supportable width, especially
* for raw output, where only a few fixed scales may be
* possible. The width and height of the crop region cannot
* be set to be smaller than floor( activeArraySize.width /
* android.scaler.maxDigitalZoom ) and floor(
* activeArraySize.height / android.scaler.maxDigitalZoom),
* respectively.</p>
*/
public static final Key<android.graphics.Rect> SCALER_CROP_REGION =
new Key<android.graphics.Rect>("android.scaler.cropRegion", android.graphics.Rect.class);
/**
* <p>Duration each pixel is exposed to
* light.</p>
* <p>If the sensor can't expose this exact duration, it should shorten the
* duration exposed to the nearest possible value (rather than expose longer).</p>
* <p>1/10000 - 30 sec range. No bulb mode</p>
*/
public static final Key<Long> SENSOR_EXPOSURE_TIME =
new Key<Long>("android.sensor.exposureTime", long.class);
/**
* <p>Duration from start of frame exposure to
* start of next frame exposure.</p>
* <p>The maximum frame rate that can be supported by a camera subsystem is
* a function of many factors:</p>
* <ul>
* <li>Requested resolutions of output image streams</li>
* <li>Availability of binning / skipping modes on the imager</li>
* <li>The bandwidth of the imager interface</li>
* <li>The bandwidth of the various ISP processing blocks</li>
* </ul>
* <p>Since these factors can vary greatly between different ISPs and
* sensors, the camera abstraction tries to represent the bandwidth
* restrictions with as simple a model as possible.</p>
* <p>The model presented has the following characteristics:</p>
* <ul>
* <li>The image sensor is always configured to output the smallest
* resolution possible given the application's requested output stream
* sizes. The smallest resolution is defined as being at least as large
* as the largest requested output stream size; the camera pipeline must
* never digitally upsample sensor data when the crop region covers the
* whole sensor. In general, this means that if only small output stream
* resolutions are configured, the sensor can provide a higher frame
* rate.</li>
* <li>Since any request may use any or all the currently configured
* output streams, the sensor and ISP must be configured to support
* scaling a single capture to all the streams at the same time. This
* means the camera pipeline must be ready to produce the largest
* requested output size without any delay. Therefore, the overall
* frame rate of a given configured stream set is governed only by the
* largest requested stream resolution.</li>
* <li>Using more than one output stream in a request does not affect the
* frame duration.</li>
* <li>Certain format-streams may need to do additional background processing
* before data is consumed/produced by that stream. These processors
* can run concurrently to the rest of the camera pipeline, but
* cannot process more than 1 capture at a time.</li>
* </ul>
* <p>The necessary information for the application, given the model above,
* is provided via the {@link CameraCharacteristics#SCALER_AVAILABLE_MIN_FRAME_DURATIONS android.scaler.availableMinFrameDurations} field.
* These are used to determine the maximum frame rate / minimum frame
* duration that is possible for a given stream configuration.</p>
* <p>Specifically, the application can use the following rules to
* determine the minimum frame duration it can request from the camera
* device:</p>
* <ol>
* <li>Let the set of currently configured input/output streams
* be called <code>S</code>.</li>
* <li>Find the minimum frame durations for each stream in <code>S</code>, by
* looking it up in {@link CameraCharacteristics#SCALER_AVAILABLE_MIN_FRAME_DURATIONS android.scaler.availableMinFrameDurations} (with
* its respective size/format). Let this set of frame durations be called
* <code>F</code>.</li>
* <li>For any given request <code>R</code>, the minimum frame duration allowed
* for <code>R</code> is the maximum out of all values in <code>F</code>. Let the streams
* used in <code>R</code> be called <code>S_r</code>.</li>
* </ol>
* <p>If none of the streams in <code>S_r</code> have a stall time (listed in
* {@link CameraCharacteristics#SCALER_AVAILABLE_STALL_DURATIONS android.scaler.availableStallDurations}), then the frame duration in
* <code>F</code> determines the steady state frame rate that the application will
* get if it uses <code>R</code> as a repeating request. Let this special kind
* of request be called <code>Rsimple</code>.</p>
* <p>A repeating request <code>Rsimple</code> can be <em>occasionally</em> interleaved
* by a single capture of a new request <code>Rstall</code> (which has at least
* one in-use stream with a non-0 stall time) and if <code>Rstall</code> has the
* same minimum frame duration this will not cause a frame rate loss
* if all buffers from the previous <code>Rstall</code> have already been
* delivered.</p>
* <p>For more details about stalling, see
* {@link CameraCharacteristics#SCALER_AVAILABLE_STALL_DURATIONS android.scaler.availableStallDurations}.</p>
*
* @see CameraCharacteristics#SCALER_AVAILABLE_MIN_FRAME_DURATIONS
* @see CameraCharacteristics#SCALER_AVAILABLE_STALL_DURATIONS
*/
public static final Key<Long> SENSOR_FRAME_DURATION =
new Key<Long>("android.sensor.frameDuration", long.class);
/**
* <p>Gain applied to image data. Must be
* implemented through analog gain only if set to values
* below 'maximum analog sensitivity'.</p>
* <p>If the sensor can't apply this exact gain, it should lessen the
* gain to the nearest possible value (rather than gain more).</p>
* <p>ISO 12232:2006 REI method</p>
*/
public static final Key<Integer> SENSOR_SENSITIVITY =
new Key<Integer>("android.sensor.sensitivity", int.class);
/**
* <p>Time at start of exposure of first
* row</p>
* <p>Monotonic, should be synced to other timestamps in
* system</p>
*/
public static final Key<Long> SENSOR_TIMESTAMP =
new Key<Long>("android.sensor.timestamp", long.class);
/**
* <p>The temperature of the sensor, sampled at the time
* exposure began for this frame.</p>
* <p>The thermal diode being queried should be inside the sensor PCB, or
* somewhere close to it.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
* <p><b>Full capability</b> -
* Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the
* {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p>
*
* @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
*/
public static final Key<Float> SENSOR_TEMPERATURE =
new Key<Float>("android.sensor.temperature", float.class);
/**
* <p>A per-device calibration transform matrix to be applied after the
* color space transform when rendering the raw image buffer.</p>
* <p>This matrix is expressed as a 3x3 matrix in row-major-order, and
* contains a per-device calibration transform that maps colors
* from reference camera color space (i.e. the "golden module"
* colorspace) into this camera device's linear native sensor color
* space for the current scene illumination and white balance choice.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*/
public static final Key<Rational[]> SENSOR_CALIBRATION_TRANSFORM =
new Key<Rational[]>("android.sensor.calibrationTransform", Rational[].class);
/**
* <p>A matrix that transforms color values from CIE XYZ color space to
* reference camera color space when rendering the raw image buffer.</p>
* <p>This matrix is expressed as a 3x3 matrix in row-major-order, and
* contains a color transform matrix that maps colors from the CIE
* XYZ color space to the reference camera raw color space (i.e. the
* "golden module" colorspace) for the current scene illumination and
* white balance choice.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*/
public static final Key<Rational[]> SENSOR_COLOR_TRANSFORM =
new Key<Rational[]>("android.sensor.colorTransform", Rational[].class);
/**
* <p>A matrix that transforms white balanced camera colors to the CIE XYZ
* colorspace with a D50 whitepoint.</p>
* <p>This matrix is expressed as a 3x3 matrix in row-major-order, and contains
* a color transform matrix that maps a unit vector in the linear native
* sensor color space to the D50 whitepoint in CIE XYZ color space.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*/
public static final Key<Rational[]> SENSOR_FORWARD_MATRIX =
new Key<Rational[]>("android.sensor.forwardMatrix", Rational[].class);
/**
* <p>The estimated white balance at the time of capture.</p>
* <p>The estimated white balance encoded as the RGB values of the
* perfectly neutral color point in the linear native sensor color space.
* The order of the values is R, G, B; where R is in the lowest index.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*/
public static final Key<Rational[]> SENSOR_NEUTRAL_COLOR_POINT =
new Key<Rational[]>("android.sensor.neutralColorPoint", Rational[].class);
/**
* <p>A mapping containing a hue shift, saturation scale, and value scale
* for each pixel.</p>
* <p>hue_samples, saturation_samples, and value_samples are given in
* {@link CameraCharacteristics#SENSOR_PROFILE_HUE_SAT_MAP_DIMENSIONS android.sensor.profileHueSatMapDimensions}.</p>
* <p>Each entry of this map contains three floats corresponding to the
* hue shift, saturation scale, and value scale, respectively; where the
* hue shift has the lowest index. The map entries are stored in the tag
* in nested loop order, with the value divisions in the outer loop, the
* hue divisions in the middle loop, and the saturation divisions in the
* inner loop. All zero input saturation entries are required to have a
* value scale factor of 1.0.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*
* @see CameraCharacteristics#SENSOR_PROFILE_HUE_SAT_MAP_DIMENSIONS
*/
public static final Key<float[]> SENSOR_PROFILE_HUE_SAT_MAP =
new Key<float[]>("android.sensor.profileHueSatMap", float[].class);
/**
* <p>A list of x,y samples defining a tone-mapping curve for gamma adjustment.</p>
* <p>This tag contains a default tone curve that can be applied while
* processing the image as a starting point for user adjustments.
* The curve is specified as a list of value pairs in linear gamma.
* The curve is interpolated using a cubic spline.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*/
public static final Key<float[]> SENSOR_PROFILE_TONE_CURVE =
new Key<float[]>("android.sensor.profileToneCurve", float[].class);
/**
* <p>When enabled, the sensor sends a test pattern instead of
* doing a real exposure from the camera.</p>
* <p>When a test pattern is enabled, all manual sensor controls specified
* by android.sensor.* should be ignored. All other controls should
* work as normal.</p>
* <p>For example, if manual flash is enabled, flash firing should still
* occur (and that the test pattern remain unmodified, since the flash
* would not actually affect it).</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
* @see #SENSOR_TEST_PATTERN_MODE_OFF
* @see #SENSOR_TEST_PATTERN_MODE_SOLID_COLOR
* @see #SENSOR_TEST_PATTERN_MODE_COLOR_BARS
* @see #SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY
* @see #SENSOR_TEST_PATTERN_MODE_PN9
* @see #SENSOR_TEST_PATTERN_MODE_CUSTOM1
*/
public static final Key<Integer> SENSOR_TEST_PATTERN_MODE =
new Key<Integer>("android.sensor.testPatternMode", int.class);
/**
* <p>Quality of lens shading correction applied
* to the image data.</p>
* <p>When set to OFF mode, no lens shading correction will be applied by the
* camera device, and an identity lens shading map data will be provided
* if <code>{@link CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE android.statistics.lensShadingMapMode} == ON</code>. For example, for lens
* shading map with size specified as <code>{@link CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE android.lens.info.shadingMapSize} = [ 4, 3 ]</code>,
* the output {@link CaptureResult#STATISTICS_LENS_SHADING_MAP android.statistics.lensShadingMap} for this case will be an identity map
* shown below:</p>
* <pre><code>[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ]
* </code></pre>
* <p>When set to other modes, lens shading correction will be applied by the
* camera device. Applications can request lens shading map data by setting
* {@link CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE android.statistics.lensShadingMapMode} to ON, and then the camera device will provide
* lens shading map data in {@link CaptureResult#STATISTICS_LENS_SHADING_MAP android.statistics.lensShadingMap}, with size specified
* by {@link CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE android.lens.info.shadingMapSize}.</p>
*
* @see CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE
* @see CaptureResult#STATISTICS_LENS_SHADING_MAP
* @see CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE
* @see #SHADING_MODE_OFF
* @see #SHADING_MODE_FAST
* @see #SHADING_MODE_HIGH_QUALITY
* @hide
*/
public static final Key<Integer> SHADING_MODE =
new Key<Integer>("android.shading.mode", int.class);
/**
* <p>State of the face detector
* unit</p>
* <p>Whether face detection is enabled, and whether it
* should output just the basic fields or the full set of
* fields. Value must be one of the
* {@link CameraCharacteristics#STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES android.statistics.info.availableFaceDetectModes}.</p>
*
* @see CameraCharacteristics#STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES
* @see #STATISTICS_FACE_DETECT_MODE_OFF
* @see #STATISTICS_FACE_DETECT_MODE_SIMPLE
* @see #STATISTICS_FACE_DETECT_MODE_FULL
*/
public static final Key<Integer> STATISTICS_FACE_DETECT_MODE =
new Key<Integer>("android.statistics.faceDetectMode", int.class);
/**
* <p>List of unique IDs for detected
* faces</p>
* <p>Only available if faceDetectMode == FULL</p>
* @hide
*/
public static final Key<int[]> STATISTICS_FACE_IDS =
new Key<int[]>("android.statistics.faceIds", int[].class);
/**
* <p>List of landmarks for detected
* faces</p>
* <p>Only available if faceDetectMode == FULL</p>
* @hide
*/
public static final Key<int[]> STATISTICS_FACE_LANDMARKS =
new Key<int[]>("android.statistics.faceLandmarks", int[].class);
/**
* <p>List of the bounding rectangles for detected
* faces</p>
* <p>Only available if faceDetectMode != OFF</p>
* @hide
*/
public static final Key<android.graphics.Rect[]> STATISTICS_FACE_RECTANGLES =
new Key<android.graphics.Rect[]>("android.statistics.faceRectangles", android.graphics.Rect[].class);
/**
* <p>List of the face confidence scores for
* detected faces</p>
* <p>Only available if faceDetectMode != OFF. The value should be
* meaningful (for example, setting 100 at all times is illegal).</p>
* @hide
*/
public static final Key<byte[]> STATISTICS_FACE_SCORES =
new Key<byte[]>("android.statistics.faceScores", byte[].class);
/**
* <p>The shading map is a low-resolution floating-point map
* that lists the coefficients used to correct for vignetting, for each
* Bayer color channel.</p>
* <p>The least shaded section of the image should have a gain factor
* of 1; all other sections should have gains above 1.</p>
* <p>When {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} = TRANSFORM_MATRIX, the map
* must take into account the colorCorrection settings.</p>
* <p>The shading map is for the entire active pixel array, and is not
* affected by the crop region specified in the request. Each shading map
* entry is the value of the shading compensation map over a specific
* pixel on the sensor. Specifically, with a (N x M) resolution shading
* map, and an active pixel array size (W x H), shading map entry
* (x,y) ϵ (0 ... N-1, 0 ... M-1) is the value of the shading map at
* pixel ( ((W-1)/(N-1)) * x, ((H-1)/(M-1)) * y) for the four color channels.
* The map is assumed to be bilinearly interpolated between the sample points.</p>
* <p>The channel order is [R, Geven, Godd, B], where Geven is the green
* channel for the even rows of a Bayer pattern, and Godd is the odd rows.
* The shading map is stored in a fully interleaved format, and its size
* is provided in the camera static metadata by {@link CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE android.lens.info.shadingMapSize}.</p>
* <p>The shading map should have on the order of 30-40 rows and columns,
* and must be smaller than 64x64.</p>
* <p>As an example, given a very small map defined as:</p>
* <pre><code>{@link CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE android.lens.info.shadingMapSize} = [ 4, 3 ]
* {@link CaptureResult#STATISTICS_LENS_SHADING_MAP android.statistics.lensShadingMap} =
* [ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2,
* 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3,
* 1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0,
* 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2,
* 1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2,
* 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ]
* </code></pre>
* <p>The low-resolution scaling map images for each channel are
* (displayed using nearest-neighbor interpolation):</p>
* <p><img alt="Red lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/red_shading.png" />
* <img alt="Green (even rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_e_shading.png" />
* <img alt="Green (odd rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_o_shading.png" />
* <img alt="Blue lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/blue_shading.png" /></p>
* <p>As a visualization only, inverting the full-color map to recover an
* image of a gray wall (using bicubic interpolation for visual quality) as captured by the sensor gives:</p>
* <p><img alt="Image of a uniform white wall (inverse shading map)" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/inv_shading.png" /></p>
*
* @see CaptureRequest#COLOR_CORRECTION_MODE
* @see CameraCharacteristics#LENS_INFO_SHADING_MAP_SIZE
* @see CaptureResult#STATISTICS_LENS_SHADING_MAP
*/
public static final Key<float[]> STATISTICS_LENS_SHADING_MAP =
new Key<float[]>("android.statistics.lensShadingMap", float[].class);
/**
* <p>The best-fit color channel gains calculated
* by the HAL's statistics units for the current output frame</p>
* <p>This may be different than the gains used for this frame,
* since statistics processing on data from a new frame
* typically completes after the transform has already been
* applied to that frame.</p>
* <p>The 4 channel gains are defined in Bayer domain,
* see {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} for details.</p>
* <p>This value should always be calculated by the AWB block,
* regardless of the android.control.* current values.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
*
* @see CaptureRequest#COLOR_CORRECTION_GAINS
* @hide
*/
public static final Key<float[]> STATISTICS_PREDICTED_COLOR_GAINS =
new Key<float[]>("android.statistics.predictedColorGains", float[].class);
/**
* <p>The best-fit color transform matrix estimate
* calculated by the HAL's statistics units for the current
* output frame</p>
* <p>The HAL must provide the estimate from its
* statistics unit on the white balance transforms to use
* for the next frame. These are the values the HAL believes
* are the best fit for the current output frame. This may
* be different than the transform used for this frame, since
* statistics processing on data from a new frame typically
* completes after the transform has already been applied to
* that frame.</p>
* <p>These estimates must be provided for all frames, even if
* capture settings and color transforms are set by the application.</p>
* <p>This value should always be calculated by the AWB block,
* regardless of the android.control.* current values.</p>
* <p><b>Optional</b> - This value may be {@code null} on some devices.</p>
* @hide
*/
public static final Key<Rational[]> STATISTICS_PREDICTED_COLOR_TRANSFORM =
new Key<Rational[]>("android.statistics.predictedColorTransform", Rational[].class);
/**
* <p>The camera device estimated scene illumination lighting
* frequency.</p>
* <p>Many light sources, such as most fluorescent lights, flicker at a rate
* that depends on the local utility power standards. This flicker must be
* accounted for by auto-exposure routines to avoid artifacts in captured images.
* The camera device uses this entry to tell the application what the scene
* illuminant frequency is.</p>
* <p>When manual exposure control is enabled
* (<code>{@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} == OFF</code> or <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == OFF</code>),
* the {@link CaptureRequest#CONTROL_AE_ANTIBANDING_MODE android.control.aeAntibandingMode} doesn't do the antibanding, and the
* application can ensure it selects exposure times that do not cause banding
* issues by looking into this metadata field. See android.control.aeAntibandingMode
* for more details.</p>
* <p>Report NONE if there doesn't appear to be flickering illumination.</p>
*
* @see CaptureRequest#CONTROL_AE_ANTIBANDING_MODE
* @see CaptureRequest#CONTROL_AE_MODE
* @see CaptureRequest#CONTROL_MODE
* @see #STATISTICS_SCENE_FLICKER_NONE
* @see #STATISTICS_SCENE_FLICKER_50HZ
* @see #STATISTICS_SCENE_FLICKER_60HZ
*/
public static final Key<Integer> STATISTICS_SCENE_FLICKER =
new Key<Integer>("android.statistics.sceneFlicker", int.class);
/**
* <p>Tonemapping / contrast / gamma curve for the blue
* channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is
* CONTRAST_CURVE.</p>
* <p>See {@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} for more details.</p>
*
* @see CaptureRequest#TONEMAP_CURVE_RED
* @see CaptureRequest#TONEMAP_MODE
*/
public static final Key<float[]> TONEMAP_CURVE_BLUE =
new Key<float[]>("android.tonemap.curveBlue", float[].class);
/**
* <p>Tonemapping / contrast / gamma curve for the green
* channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is
* CONTRAST_CURVE.</p>
* <p>See {@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} for more details.</p>
*
* @see CaptureRequest#TONEMAP_CURVE_RED
* @see CaptureRequest#TONEMAP_MODE
*/
public static final Key<float[]> TONEMAP_CURVE_GREEN =
new Key<float[]>("android.tonemap.curveGreen", float[].class);
/**
* <p>Tonemapping / contrast / gamma curve for the red
* channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is
* CONTRAST_CURVE.</p>
* <p>Each channel's curve is defined by an array of control points:</p>
* <pre><code>{@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} =
* [ P0in, P0out, P1in, P1out, P2in, P2out, P3in, P3out, ..., PNin, PNout ]
* 2 &amp;lt;= N &amp;lt;= {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}</code></pre>
* <p>These are sorted in order of increasing <code>Pin</code>; it is always
* guaranteed that input values 0.0 and 1.0 are included in the list to
* define a complete mapping. For input values between control points,
* the camera device must linearly interpolate between the control
* points.</p>
* <p>Each curve can have an independent number of points, and the number
* of points can be less than max (that is, the request doesn't have to
* always provide a curve with number of points equivalent to
* {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}).</p>
* <p>A few examples, and their corresponding graphical mappings; these
* only specify the red channel and the precision is limited to 4
* digits, for conciseness.</p>
* <p>Linear mapping:</p>
* <pre><code>{@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} = [ 0, 0, 1.0, 1.0 ]
* </code></pre>
* <p><img alt="Linear mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/linear_tonemap.png" /></p>
* <p>Invert mapping:</p>
* <pre><code>{@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} = [ 0, 1.0, 1.0, 0 ]
* </code></pre>
* <p><img alt="Inverting mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/inverse_tonemap.png" /></p>
* <p>Gamma 1/2.2 mapping, with 16 control points:</p>
* <pre><code>{@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} = [
* 0.0000, 0.0000, 0.0667, 0.2920, 0.1333, 0.4002, 0.2000, 0.4812,
* 0.2667, 0.5484, 0.3333, 0.6069, 0.4000, 0.6594, 0.4667, 0.7072,
* 0.5333, 0.7515, 0.6000, 0.7928, 0.6667, 0.8317, 0.7333, 0.8685,
* 0.8000, 0.9035, 0.8667, 0.9370, 0.9333, 0.9691, 1.0000, 1.0000 ]
* </code></pre>
* <p><img alt="Gamma = 1/2.2 tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/gamma_tonemap.png" /></p>
* <p>Standard sRGB gamma mapping, per IEC 61966-2-1:1999, with 16 control points:</p>
* <pre><code>{@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed} = [
* 0.0000, 0.0000, 0.0667, 0.2864, 0.1333, 0.4007, 0.2000, 0.4845,
* 0.2667, 0.5532, 0.3333, 0.6125, 0.4000, 0.6652, 0.4667, 0.7130,
* 0.5333, 0.7569, 0.6000, 0.7977, 0.6667, 0.8360, 0.7333, 0.8721,
* 0.8000, 0.9063, 0.8667, 0.9389, 0.9333, 0.9701, 1.0000, 1.0000 ]
* </code></pre>
* <p><img alt="sRGB tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/srgb_tonemap.png" /></p>
*
* @see CaptureRequest#TONEMAP_CURVE_RED
* @see CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS
* @see CaptureRequest#TONEMAP_MODE
*/
public static final Key<float[]> TONEMAP_CURVE_RED =
new Key<float[]>("android.tonemap.curveRed", float[].class);
/**
* <p>High-level global contrast/gamma/tonemapping control.</p>
* <p>When switching to an application-defined contrast curve by setting
* {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} to CONTRAST_CURVE, the curve is defined
* per-channel with a set of <code>(in, out)</code> points that specify the
* mapping from input high-bit-depth pixel value to the output
* low-bit-depth value. Since the actual pixel ranges of both input
* and output may change depending on the camera pipeline, the values
* are specified by normalized floating-point numbers.</p>
* <p>More-complex color mapping operations such as 3D color look-up
* tables, selective chroma enhancement, or other non-linear color
* transforms will be disabled when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is
* CONTRAST_CURVE.</p>
* <p>When using either FAST or HIGH_QUALITY, the camera device will
* emit its own tonemap curve in {@link CaptureRequest#TONEMAP_CURVE_RED android.tonemap.curveRed},
* {@link CaptureRequest#TONEMAP_CURVE_GREEN android.tonemap.curveGreen}, and {@link CaptureRequest#TONEMAP_CURVE_BLUE android.tonemap.curveBlue}.
* These values are always available, and as close as possible to the
* actually used nonlinear/nonglobal transforms.</p>
* <p>If a request is sent with TRANSFORM_MATRIX with the camera device's
* provided curve in FAST or HIGH_QUALITY, the image's tonemap will be
* roughly the same.</p>
*
* @see CaptureRequest#TONEMAP_CURVE_BLUE
* @see CaptureRequest#TONEMAP_CURVE_GREEN
* @see CaptureRequest#TONEMAP_CURVE_RED
* @see CaptureRequest#TONEMAP_MODE
* @see #TONEMAP_MODE_CONTRAST_CURVE
* @see #TONEMAP_MODE_FAST
* @see #TONEMAP_MODE_HIGH_QUALITY
*/
public static final Key<Integer> TONEMAP_MODE =
new Key<Integer>("android.tonemap.mode", int.class);
/**
* <p>This LED is nominally used to indicate to the user
* that the camera is powered on and may be streaming images back to the
* Application Processor. In certain rare circumstances, the OS may
* disable this when video is processed locally and not transmitted to
* any untrusted applications.</p>
* <p>In particular, the LED <em>must</em> always be on when the data could be
* transmitted off the device. The LED <em>should</em> always be on whenever
* data is stored locally on the device.</p>
* <p>The LED <em>may</em> be off if a trusted application is using the data that
* doesn't violate the above rules.</p>
* @hide
*/
public static final Key<Boolean> LED_TRANSMIT =
new Key<Boolean>("android.led.transmit", boolean.class);
/**
* <p>Whether black-level compensation is locked
* to its current values, or is free to vary.</p>
* <p>Whether the black level offset was locked for this frame. Should be
* ON if {@link CaptureRequest#BLACK_LEVEL_LOCK android.blackLevel.lock} was ON in the capture request, unless
* a change in other capture settings forced the camera device to
* perform a black level reset.</p>
*
* @see CaptureRequest#BLACK_LEVEL_LOCK
*/
public static final Key<Boolean> BLACK_LEVEL_LOCK =
new Key<Boolean>("android.blackLevel.lock", boolean.class);
/**
* <p>The frame number corresponding to the last request
* with which the output result (metadata + buffers) has been fully
* synchronized.</p>
* <p>When a request is submitted to the camera device, there is usually a
* delay of several frames before the controls get applied. A camera
* device may either choose to account for this delay by implementing a
* pipeline and carefully submit well-timed atomic control updates, or
* it may start streaming control changes that span over several frame
* boundaries.</p>
* <p>In the latter case, whenever a request's settings change relative to
* the previous submitted request, the full set of changes may take
* multiple frame durations to fully take effect. Some settings may
* take effect sooner (in less frame durations) than others.</p>
* <p>While a set of control changes are being propagated, this value
* will be CONVERGING.</p>
* <p>Once it is fully known that a set of control changes have been
* finished propagating, and the resulting updated control settings
* have been read back by the camera device, this value will be set
* to a non-negative frame number (corresponding to the request to
* which the results have synchronized to).</p>
* <p>Older camera device implementations may not have a way to detect
* when all camera controls have been applied, and will always set this
* value to UNKNOWN.</p>
* <p>FULL capability devices will always have this value set to the
* frame number of the request corresponding to this result.</p>
* <p><em>Further details</em>:</p>
* <ul>
* <li>Whenever a request differs from the last request, any future
* results not yet returned may have this value set to CONVERGING (this
* could include any in-progress captures not yet returned by the camera
* device, for more details see pipeline considerations below).</li>
* <li>Submitting a series of multiple requests that differ from the
* previous request (e.g. r1, r2, r3 s.t. r1 != r2 != r3)
* moves the new synchronization frame to the last non-repeating
* request (using the smallest frame number from the contiguous list of
* repeating requests).</li>
* <li>Submitting the same request repeatedly will not change this value
* to CONVERGING, if it was already a non-negative value.</li>
* <li>When this value changes to non-negative, that means that all of the
* metadata controls from the request have been applied, all of the
* metadata controls from the camera device have been read to the
* updated values (into the result), and all of the graphics buffers
* corresponding to this result are also synchronized to the request.</li>
* </ul>
* <p><em>Pipeline considerations</em>:</p>
* <p>Submitting a request with updated controls relative to the previously
* submitted requests may also invalidate the synchronization state
* of all the results corresponding to currently in-flight requests.</p>
* <p>In other words, results for this current request and up to
* {@link CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH android.request.pipelineMaxDepth} prior requests may have their
* android.sync.frameNumber change to CONVERGING.</p>
*
* @see CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH
* @see #SYNC_FRAME_NUMBER_CONVERGING
* @see #SYNC_FRAME_NUMBER_UNKNOWN
* @hide
*/
public static final Key<Integer> SYNC_FRAME_NUMBER =
new Key<Integer>("android.sync.frameNumber", int.class);
/*~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~
* End generated code
*~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~O@*/
/**
* <p>
* List of the {@link Face Faces} detected through camera face detection
* in this result.
* </p>
* <p>
* Only available if {@link #STATISTICS_FACE_DETECT_MODE} {@code !=}
* {@link CameraMetadata#STATISTICS_FACE_DETECT_MODE_OFF OFF}.
* </p>
*
* @see Face
*/
public static final Key<Face[]> STATISTICS_FACES =
new Key<Face[]>("android.statistics.faces", Face[].class);
}