blob: 2eacbeb34172e550415eefddec59bd871da1938b [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputReader"
//#define LOG_NDEBUG 0
// Log debug messages for each raw event received from the EventHub.
#define DEBUG_RAW_EVENTS 0
// Log debug messages about touch screen filtering hacks.
#define DEBUG_HACKS 0
// Log debug messages about virtual key processing.
#define DEBUG_VIRTUAL_KEYS 0
// Log debug messages about pointers.
#define DEBUG_POINTERS 0
// Log debug messages about pointer assignment calculations.
#define DEBUG_POINTER_ASSIGNMENT 0
// Log debug messages about gesture detection.
#define DEBUG_GESTURES 0
#include "InputReader.h"
#include <cutils/log.h>
#include <ui/Keyboard.h>
#include <ui/VirtualKeyMap.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
#define INDENT5 " "
namespace android {
// --- Constants ---
// Maximum number of slots supported when using the slot-based Multitouch Protocol B.
static const size_t MAX_SLOTS = 32;
// --- Static Functions ---
template<typename T>
inline static T abs(const T& value) {
return value < 0 ? - value : value;
}
template<typename T>
inline static T min(const T& a, const T& b) {
return a < b ? a : b;
}
template<typename T>
inline static void swap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}
inline static float avg(float x, float y) {
return (x + y) / 2;
}
inline static float distance(float x1, float y1, float x2, float y2) {
return hypotf(x1 - x2, y1 - y2);
}
inline static int32_t signExtendNybble(int32_t value) {
return value >= 8 ? value - 16 : value;
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
const int32_t map[][4], size_t mapSize) {
if (orientation != DISPLAY_ORIENTATION_0) {
for (size_t i = 0; i < mapSize; i++) {
if (value == map[i][0]) {
return map[i][orientation];
}
}
}
return value;
}
static const int32_t keyCodeRotationMap[][4] = {
// key codes enumerated counter-clockwise with the original (unrotated) key first
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
{ AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT },
{ AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN },
{ AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT },
{ AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP },
};
static const size_t keyCodeRotationMapSize =
sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
return rotateValueUsingRotationMap(keyCode, orientation,
keyCodeRotationMap, keyCodeRotationMapSize);
}
static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) {
float temp;
switch (orientation) {
case DISPLAY_ORIENTATION_90:
temp = *deltaX;
*deltaX = *deltaY;
*deltaY = -temp;
break;
case DISPLAY_ORIENTATION_180:
*deltaX = -*deltaX;
*deltaY = -*deltaY;
break;
case DISPLAY_ORIENTATION_270:
temp = *deltaX;
*deltaX = -*deltaY;
*deltaY = temp;
break;
}
}
static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
}
// Returns true if the pointer should be reported as being down given the specified
// button states. This determines whether the event is reported as a touch event.
static bool isPointerDown(int32_t buttonState) {
return buttonState &
(AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY
| AMOTION_EVENT_BUTTON_TERTIARY);
}
static float calculateCommonVector(float a, float b) {
if (a > 0 && b > 0) {
return a < b ? a : b;
} else if (a < 0 && b < 0) {
return a > b ? a : b;
} else {
return 0;
}
}
static void synthesizeButtonKey(InputReaderContext* context, int32_t action,
nsecs_t when, int32_t deviceId, uint32_t source,
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState,
int32_t buttonState, int32_t keyCode) {
if (
(action == AKEY_EVENT_ACTION_DOWN
&& !(lastButtonState & buttonState)
&& (currentButtonState & buttonState))
|| (action == AKEY_EVENT_ACTION_UP
&& (lastButtonState & buttonState)
&& !(currentButtonState & buttonState))) {
NotifyKeyArgs args(when, deviceId, source, policyFlags,
action, 0, keyCode, 0, context->getGlobalMetaState(), when);
context->getListener()->notifyKey(&args);
}
}
static void synthesizeButtonKeys(InputReaderContext* context, int32_t action,
nsecs_t when, int32_t deviceId, uint32_t source,
uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) {
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
lastButtonState, currentButtonState,
AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK);
synthesizeButtonKey(context, action, when, deviceId, source, policyFlags,
lastButtonState, currentButtonState,
AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD);
}
// --- InputReader ---
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputListenerInterface>& listener) :
mContext(this), mEventHub(eventHub), mPolicy(policy),
mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
mConfigurationChangesToRefresh(0) {
mQueuedListener = new QueuedInputListener(listener);
{ // acquire lock
AutoMutex _l(mLock);
refreshConfigurationLocked(0);
updateGlobalMetaStateLocked();
updateInputConfigurationLocked();
} // release lock
}
InputReader::~InputReader() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
void InputReader::loopOnce() {
int32_t timeoutMillis;
{ // acquire lock
AutoMutex _l(mLock);
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
refreshConfigurationLocked(changes);
}
timeoutMillis = -1;
if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
AutoMutex _l(mLock);
if (count) {
processEventsLocked(mEventBuffer, count);
}
if (!count || timeoutMillis == 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
#if DEBUG_RAW_EVENTS
LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
#endif
mNextTimeout = LLONG_MAX;
timeoutExpiredLocked(now);
}
} // release lock
// Flush queued events out to the listener.
// This must happen outside of the lock because the listener could potentially call
// back into the InputReader's methods, such as getScanCodeState, or become blocked
// on another thread similarly waiting to acquire the InputReader lock thereby
// resulting in a deadlock. This situation is actually quite plausible because the
// listener is actually the input dispatcher, which calls into the window manager,
// which occasionally calls into the input reader.
mQueuedListener->flush();
}
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|| rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
LOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
LOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
void InputReader::addDeviceLocked(int32_t deviceId) {
String8 name = mEventHub->getDeviceName(deviceId);
uint32_t classes = mEventHub->getDeviceClasses(deviceId);
InputDevice* device = createDeviceLocked(deviceId, name, classes);
device->configure(&mConfig, 0);
if (device->isIgnored()) {
LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
} else {
LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
device->getSources());
}
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex < 0) {
mDevices.add(deviceId, device);
} else {
LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
delete device;
return;
}
}
void InputReader::removeDeviceLocked(int32_t deviceId) {
InputDevice* device = NULL;
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex >= 0) {
device = mDevices.valueAt(deviceIndex);
mDevices.removeItemsAt(deviceIndex, 1);
} else {
LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
return;
}
if (device->isIgnored()) {
LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
device->getId(), device->getName().string());
} else {
LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
device->getId(), device->getName().string(), device->getSources());
}
device->reset();
delete device;
}
InputDevice* InputReader::createDeviceLocked(int32_t deviceId,
const String8& name, uint32_t classes) {
InputDevice* device = new InputDevice(&mContext, deviceId, name);
// External devices.
if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
device->setExternal(true);
}
// Switch-like devices.
if (classes & INPUT_DEVICE_CLASS_SWITCH) {
device->addMapper(new SwitchInputMapper(device));
}
// Keyboard-like devices.
uint32_t keyboardSource = 0;
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
}
if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
}
if (classes & INPUT_DEVICE_CLASS_DPAD) {
keyboardSource |= AINPUT_SOURCE_DPAD;
}
if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
}
if (keyboardSource != 0) {
device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
}
// Cursor-like devices.
if (classes & INPUT_DEVICE_CLASS_CURSOR) {
device->addMapper(new CursorInputMapper(device));
}
// Touchscreens and touchpad devices.
if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
device->addMapper(new MultiTouchInputMapper(device));
} else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
device->addMapper(new SingleTouchInputMapper(device));
}
// Joystick-like devices.
if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
device->addMapper(new JoystickInputMapper(device));
}
return device;
}
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
const RawEvent* rawEvents, size_t count) {
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex < 0) {
LOGW("Discarding event for unknown deviceId %d.", deviceId);
return;
}
InputDevice* device = mDevices.valueAt(deviceIndex);
if (device->isIgnored()) {
//LOGD("Discarding event for ignored deviceId %d.", deviceId);
return;
}
device->process(rawEvents, count);
}
void InputReader::timeoutExpiredLocked(nsecs_t when) {
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
if (!device->isIgnored()) {
device->timeoutExpired(when);
}
}
}
void InputReader::handleConfigurationChangedLocked(nsecs_t when) {
// Reset global meta state because it depends on the list of all configured devices.
updateGlobalMetaStateLocked();
// Update input configuration.
updateInputConfigurationLocked();
// Enqueue configuration changed.
NotifyConfigurationChangedArgs args(when);
mQueuedListener->notifyConfigurationChanged(&args);
}
void InputReader::refreshConfigurationLocked(uint32_t changes) {
mPolicy->getReaderConfiguration(&mConfig);
mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
if (changes) {
LOGI("Reconfiguring input devices. changes=0x%08x", changes);
if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) {
mEventHub->requestReopenDevices();
} else {
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
device->configure(&mConfig, changes);
}
}
}
}
void InputReader::updateGlobalMetaStateLocked() {
mGlobalMetaState = 0;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
mGlobalMetaState |= device->getMetaState();
}
}
int32_t InputReader::getGlobalMetaStateLocked() {
return mGlobalMetaState;
}
void InputReader::updateInputConfigurationLocked() {
int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
InputDeviceInfo deviceInfo;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
device->getDeviceInfo(& deviceInfo);
uint32_t sources = deviceInfo.getSources();
if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
}
if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
} else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
navigationConfig = InputConfiguration::NAVIGATION_DPAD;
}
if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
}
}
mInputConfiguration.touchScreen = touchScreenConfig;
mInputConfiguration.keyboard = keyboardConfig;
mInputConfiguration.navigation = navigationConfig;
}
void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) {
mDisableVirtualKeysTimeout = time;
}
bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now,
InputDevice* device, int32_t keyCode, int32_t scanCode) {
if (now < mDisableVirtualKeysTimeout) {
LOGI("Dropping virtual key from device %s because virtual keys are "
"temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d",
device->getName().string(),
(mDisableVirtualKeysTimeout - now) * 0.000001,
keyCode, scanCode);
return true;
} else {
return false;
}
}
void InputReader::fadePointerLocked() {
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
device->fadePointer();
}
}
void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) {
if (when < mNextTimeout) {
mNextTimeout = when;
}
}
void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
AutoMutex _l(mLock);
*outConfiguration = mInputConfiguration;
}
status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
AutoMutex _l(mLock);
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex < 0) {
return NAME_NOT_FOUND;
}
InputDevice* device = mDevices.valueAt(deviceIndex);
if (device->isIgnored()) {
return NAME_NOT_FOUND;
}
device->getDeviceInfo(outDeviceInfo);
return OK;
}
void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
AutoMutex _l(mLock);
outDeviceIds.clear();
size_t numDevices = mDevices.size();
for (size_t i = 0; i < numDevices; i++) {
InputDevice* device = mDevices.valueAt(i);
if (!device->isIgnored()) {
outDeviceIds.add(device->getId());
}
}
}
int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t keyCode) {
AutoMutex _l(mLock);
return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState);
}
int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t scanCode) {
AutoMutex _l(mLock);
return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState);
}
int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
AutoMutex _l(mLock);
return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState);
}
int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code,
GetStateFunc getStateFunc) {
int32_t result = AKEY_STATE_UNKNOWN;
if (deviceId >= 0) {
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex >= 0) {
InputDevice* device = mDevices.valueAt(deviceIndex);
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result = (device->*getStateFunc)(sourceMask, code);
}
}
} else {
size_t numDevices = mDevices.size();
for (size_t i = 0; i < numDevices; i++) {
InputDevice* device = mDevices.valueAt(i);
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result = (device->*getStateFunc)(sourceMask, code);
if (result >= AKEY_STATE_DOWN) {
return result;
}
}
}
}
return result;
}
bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
AutoMutex _l(mLock);
memset(outFlags, 0, numCodes);
return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags);
}
bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask,
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
bool result = false;
if (deviceId >= 0) {
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex >= 0) {
InputDevice* device = mDevices.valueAt(deviceIndex);
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result = device->markSupportedKeyCodes(sourceMask,
numCodes, keyCodes, outFlags);
}
}
} else {
size_t numDevices = mDevices.size();
for (size_t i = 0; i < numDevices; i++) {
InputDevice* device = mDevices.valueAt(i);
if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
result |= device->markSupportedKeyCodes(sourceMask,
numCodes, keyCodes, outFlags);
}
}
}
return result;
}
void InputReader::requestRefreshConfiguration(uint32_t changes) {
AutoMutex _l(mLock);
if (changes) {
bool needWake = !mConfigurationChangesToRefresh;
mConfigurationChangesToRefresh |= changes;
if (needWake) {
mEventHub->wake();
}
}
}
void InputReader::dump(String8& dump) {
AutoMutex _l(mLock);
mEventHub->dump(dump);
dump.append("\n");
dump.append("Input Reader State:\n");
for (size_t i = 0; i < mDevices.size(); i++) {
mDevices.valueAt(i)->dump(dump);
}
dump.append(INDENT "Configuration:\n");
dump.append(INDENT2 "ExcludedDeviceNames: [");
for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) {
if (i != 0) {
dump.append(", ");
}
dump.append(mConfig.excludedDeviceNames.itemAt(i).string());
}
dump.append("]\n");
dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n",
mConfig.virtualKeyQuietTime * 0.000001f);
dump.appendFormat(INDENT2 "PointerVelocityControlParameters: "
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
mConfig.pointerVelocityControlParameters.scale,
mConfig.pointerVelocityControlParameters.lowThreshold,
mConfig.pointerVelocityControlParameters.highThreshold,
mConfig.pointerVelocityControlParameters.acceleration);
dump.appendFormat(INDENT2 "WheelVelocityControlParameters: "
"scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
mConfig.wheelVelocityControlParameters.scale,
mConfig.wheelVelocityControlParameters.lowThreshold,
mConfig.wheelVelocityControlParameters.highThreshold,
mConfig.wheelVelocityControlParameters.acceleration);
dump.appendFormat(INDENT2 "PointerGesture:\n");
dump.appendFormat(INDENT3 "Enabled: %s\n",
toString(mConfig.pointerGesturesEnabled));
dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n",
mConfig.pointerGestureQuietInterval * 0.000001f);
dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n",
mConfig.pointerGestureDragMinSwitchSpeed);
dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n",
mConfig.pointerGestureTapInterval * 0.000001f);
dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n",
mConfig.pointerGestureTapDragInterval * 0.000001f);
dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n",
mConfig.pointerGestureTapSlop);
dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n",
mConfig.pointerGestureMultitouchSettleInterval * 0.000001f);
dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n",
mConfig.pointerGestureMultitouchMinDistance);
dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n",
mConfig.pointerGestureSwipeTransitionAngleCosine);
dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n",
mConfig.pointerGestureSwipeMaxWidthRatio);
dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n",
mConfig.pointerGestureMovementSpeedRatio);
dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n",
mConfig.pointerGestureZoomSpeedRatio);
}
void InputReader::monitor() {
// Acquire and release the lock to ensure that the reader has not deadlocked.
mLock.lock();
mLock.unlock();
// Check the EventHub
mEventHub->monitor();
}
// --- InputReader::ContextImpl ---
InputReader::ContextImpl::ContextImpl(InputReader* reader) :
mReader(reader) {
}
void InputReader::ContextImpl::updateGlobalMetaState() {
// lock is already held by the input loop
mReader->updateGlobalMetaStateLocked();
}
int32_t InputReader::ContextImpl::getGlobalMetaState() {
// lock is already held by the input loop
return mReader->getGlobalMetaStateLocked();
}
void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) {
// lock is already held by the input loop
mReader->disableVirtualKeysUntilLocked(time);
}
bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now,
InputDevice* device, int32_t keyCode, int32_t scanCode) {
// lock is already held by the input loop
return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode);
}
void InputReader::ContextImpl::fadePointer() {
// lock is already held by the input loop
mReader->fadePointerLocked();
}
void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) {
// lock is already held by the input loop
mReader->requestTimeoutAtTimeLocked(when);
}
InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() {
return mReader->mPolicy.get();
}
InputListenerInterface* InputReader::ContextImpl::getListener() {
return mReader->mQueuedListener.get();
}
EventHubInterface* InputReader::ContextImpl::getEventHub() {
return mReader->mEventHub.get();
}
// --- InputReaderThread ---
InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
Thread(/*canCallJava*/ true), mReader(reader) {
}
InputReaderThread::~InputReaderThread() {
}
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
// --- InputDevice ---
InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
mContext(context), mId(id), mName(name), mSources(0),
mIsExternal(false), mDropUntilNextSync(false) {
}
InputDevice::~InputDevice() {
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
delete mMappers[i];
}
mMappers.clear();
}
void InputDevice::dump(String8& dump) {
InputDeviceInfo deviceInfo;
getDeviceInfo(& deviceInfo);
dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
deviceInfo.getName().string());
dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
if (!ranges.isEmpty()) {
dump.append(INDENT2 "Motion Ranges:\n");
for (size_t i = 0; i < ranges.size(); i++) {
const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
const char* label = getAxisLabel(range.axis);
char name[32];
if (label) {
strncpy(name, label, sizeof(name));
name[sizeof(name) - 1] = '\0';
} else {
snprintf(name, sizeof(name), "%d", range.axis);
}
dump.appendFormat(INDENT3 "%s: source=0x%08x, "
"min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
name, range.source, range.min, range.max, range.flat, range.fuzz);
}
}
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->dump(dump);
}
}
void InputDevice::addMapper(InputMapper* mapper) {
mMappers.add(mapper);
}
void InputDevice::configure(const InputReaderConfiguration* config, uint32_t changes) {
mSources = 0;
if (!isIgnored()) {
if (!changes) { // first time only
mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
}
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->configure(config, changes);
mSources |= mapper->getSources();
}
}
}
void InputDevice::reset() {
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->reset();
}
}
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
// Process all of the events in order for each mapper.
// We cannot simply ask each mapper to process them in bulk because mappers may
// have side-effects that must be interleaved. For example, joystick movement events and
// gamepad button presses are handled by different mappers but they should be dispatched
// in the order received.
size_t numMappers = mMappers.size();
for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
#if DEBUG_RAW_EVENTS
LOGD("Input event: device=%d type=0x%04x scancode=0x%04x "
"keycode=0x%04x value=0x%08x flags=0x%08x",
rawEvent->deviceId, rawEvent->type, rawEvent->scanCode, rawEvent->keyCode,
rawEvent->value, rawEvent->flags);
#endif
if (mDropUntilNextSync) {
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
mDropUntilNextSync = false;
#if DEBUG_RAW_EVENTS
LOGD("Recovered from input event buffer overrun.");
#endif
} else {
#if DEBUG_RAW_EVENTS
LOGD("Dropped input event while waiting for next input sync.");
#endif
}
} else if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_DROPPED) {
LOGI("Detected input event buffer overrun for device %s.", mName.string());
mDropUntilNextSync = true;
reset();
} else {
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->process(rawEvent);
}
}
}
}
void InputDevice::timeoutExpired(nsecs_t when) {
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->timeoutExpired(when);
}
}
void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
outDeviceInfo->initialize(mId, mName);
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->populateDeviceInfo(outDeviceInfo);
}
}
int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
}
int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
}
int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
}
int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
int32_t result = AKEY_STATE_UNKNOWN;
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
result = (mapper->*getStateFunc)(sourceMask, code);
if (result >= AKEY_STATE_DOWN) {
return result;
}
}
}
return result;
}
bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
bool result = false;
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
}
}
return result;
}
int32_t InputDevice::getMetaState() {
int32_t result = 0;
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
result |= mapper->getMetaState();
}
return result;
}
void InputDevice::fadePointer() {
size_t numMappers = mMappers.size();
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->fadePointer();
}
}
// --- CursorButtonAccumulator ---
CursorButtonAccumulator::CursorButtonAccumulator() {
clearButtons();
}
void CursorButtonAccumulator::clearButtons() {
mBtnLeft = 0;
mBtnRight = 0;
mBtnMiddle = 0;
mBtnBack = 0;
mBtnSide = 0;
mBtnForward = 0;
mBtnExtra = 0;
mBtnTask = 0;
}
void CursorButtonAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_KEY) {
switch (rawEvent->scanCode) {
case BTN_LEFT:
mBtnLeft = rawEvent->value;
break;
case BTN_RIGHT:
mBtnRight = rawEvent->value;
break;
case BTN_MIDDLE:
mBtnMiddle = rawEvent->value;
break;
case BTN_BACK:
mBtnBack = rawEvent->value;
break;
case BTN_SIDE:
mBtnSide = rawEvent->value;
break;
case BTN_FORWARD:
mBtnForward = rawEvent->value;
break;
case BTN_EXTRA:
mBtnExtra = rawEvent->value;
break;
case BTN_TASK:
mBtnTask = rawEvent->value;
break;
}
}
}
uint32_t CursorButtonAccumulator::getButtonState() const {
uint32_t result = 0;
if (mBtnLeft) {
result |= AMOTION_EVENT_BUTTON_PRIMARY;
}
if (mBtnRight) {
result |= AMOTION_EVENT_BUTTON_SECONDARY;
}
if (mBtnMiddle) {
result |= AMOTION_EVENT_BUTTON_TERTIARY;
}
if (mBtnBack || mBtnSide) {
result |= AMOTION_EVENT_BUTTON_BACK;
}
if (mBtnForward || mBtnExtra) {
result |= AMOTION_EVENT_BUTTON_FORWARD;
}
return result;
}
// --- CursorMotionAccumulator ---
CursorMotionAccumulator::CursorMotionAccumulator() :
mHaveRelWheel(false), mHaveRelHWheel(false) {
clearRelativeAxes();
}
void CursorMotionAccumulator::configure(InputDevice* device) {
mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL);
mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL);
}
void CursorMotionAccumulator::clearRelativeAxes() {
mRelX = 0;
mRelY = 0;
mRelWheel = 0;
mRelHWheel = 0;
}
void CursorMotionAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_REL) {
switch (rawEvent->scanCode) {
case REL_X:
mRelX = rawEvent->value;
break;
case REL_Y:
mRelY = rawEvent->value;
break;
case REL_WHEEL:
mRelWheel = rawEvent->value;
break;
case REL_HWHEEL:
mRelHWheel = rawEvent->value;
break;
}
}
}
// --- TouchButtonAccumulator ---
TouchButtonAccumulator::TouchButtonAccumulator() :
mHaveBtnTouch(false) {
clearButtons();
}
void TouchButtonAccumulator::configure(InputDevice* device) {
mHaveBtnTouch = device->getEventHub()->hasScanCode(device->getId(), BTN_TOUCH);
}
void TouchButtonAccumulator::clearButtons() {
mBtnTouch = 0;
mBtnStylus = 0;
mBtnStylus2 = 0;
mBtnToolFinger = 0;
mBtnToolPen = 0;
mBtnToolRubber = 0;
}
void TouchButtonAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_KEY) {
switch (rawEvent->scanCode) {
case BTN_TOUCH:
mBtnTouch = rawEvent->value;
break;
case BTN_STYLUS:
mBtnStylus = rawEvent->value;
break;
case BTN_STYLUS2:
mBtnStylus2 = rawEvent->value;
break;
case BTN_TOOL_FINGER:
mBtnToolFinger = rawEvent->value;
break;
case BTN_TOOL_PEN:
mBtnToolPen = rawEvent->value;
break;
case BTN_TOOL_RUBBER:
mBtnToolRubber = rawEvent->value;
break;
}
}
}
uint32_t TouchButtonAccumulator::getButtonState() const {
uint32_t result = 0;
if (mBtnStylus) {
result |= AMOTION_EVENT_BUTTON_SECONDARY;
}
if (mBtnStylus2) {
result |= AMOTION_EVENT_BUTTON_TERTIARY;
}
return result;
}
int32_t TouchButtonAccumulator::getToolType() const {
if (mBtnToolRubber) {
return AMOTION_EVENT_TOOL_TYPE_ERASER;
}
if (mBtnToolPen) {
return AMOTION_EVENT_TOOL_TYPE_STYLUS;
}
if (mBtnToolFinger) {
return AMOTION_EVENT_TOOL_TYPE_FINGER;
}
return AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
}
bool TouchButtonAccumulator::isToolActive() const {
return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber;
}
bool TouchButtonAccumulator::isHovering() const {
return mHaveBtnTouch && !mBtnTouch;
}
// --- RawPointerAxes ---
RawPointerAxes::RawPointerAxes() {
clear();
}
void RawPointerAxes::clear() {
x.clear();
y.clear();
pressure.clear();
touchMajor.clear();
touchMinor.clear();
toolMajor.clear();
toolMinor.clear();
orientation.clear();
distance.clear();
trackingId.clear();
slot.clear();
}
// --- RawPointerData ---
RawPointerData::RawPointerData() {
clear();
}
void RawPointerData::clear() {
pointerCount = 0;
clearIdBits();
}
void RawPointerData::copyFrom(const RawPointerData& other) {
pointerCount = other.pointerCount;
hoveringIdBits = other.hoveringIdBits;
touchingIdBits = other.touchingIdBits;
for (uint32_t i = 0; i < pointerCount; i++) {
pointers[i] = other.pointers[i];
int id = pointers[i].id;
idToIndex[id] = other.idToIndex[id];
}
}
void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const {
float x = 0, y = 0;
uint32_t count = touchingIdBits.count();
if (count) {
for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
const Pointer& pointer = pointerForId(id);
x += pointer.x;
y += pointer.y;
}
x /= count;
y /= count;
}
*outX = x;
*outY = y;
}
// --- CookedPointerData ---
CookedPointerData::CookedPointerData() {
clear();
}
void CookedPointerData::clear() {
pointerCount = 0;
hoveringIdBits.clear();
touchingIdBits.clear();
}
void CookedPointerData::copyFrom(const CookedPointerData& other) {
pointerCount = other.pointerCount;
hoveringIdBits = other.hoveringIdBits;
touchingIdBits = other.touchingIdBits;
for (uint32_t i = 0; i < pointerCount; i++) {
pointerProperties[i].copyFrom(other.pointerProperties[i]);
pointerCoords[i].copyFrom(other.pointerCoords[i]);
int id = pointerProperties[i].id;
idToIndex[id] = other.idToIndex[id];
}
}
// --- SingleTouchMotionAccumulator ---
SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() {
clearAbsoluteAxes();
}
void SingleTouchMotionAccumulator::clearAbsoluteAxes() {
mAbsX = 0;
mAbsY = 0;
mAbsPressure = 0;
mAbsToolWidth = 0;
mAbsDistance = 0;
}
void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_ABS) {
switch (rawEvent->scanCode) {
case ABS_X:
mAbsX = rawEvent->value;
break;
case ABS_Y:
mAbsY = rawEvent->value;
break;
case ABS_PRESSURE:
mAbsPressure = rawEvent->value;
break;
case ABS_TOOL_WIDTH:
mAbsToolWidth = rawEvent->value;
break;
case ABS_DISTANCE:
mAbsDistance = rawEvent->value;
break;
}
}
}
// --- MultiTouchMotionAccumulator ---
MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() :
mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false) {
}
MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() {
delete[] mSlots;
}
void MultiTouchMotionAccumulator::configure(size_t slotCount, bool usingSlotsProtocol) {
mSlotCount = slotCount;
mUsingSlotsProtocol = usingSlotsProtocol;
delete[] mSlots;
mSlots = new Slot[slotCount];
}
void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) {
for (size_t i = 0; i < mSlotCount; i++) {
mSlots[i].clearIfInUse();
}
mCurrentSlot = initialSlot;
}
void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) {
if (rawEvent->type == EV_ABS) {
bool newSlot = false;
if (mUsingSlotsProtocol) {
if (rawEvent->scanCode == ABS_MT_SLOT) {
mCurrentSlot = rawEvent->value;
newSlot = true;
}
} else if (mCurrentSlot < 0) {
mCurrentSlot = 0;
}
if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) {
#if DEBUG_POINTERS
if (newSlot) {
LOGW("MultiTouch device emitted invalid slot index %d but it "
"should be between 0 and %d; ignoring this slot.",
mCurrentSlot, mSlotCount - 1);
}
#endif
} else {
Slot* slot = &mSlots[mCurrentSlot];
switch (rawEvent->scanCode) {
case ABS_MT_POSITION_X:
slot->mInUse = true;
slot->mAbsMTPositionX = rawEvent->value;
break;
case ABS_MT_POSITION_Y:
slot->mInUse = true;
slot->mAbsMTPositionY = rawEvent->value;
break;
case ABS_MT_TOUCH_MAJOR:
slot->mInUse = true;
slot->mAbsMTTouchMajor = rawEvent->value;
break;
case ABS_MT_TOUCH_MINOR:
slot->mInUse = true;
slot->mAbsMTTouchMinor = rawEvent->value;
slot->mHaveAbsMTTouchMinor = true;
break;
case ABS_MT_WIDTH_MAJOR:
slot->mInUse = true;
slot->mAbsMTWidthMajor = rawEvent->value;
break;
case ABS_MT_WIDTH_MINOR:
slot->mInUse = true;
slot->mAbsMTWidthMinor = rawEvent->value;
slot->mHaveAbsMTWidthMinor = true;
break;
case ABS_MT_ORIENTATION:
slot->mInUse = true;
slot->mAbsMTOrientation = rawEvent->value;
break;
case ABS_MT_TRACKING_ID:
if (mUsingSlotsProtocol && rawEvent->value < 0) {
slot->clearIfInUse();
} else {
slot->mInUse = true;
slot->mAbsMTTrackingId = rawEvent->value;
}
break;
case ABS_MT_PRESSURE:
slot->mInUse = true;
slot->mAbsMTPressure = rawEvent->value;
break;
case ABS_MT_DISTANCE:
slot->mInUse = true;
slot->mAbsMTDistance = rawEvent->value;
break;
case ABS_MT_TOOL_TYPE:
slot->mInUse = true;
slot->mAbsMTToolType = rawEvent->value;
slot->mHaveAbsMTToolType = true;
break;
}
}
} else if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_MT_REPORT) {
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
mCurrentSlot += 1;
}
}
// --- MultiTouchMotionAccumulator::Slot ---
MultiTouchMotionAccumulator::Slot::Slot() {
clear();
}
void MultiTouchMotionAccumulator::Slot::clearIfInUse() {
if (mInUse) {
clear();
}
}
void MultiTouchMotionAccumulator::Slot::clear() {
mInUse = false;
mHaveAbsMTTouchMinor = false;
mHaveAbsMTWidthMinor = false;
mHaveAbsMTToolType = false;
mAbsMTPositionX = 0;
mAbsMTPositionY = 0;
mAbsMTTouchMajor = 0;
mAbsMTTouchMinor = 0;
mAbsMTWidthMajor = 0;
mAbsMTWidthMinor = 0;
mAbsMTOrientation = 0;
mAbsMTTrackingId = -1;
mAbsMTPressure = 0;
mAbsMTDistance = 0;
mAbsMTToolType = 0;
}
int32_t MultiTouchMotionAccumulator::Slot::getToolType() const {
if (mHaveAbsMTToolType) {
switch (mAbsMTToolType) {
case MT_TOOL_FINGER:
return AMOTION_EVENT_TOOL_TYPE_FINGER;
case MT_TOOL_PEN:
return AMOTION_EVENT_TOOL_TYPE_STYLUS;
}
}
return AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
}
// --- InputMapper ---
InputMapper::InputMapper(InputDevice* device) :
mDevice(device), mContext(device->getContext()) {
}
InputMapper::~InputMapper() {
}
void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
info->addSource(getSources());
}
void InputMapper::dump(String8& dump) {
}
void InputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
}
void InputMapper::reset() {
}
void InputMapper::timeoutExpired(nsecs_t when) {
}
int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
return AKEY_STATE_UNKNOWN;
}
int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
return AKEY_STATE_UNKNOWN;
}
int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
return AKEY_STATE_UNKNOWN;
}
bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
return false;
}
int32_t InputMapper::getMetaState() {
return 0;
}
void InputMapper::fadePointer() {
}
status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) {
return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo);
}
void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
const RawAbsoluteAxisInfo& axis, const char* name) {
if (axis.valid) {
dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n",
name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution);
} else {
dump.appendFormat(INDENT4 "%s: unknown range\n", name);
}
}
// --- SwitchInputMapper ---
SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
InputMapper(device) {
}
SwitchInputMapper::~SwitchInputMapper() {
}
uint32_t SwitchInputMapper::getSources() {
return AINPUT_SOURCE_SWITCH;
}
void SwitchInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_SW:
processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
break;
}
}
void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
NotifySwitchArgs args(when, 0, switchCode, switchValue);
getListener()->notifySwitch(&args);
}
int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
return getEventHub()->getSwitchState(getDeviceId(), switchCode);
}
// --- KeyboardInputMapper ---
KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
uint32_t source, int32_t keyboardType) :
InputMapper(device), mSource(source),
mKeyboardType(keyboardType) {
initialize();
}
KeyboardInputMapper::~KeyboardInputMapper() {
}
void KeyboardInputMapper::initialize() {
mMetaState = AMETA_NONE;
mDownTime = 0;
}
uint32_t KeyboardInputMapper::getSources() {
return mSource;
}
void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
InputMapper::populateDeviceInfo(info);
info->setKeyboardType(mKeyboardType);
}
void KeyboardInputMapper::dump(String8& dump) {
dump.append(INDENT2 "Keyboard Input Mapper:\n");
dumpParameters(dump);
dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mKeyDowns.size());
dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mMetaState);
dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime);
}
void KeyboardInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
InputMapper::configure(config, changes);
if (!changes) { // first time only
// Configure basic parameters.
configureParameters();
// Reset LEDs.
resetLedState();
}
}
void KeyboardInputMapper::configureParameters() {
mParameters.orientationAware = false;
getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
mParameters.orientationAware);
mParameters.associatedDisplayId = -1;
if (mParameters.orientationAware) {
mParameters.associatedDisplayId = 0;
}
}
void KeyboardInputMapper::dumpParameters(String8& dump) {
dump.append(INDENT3 "Parameters:\n");
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
mParameters.associatedDisplayId);
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
toString(mParameters.orientationAware));
}
void KeyboardInputMapper::reset() {
// Synthesize key up event on reset if keys are currently down.
while (!mKeyDowns.isEmpty()) {
const KeyDown& keyDown = mKeyDowns.top();
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
processKey(when, false, keyDown.keyCode, keyDown.scanCode, 0);
}
initialize();
resetLedState();
InputMapper::reset();
getContext()->updateGlobalMetaState();
}
void KeyboardInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_KEY: {
int32_t scanCode = rawEvent->scanCode;
if (isKeyboardOrGamepadKey(scanCode)) {
processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
rawEvent->flags);
}
break;
}
}
}
bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
return scanCode < BTN_MOUSE
|| scanCode >= KEY_OK
|| (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
|| (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
}
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
int32_t scanCode, uint32_t policyFlags) {
if (down) {
// Rotate key codes according to orientation if needed.
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
int32_t orientation;
if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
false /*external*/, NULL, NULL, & orientation)) {
orientation = DISPLAY_ORIENTATION_0;
}
keyCode = rotateKeyCode(keyCode, orientation);
}
// Add key down.
ssize_t keyDownIndex = findKeyDown(scanCode);
if (keyDownIndex >= 0) {
// key repeat, be sure to use same keycode as before in case of rotation
keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
} else {
// key down
if ((policyFlags & POLICY_FLAG_VIRTUAL)
&& mContext->shouldDropVirtualKey(when,
getDevice(), keyCode, scanCode)) {
return;
}
mKeyDowns.push();
KeyDown& keyDown = mKeyDowns.editTop();
keyDown.keyCode = keyCode;
keyDown.scanCode = scanCode;
}
mDownTime = when;
} else {
// Remove key down.
ssize_t keyDownIndex = findKeyDown(scanCode);
if (keyDownIndex >= 0) {
// key up, be sure to use same keycode as before in case of rotation
keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
mKeyDowns.removeAt(size_t(keyDownIndex));
} else {
// key was not actually down
LOGI("Dropping key up from device %s because the key was not down. "
"keyCode=%d, scanCode=%d",
getDeviceName().string(), keyCode, scanCode);
return;
}
}
bool metaStateChanged = false;
int32_t oldMetaState = mMetaState;
int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState);
if (oldMetaState != newMetaState) {
mMetaState = newMetaState;
metaStateChanged = true;
updateLedState(false);
}
nsecs_t downTime = mDownTime;
// Key down on external an keyboard should wake the device.
// We don't do this for internal keyboards to prevent them from waking up in your pocket.
// For internal keyboards, the key layout file should specify the policy flags for
// each wake key individually.
// TODO: Use the input device configuration to control this behavior more finely.
if (down && getDevice()->isExternal()
&& !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
}
if (metaStateChanged) {
getContext()->updateGlobalMetaState();
}
if (down && !isMetaKey(keyCode)) {
getContext()->fadePointer();
}
NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags,
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
getListener()->notifyKey(&args);
}
ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) {
size_t n = mKeyDowns.size();
for (size_t i = 0; i < n; i++) {
if (mKeyDowns[i].scanCode == scanCode) {
return i;
}
}
return -1;
}
int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
}
int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
}
bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
}
int32_t KeyboardInputMapper::getMetaState() {
return mMetaState;
}
void KeyboardInputMapper::resetLedState() {
initializeLedState(mCapsLockLedState, LED_CAPSL);
initializeLedState(mNumLockLedState, LED_NUML);
initializeLedState(mScrollLockLedState, LED_SCROLLL);
updateLedState(true);
}
void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) {
ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
ledState.on = false;
}
void KeyboardInputMapper::updateLedState(bool reset) {
updateLedStateForModifier(mCapsLockLedState, LED_CAPSL,
AMETA_CAPS_LOCK_ON, reset);
updateLedStateForModifier(mNumLockLedState, LED_NUML,
AMETA_NUM_LOCK_ON, reset);
updateLedStateForModifier(mScrollLockLedState, LED_SCROLLL,
AMETA_SCROLL_LOCK_ON, reset);
}
void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState,
int32_t led, int32_t modifier, bool reset) {
if (ledState.avail) {
bool desiredState = (mMetaState & modifier) != 0;
if (reset || ledState.on != desiredState) {
getEventHub()->setLedState(getDeviceId(), led, desiredState);
ledState.on = desiredState;
}
}
}
// --- CursorInputMapper ---
CursorInputMapper::CursorInputMapper(InputDevice* device) :
InputMapper(device) {
initialize();
}
CursorInputMapper::~CursorInputMapper() {
}
uint32_t CursorInputMapper::getSources() {
return mSource;
}
void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
InputMapper::populateDeviceInfo(info);
if (mParameters.mode == Parameters::MODE_POINTER) {
float minX, minY, maxX, maxY;
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f);
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f);
}
} else {
info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale);
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale);
}
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f);
if (mCursorMotionAccumulator.haveRelativeVWheel()) {
info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
}
if (mCursorMotionAccumulator.haveRelativeHWheel()) {
info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
}
}
void CursorInputMapper::dump(String8& dump) {
dump.append(INDENT2 "Cursor Input Mapper:\n");
dumpParameters(dump);
dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
dump.appendFormat(INDENT3 "HaveVWheel: %s\n",
toString(mCursorMotionAccumulator.haveRelativeVWheel()));
dump.appendFormat(INDENT3 "HaveHWheel: %s\n",
toString(mCursorMotionAccumulator.haveRelativeHWheel()));
dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mButtonState);
dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState)));
dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime);
}
void CursorInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
InputMapper::configure(config, changes);
if (!changes) { // first time only
mCursorMotionAccumulator.configure(getDevice());
// Configure basic parameters.
configureParameters();
// Configure device mode.
switch (mParameters.mode) {
case Parameters::MODE_POINTER:
mSource = AINPUT_SOURCE_MOUSE;
mXPrecision = 1.0f;
mYPrecision = 1.0f;
mXScale = 1.0f;
mYScale = 1.0f;
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
break;
case Parameters::MODE_NAVIGATION:
mSource = AINPUT_SOURCE_TRACKBALL;
mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
break;
}
mVWheelScale = 1.0f;
mHWheelScale = 1.0f;
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters);
mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters);
mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters);
}
}
void CursorInputMapper::configureParameters() {
mParameters.mode = Parameters::MODE_POINTER;
String8 cursorModeString;
if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
if (cursorModeString == "navigation") {
mParameters.mode = Parameters::MODE_NAVIGATION;
} else if (cursorModeString != "pointer" && cursorModeString != "default") {
LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
}
}
mParameters.orientationAware = false;
getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
mParameters.orientationAware);
mParameters.associatedDisplayId = -1;
if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) {
mParameters.associatedDisplayId = 0;
}
}
void CursorInputMapper::dumpParameters(String8& dump) {
dump.append(INDENT3 "Parameters:\n");
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
mParameters.associatedDisplayId);
switch (mParameters.mode) {
case Parameters::MODE_POINTER:
dump.append(INDENT4 "Mode: pointer\n");
break;
case Parameters::MODE_NAVIGATION:
dump.append(INDENT4 "Mode: navigation\n");
break;
default:
LOG_ASSERT(false);
}
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
toString(mParameters.orientationAware));
}
void CursorInputMapper::initialize() {
mCursorButtonAccumulator.clearButtons();
mCursorMotionAccumulator.clearRelativeAxes();
mButtonState = 0;
mDownTime = 0;
}
void CursorInputMapper::reset() {
// Reset velocity.
mPointerVelocityControl.reset();
mWheelXVelocityControl.reset();
mWheelYVelocityControl.reset();
// Synthesize button up event on reset.
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
mCursorButtonAccumulator.clearButtons();
mCursorMotionAccumulator.clearRelativeAxes();
sync(when);
initialize();
InputMapper::reset();
}
void CursorInputMapper::process(const RawEvent* rawEvent) {
mCursorButtonAccumulator.process(rawEvent);
mCursorMotionAccumulator.process(rawEvent);
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
sync(rawEvent->when);
}
}
void CursorInputMapper::sync(nsecs_t when) {
int32_t lastButtonState = mButtonState;
int32_t currentButtonState = mCursorButtonAccumulator.getButtonState();
mButtonState = currentButtonState;
bool wasDown = isPointerDown(lastButtonState);
bool down = isPointerDown(currentButtonState);
bool downChanged;
if (!wasDown && down) {
mDownTime = when;
downChanged = true;
} else if (wasDown && !down) {
downChanged = true;
} else {
downChanged = false;
}
nsecs_t downTime = mDownTime;
bool buttonsChanged = currentButtonState != lastButtonState;
float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale;
float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale;
bool moved = deltaX != 0 || deltaY != 0;
if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
&& (deltaX != 0.0f || deltaY != 0.0f)) {
// Rotate motion based on display orientation if needed.
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
int32_t orientation;
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
false /*external*/, NULL, NULL, & orientation)) {
orientation = DISPLAY_ORIENTATION_0;
}
rotateDelta(orientation, &deltaX, &deltaY);
}
PointerProperties pointerProperties;
pointerProperties.clear();
pointerProperties.id = 0;
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE;
PointerCoords pointerCoords;
pointerCoords.clear();
float vscroll = mCursorMotionAccumulator.getRelativeVWheel();
float hscroll = mCursorMotionAccumulator.getRelativeHWheel();
bool scrolled = vscroll != 0 || hscroll != 0;
mWheelYVelocityControl.move(when, NULL, &vscroll);
mWheelXVelocityControl.move(when, &hscroll, NULL);
mPointerVelocityControl.move(when, &deltaX, &deltaY);
if (mPointerController != NULL) {
if (moved || scrolled || buttonsChanged) {
mPointerController->setPresentation(
PointerControllerInterface::PRESENTATION_POINTER);
if (moved) {
mPointerController->move(deltaX, deltaY);
}
if (buttonsChanged) {
mPointerController->setButtonState(currentButtonState);
}
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
}
float x, y;
mPointerController->getPosition(&x, &y);
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
} else {
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
}
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
// Moving an external trackball or mouse should wake the device.
// We don't do this for internal cursor devices to prevent them from waking up
// the device in your pocket.
// TODO: Use the input device configuration to control this behavior more finely.
uint32_t policyFlags = 0;
if (getDevice()->isExternal()) {
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
}
// Synthesize key down from buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource,
policyFlags, lastButtonState, currentButtonState);
// Send motion event.
if (downChanged || moved || scrolled || buttonsChanged) {
int32_t metaState = mContext->getGlobalMetaState();
int32_t motionEventAction;
if (downChanged) {
motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
} else if (down || mPointerController == NULL) {
motionEventAction = AMOTION_EVENT_ACTION_MOVE;
} else {
motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
}
NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags,
motionEventAction, 0, metaState, currentButtonState, 0,
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
getListener()->notifyMotion(&args);
// Send hover move after UP to tell the application that the mouse is hovering now.
if (motionEventAction == AMOTION_EVENT_ACTION_UP
&& mPointerController != NULL) {
NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags,
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE,
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
getListener()->notifyMotion(&hoverArgs);
}
// Send scroll events.
if (scrolled) {
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags,
AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState,
AMOTION_EVENT_EDGE_FLAG_NONE,
1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime);
getListener()->notifyMotion(&scrollArgs);
}
}
// Synthesize key up from buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource,
policyFlags, lastButtonState, currentButtonState);
mCursorMotionAccumulator.clearRelativeAxes();
}
int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
} else {
return AKEY_STATE_UNKNOWN;
}
}
void CursorInputMapper::fadePointer() {
if (mPointerController != NULL) {
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
}
}
// --- TouchInputMapper ---
TouchInputMapper::TouchInputMapper(InputDevice* device) :
InputMapper(device),
mSurfaceOrientation(-1), mSurfaceWidth(-1), mSurfaceHeight(-1) {
initialize();
}
TouchInputMapper::~TouchInputMapper() {
}
uint32_t TouchInputMapper::getSources() {
return mTouchSource | mPointerSource;
}
void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
InputMapper::populateDeviceInfo(info);
// Ensure surface information is up to date so that orientation changes are
// noticed immediately.
if (!configureSurface()) {
return;
}
info->addMotionRange(mOrientedRanges.x);
info->addMotionRange(mOrientedRanges.y);
if (mOrientedRanges.havePressure) {
info->addMotionRange(mOrientedRanges.pressure);
}
if (mOrientedRanges.haveSize) {
info->addMotionRange(mOrientedRanges.size);
}
if (mOrientedRanges.haveTouchSize) {
info->addMotionRange(mOrientedRanges.touchMajor);
info->addMotionRange(mOrientedRanges.touchMinor);
}
if (mOrientedRanges.haveToolSize) {
info->addMotionRange(mOrientedRanges.toolMajor);
info->addMotionRange(mOrientedRanges.toolMinor);
}
if (mOrientedRanges.haveOrientation) {
info->addMotionRange(mOrientedRanges.orientation);
}
if (mOrientedRanges.haveDistance) {
info->addMotionRange(mOrientedRanges.distance);
}
if (mPointerController != NULL) {
float minX, minY, maxX, maxY;
if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource,
minX, maxX, 0.0f, 0.0f);
info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource,
minY, maxY, 0.0f, 0.0f);
}
info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource,
0.0f, 1.0f, 0.0f, 0.0f);
}
}
void TouchInputMapper::dump(String8& dump) {
dump.append(INDENT2 "Touch Input Mapper:\n");
dumpParameters(dump);
dumpVirtualKeys(dump);
dumpRawPointerAxes(dump);
dumpCalibration(dump);
dumpSurface(dump);
dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
dump.appendFormat(INDENT4 "XScale: %0.3f\n", mXScale);
dump.appendFormat(INDENT4 "YScale: %0.3f\n", mYScale);
dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mXPrecision);
dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mYPrecision);
dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale);
dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mToolSizeLinearScale);
dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mToolSizeLinearBias);
dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mToolSizeAreaScale);
dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mToolSizeAreaBias);
dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mPressureScale);
dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mSizeScale);
dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale);
dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale);
dump.appendFormat(INDENT3 "Last Button State: 0x%08x\n", mLastButtonState);
dump.appendFormat(INDENT3 "Last Raw Touch: pointerCount=%d\n",
mLastRawPointerData.pointerCount);
for (uint32_t i = 0; i < mLastRawPointerData.pointerCount; i++) {
const RawPointerData::Pointer& pointer = mLastRawPointerData.pointers[i];
dump.appendFormat(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, "
"touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, "
"orientation=%d, distance=%d, toolType=%d, isHovering=%s\n", i,
pointer.id, pointer.x, pointer.y, pointer.pressure,
pointer.touchMajor, pointer.touchMinor,
pointer.toolMajor, pointer.toolMinor,
pointer.orientation, pointer.distance,
pointer.toolType, toString(pointer.isHovering));
}
dump.appendFormat(INDENT3 "Last Cooked Touch: pointerCount=%d\n",
mLastCookedPointerData.pointerCount);
for (uint32_t i = 0; i < mLastCookedPointerData.pointerCount; i++) {
const PointerProperties& pointerProperties = mLastCookedPointerData.pointerProperties[i];
const PointerCoords& pointerCoords = mLastCookedPointerData.pointerCoords[i];
dump.appendFormat(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, "
"touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, "
"orientation=%0.3f, distance=%0.3f, toolType=%d, isHovering=%s\n", i,
pointerProperties.id,
pointerCoords.getX(),
pointerCoords.getY(),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION),
pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE),
pointerProperties.toolType,
toString(mLastCookedPointerData.isHovering(i)));
}
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
mPointerGestureXMovementScale);
dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
mPointerGestureYMovementScale);
dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
mPointerGestureXZoomScale);
dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
mPointerGestureYZoomScale);
dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n",
mPointerGestureMaxSwipeWidth);
}
}
void TouchInputMapper::initialize() {
mCurrentRawPointerData.clear();
mLastRawPointerData.clear();
mCurrentCookedPointerData.clear();
mLastCookedPointerData.clear();
mCurrentButtonState = 0;
mLastButtonState = 0;
mSentHoverEnter = false;
mDownTime = 0;
mCurrentVirtualKey.down = false;
mOrientedRanges.havePressure = false;
mOrientedRanges.haveSize = false;
mOrientedRanges.haveTouchSize = false;
mOrientedRanges.haveToolSize = false;
mOrientedRanges.haveOrientation = false;
mOrientedRanges.haveDistance = false;
mPointerGesture.reset();
}
void TouchInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
InputMapper::configure(config, changes);
mConfig = *config;
if (!changes) { // first time only
// Configure basic parameters.
configureParameters();
// Configure sources.
switch (mParameters.deviceType) {
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
mTouchSource = AINPUT_SOURCE_TOUCHSCREEN;
mPointerSource = 0;
break;
case Parameters::DEVICE_TYPE_TOUCH_PAD:
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
mPointerSource = 0;
break;
case Parameters::DEVICE_TYPE_POINTER:
mTouchSource = AINPUT_SOURCE_TOUCHPAD;
mPointerSource = AINPUT_SOURCE_MOUSE;
break;
default:
LOG_ASSERT(false);
}
// Configure absolute axis information.
configureRawPointerAxes();
// Prepare input device calibration.
parseCalibration();
resolveCalibration();
// Configure surface dimensions and orientation.
configureSurface();
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) {
mPointerGesture.pointerVelocityControl.setParameters(
mConfig.pointerVelocityControlParameters);
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT)) {
// Reset the touch screen when pointer gesture enablement changes.
reset();
}
}
void TouchInputMapper::configureParameters() {
// Use the pointer presentation mode for devices that do not support distinct
// multitouch. The spot-based presentation relies on being able to accurately
// locate two or more fingers on the touch pad.
mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT)
? Parameters::GESTURE_MODE_POINTER : Parameters::GESTURE_MODE_SPOTS;
String8 gestureModeString;
if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"),
gestureModeString)) {
if (gestureModeString == "pointer") {
mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER;
} else if (gestureModeString == "spots") {
mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
} else if (gestureModeString != "default") {
LOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string());
}
}
if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
|| getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
// The device is a cursor device with a touch pad attached.
// By default don't use the touch pad to move the pointer.
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) {
// The device is a pointing device like a track pad.
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
} else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) {
// The device is a touch screen.
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
} else {
// The device is a touch pad of unknown purpose.
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
}
String8 deviceTypeString;
if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
deviceTypeString)) {
if (deviceTypeString == "touchScreen") {
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
} else if (deviceTypeString == "touchPad") {
mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
} else if (deviceTypeString == "pointer") {
mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
} else if (deviceTypeString != "default") {
LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
}
}
mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
mParameters.orientationAware);
mParameters.associatedDisplayId = -1;
mParameters.associatedDisplayIsExternal = false;
if (mParameters.orientationAware
|| mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
|| mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
mParameters.associatedDisplayIsExternal =
mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
&& getDevice()->isExternal();
mParameters.associatedDisplayId = 0;
}
}
void TouchInputMapper::dumpParameters(String8& dump) {
dump.append(INDENT3 "Parameters:\n");
switch (mParameters.gestureMode) {
case Parameters::GESTURE_MODE_POINTER:
dump.append(INDENT4 "GestureMode: pointer\n");
break;
case Parameters::GESTURE_MODE_SPOTS:
dump.append(INDENT4 "GestureMode: spots\n");
break;
default:
assert(false);
}
switch (mParameters.deviceType) {
case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
dump.append(INDENT4 "DeviceType: touchScreen\n");
break;
case Parameters::DEVICE_TYPE_TOUCH_PAD:
dump.append(INDENT4 "DeviceType: touchPad\n");
break;
case Parameters::DEVICE_TYPE_POINTER:
dump.append(INDENT4 "DeviceType: pointer\n");
break;
default:
LOG_ASSERT(false);
}
dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
mParameters.associatedDisplayId);
dump.appendFormat(INDENT4 "OrientationAware: %s\n",
toString(mParameters.orientationAware));
}
void TouchInputMapper::configureRawPointerAxes() {
mRawPointerAxes.clear();
}
void TouchInputMapper::dumpRawPointerAxes(String8& dump) {
dump.append(INDENT3 "Raw Touch Axes:\n");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId");
dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot");
}
bool TouchInputMapper::configureSurface() {
// Ensure we have valid X and Y axes.
if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) {
LOGW(INDENT "Touch device '%s' did not report support for X or Y axis! "
"The device will be inoperable.", getDeviceName().string());
return false;
}
// Update orientation and dimensions if needed.
int32_t orientation = DISPLAY_ORIENTATION_0;
int32_t width = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1;
int32_t height = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1;
if (mParameters.associatedDisplayId >= 0) {
// Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
mParameters.associatedDisplayIsExternal,
&mAssociatedDisplayWidth, &mAssociatedDisplayHeight,
&mAssociatedDisplayOrientation)) {
return false;
}
// A touch screen inherits the dimensions of the display.
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
width = mAssociatedDisplayWidth;
height = mAssociatedDisplayHeight;
}
// The device inherits the orientation of the display if it is orientation aware.
if (mParameters.orientationAware) {
orientation = mAssociatedDisplayOrientation;
}
}
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
&& mPointerController == NULL) {
mPointerController = getPolicy()->obtainPointerController(getDeviceId());
}
bool orientationChanged = mSurfaceOrientation != orientation;
if (orientationChanged) {
mSurfaceOrientation = orientation;
}
bool sizeChanged = mSurfaceWidth != width || mSurfaceHeight != height;
if (sizeChanged) {
LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d",
getDeviceId(), getDeviceName().string(), width, height);
mSurfaceWidth = width;
mSurfaceHeight = height;
// Configure X and Y factors.
mXScale = float(width) / (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1);
mYScale = float(height) / (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1);
mXPrecision = 1.0f / mXScale;
mYPrecision = 1.0f / mYScale;
mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
mOrientedRanges.x.source = mTouchSource;
mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
mOrientedRanges.y.source = mTouchSource;
configureVirtualKeys();
// Scale factor for terms that are not oriented in a particular axis.
// If the pixels are square then xScale == yScale otherwise we fake it
// by choosing an average.
mGeometricScale = avg(mXScale, mYScale);
// Size of diagonal axis.
float diagonalSize = hypotf(width, height);
// TouchMajor and TouchMinor factors.
if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
mOrientedRanges.haveTouchSize = true;
mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
mOrientedRanges.touchMajor.source = mTouchSource;
mOrientedRanges.touchMajor.min = 0;
mOrientedRanges.touchMajor.max = diagonalSize;
mOrientedRanges.touchMajor.flat = 0;
mOrientedRanges.touchMajor.fuzz = 0;
mOrientedRanges.touchMinor = mOrientedRanges.touchMajor;
mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
}
// ToolMajor and ToolMinor factors.
mToolSizeLinearScale = 0;
mToolSizeLinearBias = 0;
mToolSizeAreaScale = 0;
mToolSizeAreaBias = 0;
if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
if (mCalibration.haveToolSizeLinearScale) {
mToolSizeLinearScale = mCalibration.toolSizeLinearScale;
} else if (mRawPointerAxes.toolMajor.valid
&& mRawPointerAxes.toolMajor.maxValue != 0) {
mToolSizeLinearScale = float(min(width, height))
/ mRawPointerAxes.toolMajor.maxValue;
}
if (mCalibration.haveToolSizeLinearBias) {
mToolSizeLinearBias = mCalibration.toolSizeLinearBias;
}
} else if (mCalibration.toolSizeCalibration ==
Calibration::TOOL_SIZE_CALIBRATION_AREA) {
if (mCalibration.haveToolSizeLinearScale) {
mToolSizeLinearScale = mCalibration.toolSizeLinearScale;
} else {
mToolSizeLinearScale = min(width, height);
}
if (mCalibration.haveToolSizeLinearBias) {
mToolSizeLinearBias = mCalibration.toolSizeLinearBias;
}
if (mCalibration.haveToolSizeAreaScale) {
mToolSizeAreaScale = mCalibration.toolSizeAreaScale;
} else if (mRawPointerAxes.toolMajor.valid
&& mRawPointerAxes.toolMajor.maxValue != 0) {
mToolSizeAreaScale = 1.0f / mRawPointerAxes.toolMajor.maxValue;
}
if (mCalibration.haveToolSizeAreaBias) {
mToolSizeAreaBias = mCalibration.toolSizeAreaBias;
}
}
mOrientedRanges.haveToolSize = true;
mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
mOrientedRanges.toolMajor.source = mTouchSource;
mOrientedRanges.toolMajor.min = 0;
mOrientedRanges.toolMajor.max = diagonalSize;
mOrientedRanges.toolMajor.flat = 0;
mOrientedRanges.toolMajor.fuzz = 0;
mOrientedRanges.toolMinor = mOrientedRanges.toolMajor;
mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
}
// Pressure factors.
mPressureScale = 0;
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
RawAbsoluteAxisInfo rawPressureAxis;
switch (mCalibration.pressureSource) {
case Calibration::PRESSURE_SOURCE_PRESSURE:
rawPressureAxis = mRawPointerAxes.pressure;
break;
case Calibration::PRESSURE_SOURCE_TOUCH:
rawPressureAxis = mRawPointerAxes.touchMajor;
break;
default:
rawPressureAxis.clear();
}
if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
|| mCalibration.pressureCalibration
== Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
if (mCalibration.havePressureScale) {
mPressureScale = mCalibration.pressureScale;
} else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
mPressureScale = 1.0f / rawPressureAxis.maxValue;
}
}
mOrientedRanges.havePressure = true;
mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
mOrientedRanges.pressure.source = mTouchSource;
mOrientedRanges.pressure.min = 0;
mOrientedRanges.pressure.max = 1.0;
mOrientedRanges.pressure.flat = 0;
mOrientedRanges.pressure.fuzz = 0;
}
// Size factors.
mSizeScale = 0;
if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
if (mRawPointerAxes.toolMajor.valid && mRawPointerAxes.toolMajor.maxValue != 0) {
mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue;
}
}
mOrientedRanges.haveSize = true;
mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
mOrientedRanges.size.source = mTouchSource;
mOrientedRanges.size.min = 0;
mOrientedRanges.size.max = 1.0;
mOrientedRanges.size.flat = 0;
mOrientedRanges.size.fuzz = 0;
}
// Orientation
mOrientationScale = 0;
if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
if (mCalibration.orientationCalibration
== Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
if (mRawPointerAxes.orientation.valid && mRawPointerAxes.orientation.maxValue != 0) {
mOrientationScale = float(M_PI_2) / mRawPointerAxes.orientation.maxValue;
}
}
mOrientedRanges.haveOrientation = true;
mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
mOrientedRanges.orientation.source = mTouchSource;
mOrientedRanges.orientation.min = - M_PI_2;
mOrientedRanges.orientation.max = M_PI_2;
mOrientedRanges.orientation.flat = 0;
mOrientedRanges.orientation.fuzz = 0;
}
// Distance
mDistanceScale = 0;
if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) {
if (mCalibration.distanceCalibration
== Calibration::DISTANCE_CALIBRATION_SCALED) {
if (mCalibration.haveDistanceScale) {
mDistanceScale = mCalibration.distanceScale;
} else {
mDistanceScale = 1.0f;
}
}
mOrientedRanges.haveDistance = true;
mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE;
mOrientedRanges.distance.source = mTouchSource;
mOrientedRanges.distance.min =
mRawPointerAxes.distance.minValue * mDistanceScale;
mOrientedRanges.distance.max =
mRawPointerAxes.distance.minValue * mDistanceScale;
mOrientedRanges.distance.flat = 0;
mOrientedRanges.distance.fuzz =
mRawPointerAxes.distance.fuzz * mDistanceScale;
}
}
if (orientationChanged || sizeChanged) {
// Compute oriented surface dimensions, precision, scales and ranges.
// Note that the maximum value reported is an inclusive maximum value so it is one
// unit less than the total width or height of surface.
switch (mSurfaceOrientation) {
case DISPLAY_ORIENTATION_90:
case DISPLAY_ORIENTATION_270:
mOrientedSurfaceWidth = mSurfaceHeight;
mOrientedSurfaceHeight = mSurfaceWidth;
mOrientedXPrecision = mYPrecision;
mOrientedYPrecision = mXPrecision;
mOrientedRanges.x.min = 0;
mOrientedRanges.x.max = (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue)
* mYScale;
mOrientedRanges.x.flat = 0;
mOrientedRanges.x.fuzz = mYScale;
mOrientedRanges.y.min = 0;
mOrientedRanges.y.max = (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue)
* mXScale;
mOrientedRanges.y.flat = 0;
mOrientedRanges.y.fuzz = mXScale;
break;
default:
mOrientedSurfaceWidth = mSurfaceWidth;
mOrientedSurfaceHeight = mSurfaceHeight;
mOrientedXPrecision = mXPrecision;
mOrientedYPrecision = mYPrecision;
mOrientedRanges.x.min = 0;
mOrientedRanges.x.max = (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue)
* mXScale;
mOrientedRanges.x.flat = 0;
mOrientedRanges.x.fuzz = mXScale;
mOrientedRanges.y.min = 0;
mOrientedRanges.y.max = (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue)
* mYScale;
mOrientedRanges.y.flat = 0;
mOrientedRanges.y.fuzz = mYScale;
break;
}
// Compute pointer gesture detection parameters.
if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1;
int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1;
float rawDiagonal = hypotf(rawWidth, rawHeight);
float displayDiagonal = hypotf(mAssociatedDisplayWidth,
mAssociatedDisplayHeight);
// Scale movements such that one whole swipe of the touch pad covers a
// given area relative to the diagonal size of the display when no acceleration
// is applied.
// Assume that the touch pad has a square aspect ratio such that movements in
// X and Y of the same number of raw units cover the same physical distance.
mPointerGestureXMovementScale = mConfig.pointerGestureMovementSpeedRatio
* displayDiagonal / rawDiagonal;
mPointerGestureYMovementScale = mPointerGestureXMovementScale;
// Scale zooms to cover a smaller range of the display than movements do.
// This value determines the area around the pointer that is affected by freeform
// pointer gestures.
mPointerGestureXZoomScale = mConfig.pointerGestureZoomSpeedRatio
* displayDiagonal / rawDiagonal;
mPointerGestureYZoomScale = mPointerGestureXZoomScale;
// Max width between pointers to detect a swipe gesture is more than some fraction
// of the diagonal axis of the touch pad. Touches that are wider than this are
// translated into freeform gestures.
mPointerGestureMaxSwipeWidth =
mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal;
// Reset the current pointer gesture.
mPointerGesture.reset();
// Remove any current spots.
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
mPointerController->clearSpots();
}
}
}
return true;
}
void TouchInputMapper::dumpSurface(String8& dump) {
dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth);
dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight);
dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation);
}
void TouchInputMapper::configureVirtualKeys() {
Vector<VirtualKeyDefinition> virtualKeyDefinitions;
getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
mVirtualKeys.clear();
if (virtualKeyDefinitions.size() == 0) {
return;
}
mVirtualKeys.setCapacity(virtualKeyDefinitions.size());
int32_t touchScreenLeft = mRawPointerAxes.x.minValue;
int32_t touchScreenTop = mRawPointerAxes.y.minValue;
int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1;
int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1;
for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
const VirtualKeyDefinition& virtualKeyDefinition =
virtualKeyDefinitions[i];
mVirtualKeys.add();
VirtualKey& virtualKey = mVirtualKeys.editTop();
virtualKey.scanCode = virtualKeyDefinition.scanCode;
int32_t keyCode;
uint32_t flags;
if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
& keyCode, & flags)) {
LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
virtualKey.scanCode);
mVirtualKeys.pop(); // drop the key
continue;
}
virtualKey.keyCode = keyCode;
virtualKey.flags = flags;
// convert the key definition's display coordinates into touch coordinates for a hit box
int32_t halfWidth = virtualKeyDefinition.width / 2;
int32_t halfHeight = virtualKeyDefinition.height / 2;
virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
* touchScreenWidth / mSurfaceWidth + touchScreenLeft;
virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
* touchScreenWidth / mSurfaceWidth + touchScreenLeft;
virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
* touchScreenHeight / mSurfaceHeight + touchScreenTop;
virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
* touchScreenHeight / mSurfaceHeight + touchScreenTop;
}
}
void TouchInputMapper::dumpVirtualKeys(String8& dump) {
if (!mVirtualKeys.isEmpty()) {
dump.append(INDENT3 "Virtual Keys:\n");
for (size_t i = 0; i < mVirtualKeys.size(); i++) {
const VirtualKey& virtualKey = mVirtualKeys.itemAt(i);
dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
"hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
i, virtualKey.scanCode, virtualKey.keyCode,
virtualKey.hitLeft, virtualKey.hitRight,
virtualKey.hitTop, virtualKey.hitBottom);
}
}
}
void TouchInputMapper::parseCalibration() {
const PropertyMap& in = getDevice()->getConfiguration();
Calibration& out = mCalibration;
// Touch Size
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
String8 touchSizeCalibrationString;
if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
if (touchSizeCalibrationString == "none") {
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
} else if (touchSizeCalibrationString == "geometric") {
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
} else if (touchSizeCalibrationString == "pressure") {
out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
} else if (touchSizeCalibrationString != "default") {
LOGW("Invalid value for touch.touchSize.calibration: '%s'",
touchSizeCalibrationString.string());
}
}
// Tool Size
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
String8 toolSizeCalibrationString;
if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
if (toolSizeCalibrationString == "none") {
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
} else if (toolSizeCalibrationString == "geometric") {
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
} else if (toolSizeCalibrationString == "linear") {
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
} else if (toolSizeCalibrationString == "area") {
out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
} else if (toolSizeCalibrationString != "default") {
LOGW("Invalid value for touch.toolSize.calibration: '%s'",
toolSizeCalibrationString.string());
}
}
out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
out.toolSizeLinearScale);
out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
out.toolSizeLinearBias);
out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
out.toolSizeAreaScale);
out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
out.toolSizeAreaBias);
out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
out.toolSizeIsSummed);
// Pressure
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
String8 pressureCalibrationString;
if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
if (pressureCalibrationString == "none") {
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
} else if (pressureCalibrationString == "physical") {
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
} else if (pressureCalibrationString == "amplitude") {
out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
} else if (pressureCalibrationString != "default") {
LOGW("Invalid value for touch.pressure.calibration: '%s'",
pressureCalibrationString.string());
}
}
out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
String8 pressureSourceString;
if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
if (pressureSourceString == "pressure") {
out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
} else if (pressureSourceString == "touch") {
out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
} else if (pressureSourceString != "default") {
LOGW("Invalid value for touch.pressure.source: '%s'",
pressureSourceString.string());
}
}
out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
out.pressureScale);
// Size
out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
String8 sizeCalibrationString;
if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
if (sizeCalibrationString == "none") {
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
} else if (sizeCalibrationString == "normalized") {
out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
} else if (sizeCalibrationString != "default") {
LOGW("Invalid value for touch.size.calibration: '%s'",
sizeCalibrationString.string());
}
}
// Orientation
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
String8 orientationCalibrationString;
if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
if (orientationCalibrationString == "none") {
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
} else if (orientationCalibrationString == "interpolated") {
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
} else if (orientationCalibrationString == "vector") {
out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
} else if (orientationCalibrationString != "default") {
LOGW("Invalid value for touch.orientation.calibration: '%s'",
orientationCalibrationString.string());
}
}
// Distance
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT;
String8 distanceCalibrationString;
if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) {
if (distanceCalibrationString == "none") {
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
} else if (distanceCalibrationString == "scaled") {
out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
} else if (distanceCalibrationString != "default") {
LOGW("Invalid value for touch.distance.calibration: '%s'",
distanceCalibrationString.string());
}
}
out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"),
out.distanceScale);
}
void TouchInputMapper::resolveCalibration() {
// Pressure
switch (mCalibration.pressureSource) {
case Calibration::PRESSURE_SOURCE_DEFAULT:
if (mRawPointerAxes.pressure.valid) {
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
} else if (mRawPointerAxes.touchMajor.valid) {
mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
}
break;
case Calibration::PRESSURE_SOURCE_PRESSURE:
if (! mRawPointerAxes.pressure.valid) {
LOGW("Calibration property touch.pressure.source is 'pressure' but "
"the pressure axis is not available.");
}
break;
case Calibration::PRESSURE_SOURCE_TOUCH:
if (! mRawPointerAxes.touchMajor.valid) {
LOGW("Calibration property touch.pressure.source is 'touch' but "
"the touchMajor axis is not available.");
}
break;
default:
break;
}
switch (mCalibration.pressureCalibration) {
case Calibration::PRESSURE_CALIBRATION_DEFAULT:
if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
} else {
mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
}
break;
default:
break;
}
// Tool Size
switch (mCalibration.toolSizeCalibration) {
case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
if (mRawPointerAxes.toolMajor.valid) {
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
} else {
mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
}
break;
default:
break;
}
// Touch Size
switch (mCalibration.touchSizeCalibration) {
case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
&& mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
} else {
mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
}
break;
default:
break;
}
// Size
switch (mCalibration.sizeCalibration) {
case Calibration::SIZE_CALIBRATION_DEFAULT:
if (mRawPointerAxes.toolMajor.valid) {
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
} else {
mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
}
break;
default:
break;
}
// Orientation
switch (mCalibration.orientationCalibration) {
case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
if (mRawPointerAxes.orientation.valid) {
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
} else {
mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
}
break;
default:
break;
}
// Distance
switch (mCalibration.distanceCalibration) {
case Calibration::DISTANCE_CALIBRATION_DEFAULT:
if (mRawPointerAxes.distance.valid) {
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED;
} else {
mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE;
}
break;
default:
break;
}
}
void TouchInputMapper::dumpCalibration(String8& dump) {
dump.append(INDENT3 "Calibration:\n");
// Touch Size
switch (mCalibration.touchSizeCalibration) {
case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
dump.append(INDENT4 "touch.touchSize.calibration: none\n");
break;
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
break;
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
break;
default:
LOG_ASSERT(false);
}
// Tool Size
switch (mCalibration.toolSizeCalibration) {
case Calibration::TOOL_SIZE_CALIBRATION_NONE:
dump.append(INDENT4 "touch.toolSize.calibration: none\n");
break;
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
break;
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
break;
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
dump.append(INDENT4 "touch.toolSize.calibration: area\n");
break;
default:
LOG_ASSERT(false);
}
if (mCalibration.haveToolSizeLinearScale) {
dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
mCalibration.toolSizeLinearScale);
}
if (mCalibration.haveToolSizeLinearBias) {
dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
mCalibration.toolSizeLinearBias);
}
if (mCalibration.haveToolSizeAreaScale) {
dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
mCalibration.toolSizeAreaScale);
}
if (mCalibration.haveToolSizeAreaBias) {
dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
mCalibration.toolSizeAreaBias);
}
if (mCalibration.haveToolSizeIsSummed) {
dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
toString(mCalibration.toolSizeIsSummed));
}
// Pressure
switch (mCalibration.pressureCalibration) {
case Calibration::PRESSURE_CALIBRATION_NONE:
dump.append(INDENT4 "touch.pressure.calibration: none\n");
break;
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
dump.append(INDENT4 "touch.pressure.calibration: physical\n");
break;
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
break;
default:
LOG_ASSERT(false);
}
switch (mCalibration.pressureSource) {
case Calibration::PRESSURE_SOURCE_PRESSURE:
dump.append(INDENT4 "touch.pressure.source: pressure\n");
break;
case Calibration::PRESSURE_SOURCE_TOUCH:
dump.append(INDENT4 "touch.pressure.source: touch\n");
break;
case Calibration::PRESSURE_SOURCE_DEFAULT:
break;
default:
LOG_ASSERT(false);
}
if (mCalibration.havePressureScale) {
dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
mCalibration.pressureScale);
}
// Size
switch (mCalibration.sizeCalibration) {
case Calibration::SIZE_CALIBRATION_NONE:
dump.append(INDENT4 "touch.size.calibration: none\n");
break;
case Calibration::SIZE_CALIBRATION_NORMALIZED:
dump.append(INDENT4 "touch.size.calibration: normalized\n");
break;
default:
LOG_ASSERT(false);
}
// Orientation
switch (mCalibration.orientationCalibration) {
case Calibration::ORIENTATION_CALIBRATION_NONE:
dump.append(INDENT4 "touch.orientation.calibration: none\n");
break;
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
break;
case Calibration::ORIENTATION_CALIBRATION_VECTOR:
dump.append(INDENT4 "touch.orientation.calibration: vector\n");
break;
default:
LOG_ASSERT(false);
}
// Distance
switch (mCalibration.distanceCalibration) {
case Calibration::DISTANCE_CALIBRATION_NONE:
dump.append(INDENT4 "touch.distance.calibration: none\n");
break;
case Calibration::DISTANCE_CALIBRATION_SCALED:
dump.append(INDENT4 "touch.distance.calibration: scaled\n");
break;
default:
LOG_ASSERT(false);
}
if (mCalibration.haveDistanceScale) {
dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n",
mCalibration.distanceScale);
}
}
void TouchInputMapper::reset() {
// Synthesize touch up event.
// This will also take care of finishing virtual key processing if needed.
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
mCurrentRawPointerData.clear();
mCurrentButtonState = 0;
syncTouch(when, true);
initialize();
if (mPointerController != NULL
&& mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
mPointerController->clearSpots();
}
InputMapper::reset();
}
void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
#if DEBUG_RAW_EVENTS
if (!havePointerIds) {
LOGD("syncTouch: pointerCount %d -> %d, no pointer ids",
mLastRawPointerData.pointerCount,
mCurrentRawPointerData.pointerCount);
} else {
LOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, "
"hovering ids 0x%08x -> 0x%08x",
mLastRawPointerData.pointerCount,
mCurrentRawPointerData.pointerCount,
mLastRawPointerData.touchingIdBits.value,
mCurrentRawPointerData.touchingIdBits.value,
mLastRawPointerData.hoveringIdBits.value,
mCurrentRawPointerData.hoveringIdBits.value);
}
#endif
// Configure the surface now, if possible.
if (!configureSurface()) {
mLastRawPointerData.clear();
mLastCookedPointerData.clear();
mLastButtonState = 0;
return;
}
// Preprocess pointer data.
if (!havePointerIds) {
assignPointerIds();
}
// Handle policy on initial down or hover events.
uint32_t policyFlags = 0;
if (mLastRawPointerData.pointerCount == 0 && mCurrentRawPointerData.pointerCount != 0) {
if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
// If this is a touch screen, hide the pointer on an initial down.
getContext()->fadePointer();
}
// Initial downs on external touch devices should wake the device.
// We don't do this for internal touch screens to prevent them from waking
// up in your pocket.
// TODO: Use the input device configuration to control this behavior more finely.
if (getDevice()->isExternal()) {
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
}
}
// Synthesize key down from raw buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mTouchSource,
policyFlags, mLastButtonState, mCurrentButtonState);
if (consumeRawTouches(when, policyFlags)) {
mCurrentRawPointerData.clear();
}
if (mPointerController != NULL && mConfig.pointerGesturesEnabled) {
dispatchPointerGestures(when, policyFlags, false /*isTimeout*/);
}
cookPointerData();
dispatchHoverExit(when, policyFlags);
dispatchTouches(when, policyFlags);
dispatchHoverEnterAndMove(when, policyFlags);
// Synthesize key up from raw buttons if needed.
synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mTouchSource,
policyFlags, mLastButtonState, mCurrentButtonState);
// Copy current touch to last touch in preparation for the next cycle.
mLastRawPointerData.copyFrom(mCurrentRawPointerData);
mLastCookedPointerData.copyFrom(mCurrentCookedPointerData);
mLastButtonState = mCurrentButtonState;
}
void TouchInputMapper::timeoutExpired(nsecs_t when) {
if (mPointerController != NULL) {
dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/);
}
}
bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) {
// Check for release of a virtual key.
if (mCurrentVirtualKey.down) {
if (mCurrentRawPointerData.touchingIdBits.isEmpty()) {
// Pointer went up while virtual key was down.
mCurrentVirtualKey.down = false;
if (!mCurrentVirtualKey.ignored) {
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, policyFlags,
AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
}
return true;
}
if (mCurrentRawPointerData.touchingIdBits.count() == 1) {
uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y);
if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) {
// Pointer is still within the space of the virtual key.
return true;
}
}
// Pointer left virtual key area or another pointer also went down.
// Send key cancellation but do not consume the touch yet.
// This is useful when the user swipes through from the virtual key area
// into the main display surface.
mCurrentVirtualKey.down = false;
if (!mCurrentVirtualKey.ignored) {
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, policyFlags,
AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED);
}
}
if (mLastRawPointerData.touchingIdBits.isEmpty()
&& !mCurrentRawPointerData.touchingIdBits.isEmpty()) {
// Pointer just went down. Check for virtual key press or off-screen touches.
uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
if (!isPointInsideSurface(pointer.x, pointer.y)) {
// If exactly one pointer went down, check for virtual key hit.
// Otherwise we will drop the entire stroke.
if (mCurrentRawPointerData.touchingIdBits.count() == 1) {
const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y);
if (virtualKey) {
mCurrentVirtualKey.down = true;
mCurrentVirtualKey.downTime = when;
mCurrentVirtualKey.keyCode = virtualKey->keyCode;
mCurrentVirtualKey.scanCode = virtualKey->scanCode;
mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey(
when, getDevice(), virtualKey->keyCode, virtualKey->scanCode);
if (!mCurrentVirtualKey.ignored) {
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
mCurrentVirtualKey.keyCode,
mCurrentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, policyFlags,
AKEY_EVENT_ACTION_DOWN,
AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
}
}
}
return true;
}
}
// Disable all virtual key touches that happen within a short time interval of the
// most recent touch within the screen area. The idea is to filter out stray
// virtual key presses when interacting with the touch screen.
//
// Problems we're trying to solve:
//
// 1. While scrolling a list or dragging the window shade, the user swipes down into a
// virtual key area that is implemented by a separate touch panel and accidentally
// triggers a virtual key.
//
// 2. While typing in the on screen keyboard, the user taps slightly outside the screen
// area and accidentally triggers a virtual key. This often happens when virtual keys
// are layed out below the screen near to where the on screen keyboard's space bar
// is displayed.
if (mConfig.virtualKeyQuietTime > 0 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) {
mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime);
}
return false;
}
void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags,
int32_t keyEventAction, int32_t keyEventFlags) {
int32_t keyCode = mCurrentVirtualKey.keyCode;
int32_t scanCode = mCurrentVirtualKey.scanCode;
nsecs_t downTime = mCurrentVirtualKey.downTime;
int32_t metaState = mContext->getGlobalMetaState();
policyFlags |= POLICY_FLAG_VIRTUAL;
NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
getListener()->notifyKey(&args);
}
void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits;
BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits;
int32_t metaState = getContext()->getGlobalMetaState();
int32_t buttonState = mCurrentButtonState;
if (currentIdBits == lastIdBits) {
if (!currentIdBits.isEmpty()) {
// No pointer id changes so this is a move event.
// The listener takes care of batching moves so we don't have to deal with that here.
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState,
AMOTION_EVENT_EDGE_FLAG_NONE,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
currentIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
} else {
// There may be pointers going up and pointers going down and pointers moving
// all at the same time.
BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
BitSet32 dispatchedIdBits(lastIdBits.value);
// Update last coordinates of pointers that have moved so that we observe the new
// pointer positions at the same time as other pointers that have just gone up.
bool moveNeeded = updateMovedPointers(
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
mLastCookedPointerData.pointerProperties,
mLastCookedPointerData.pointerCoords,
mLastCookedPointerData.idToIndex,
moveIdBits);
if (buttonState != mLastButtonState) {
moveNeeded = true;
}
// Dispatch pointer up events.
while (!upIdBits.isEmpty()) {
uint32_t upId = upIdBits.clearFirstMarkedBit();
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0,
mLastCookedPointerData.pointerProperties,
mLastCookedPointerData.pointerCoords,
mLastCookedPointerData.idToIndex,
dispatchedIdBits, upId,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
dispatchedIdBits.clearBit(upId);
}
// Dispatch move events if any of the remaining pointers moved from their old locations.
// Although applications receive new locations as part of individual pointer up
// events, they do not generally handle them except when presented in a move event.
if (moveNeeded) {
LOG_ASSERT(moveIdBits.value == dispatchedIdBits.value);
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
dispatchedIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
// Dispatch pointer down events using the new pointer locations.
while (!downIdBits.isEmpty()) {
uint32_t downId = downIdBits.clearFirstMarkedBit();
dispatchedIdBits.markBit(downId);
if (dispatchedIdBits.count() == 1) {
// First pointer is going down. Set down time.
mDownTime = when;
}
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
dispatchedIdBits, downId,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
}
}
void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) {
if (mSentHoverEnter &&
(mCurrentCookedPointerData.hoveringIdBits.isEmpty()
|| !mCurrentCookedPointerData.touchingIdBits.isEmpty())) {
int32_t metaState = getContext()->getGlobalMetaState();
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0,
mLastCookedPointerData.pointerProperties,
mLastCookedPointerData.pointerCoords,
mLastCookedPointerData.idToIndex,
mLastCookedPointerData.hoveringIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
mSentHoverEnter = false;
}
}
void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) {
if (mCurrentCookedPointerData.touchingIdBits.isEmpty()
&& !mCurrentCookedPointerData.hoveringIdBits.isEmpty()) {
int32_t metaState = getContext()->getGlobalMetaState();
if (!mSentHoverEnter) {
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
mCurrentCookedPointerData.hoveringIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
mSentHoverEnter = true;
}
dispatchMotion(when, policyFlags, mTouchSource,
AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0,
mCurrentCookedPointerData.pointerProperties,
mCurrentCookedPointerData.pointerCoords,
mCurrentCookedPointerData.idToIndex,
mCurrentCookedPointerData.hoveringIdBits, -1,
mOrientedXPrecision, mOrientedYPrecision, mDownTime);
}
}
void TouchInputMapper::cookPointerData() {
uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
mCurrentCookedPointerData.clear();
mCurrentCookedPointerData.pointerCount = currentPointerCount;
mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits;
mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits;
// Walk through the the active pointers and map device coordinates onto
// surface coordinates and adjust for display orientation.
for (uint32_t i = 0; i < currentPointerCount; i++) {
const RawPointerData::Pointer& in = mCurrentRawPointerData.pointers[i];
// ToolMajor and ToolMinor
float toolMajor, toolMinor;
switch (mCalibration.toolSizeCalibration) {
case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
toolMajor = in.toolMajor * mGeometricScale;
if (mRawPointerAxes.toolMinor.valid) {
toolMinor = in.toolMinor * mGeometricScale;
} else {
toolMinor = toolMajor;
}
break;
case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
toolMajor = in.toolMajor != 0
? in.toolMajor * mToolSizeLinearScale + mToolSizeLinearBias
: 0;
if (mRawPointerAxes.toolMinor.valid) {
toolMinor = in.toolMinor != 0
? in.toolMinor * mToolSizeLinearScale
+ mToolSizeLinearBias
: 0;
} else {
toolMinor = toolMajor;
}
break;
case Calibration::TOOL_SIZE_CALIBRATION_AREA:
if (in.toolMajor != 0) {
float diameter = sqrtf(in.toolMajor
* mToolSizeAreaScale + mToolSizeAreaBias);
toolMajor = diameter * mToolSizeLinearScale + mToolSizeLinearBias;
} else {
toolMajor = 0;
}
toolMinor = toolMajor;
break;
default:
toolMajor = 0;
toolMinor = 0;
break;
}
if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
uint32_t touchingCount = mCurrentRawPointerData.touchingIdBits.count();
toolMajor /= touchingCount;
toolMinor /= touchingCount;
}
// Pressure
float rawPressure;
switch (mCalibration.pressureSource) {
case Calibration::PRESSURE_SOURCE_PRESSURE:
rawPressure = in.pressure;
break;
case Calibration::PRESSURE_SOURCE_TOUCH:
rawPressure = in.touchMajor;
break;
default:
rawPressure = 0;
}
float pressure;
switch (mCalibration.pressureCalibration) {
case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
pressure = rawPressure * mPressureScale;
break;
default:
pressure = in.isHovering ? 0 : 1;
break;
}
// TouchMajor and TouchMinor
float touchMajor, touchMinor;
switch (mCalibration.touchSizeCalibration) {
case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
touchMajor = in.touchMajor * mGeometricScale;
if (mRawPointerAxes.touchMinor.valid) {
touchMinor = in.touchMinor * mGeometricScale;
} else {
touchMinor = touchMajor;
}
break;
case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
touchMajor = toolMajor * pressure;
touchMinor = toolMinor * pressure;
break;
default:
touchMajor = 0;
touchMinor = 0;
break;
}
if (touchMajor > toolMajor) {
touchMajor = toolMajor;
}
if (touchMinor > toolMinor) {
touchMinor = toolMinor;
}
// Size
float size;
switch (mCalibration.sizeCalibration) {
case Calibration::SIZE_CALIBRATION_NORMALIZED: {
float rawSize = mRawPointerAxes.toolMinor.valid
? avg(in.toolMajor, in.toolMinor)
: in.toolMajor;
size = rawSize * mSizeScale;
break;
}
default:
size = 0;
break;
}
// Orientation
float orientation;
switch (mCalibration.orientationCalibration) {
case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
orientation = in.orientation * mOrientationScale;
break;
case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
int32_t c2 = signExtendNybble(in.orientation & 0x0f);
if (c1 != 0 || c2 != 0) {
orientation = atan2f(c1, c2) * 0.5f;
float scale = 1.0f + hypotf(c1, c2) / 16.0f;
touchMajor *= scale;
touchMinor /= scale;
toolMajor *= scale;
toolMinor /= scale;
} else {
orientation = 0;
}
break;
}
default:
orientation = 0;
}
// Distance
float distance;
switch (mCalibration.distanceCalibration) {
case Calibration::DISTANCE_CALIBRATION_SCALED:
distance = in.distance * mDistanceScale;
break;
default:
distance = 0;
}
// X and Y
// Adjust coords for surface orientation.
float x, y;
switch (mSurfaceOrientation) {
case DISPLAY_ORIENTATION_90:
x = float(in.y - mRawPointerAxes.y.minValue) * mYScale;
y = float(mRawPointerAxes.x.maxValue - in.x) * mXScale;
orientation -= M_PI_2;
if (orientation < - M_PI_2) {
orientation += M_PI;
}
break;
case DISPLAY_ORIENTATION_180:
x = float(mRawPointerAxes.x.maxValue - in.x) * mXScale;
y = float(mRawPointerAxes.y.maxValue - in.y) * mYScale;
break;
case DISPLAY_ORIENTATION_270:
x = float(mRawPointerAxes.y.maxValue - in.y) * mYScale;
y = float(in.x - mRawPointerAxes.x.minValue) * mXScale;
orientation += M_PI_2;
if (orientation > M_PI_2) {
orientation -= M_PI;
}
break;
default:
x = float(in.x - mRawPointerAxes.x.minValue) * mXScale;
y = float(in.y - mRawPointerAxes.y.minValue) * mYScale;
break;
}
// Write output coords.
PointerCoords& out = mCurrentCookedPointerData.pointerCoords[i];
out.clear();
out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance);
// Write output properties.
PointerProperties& properties = mCurrentCookedPointerData.pointerProperties[i];
uint32_t id = in.id;
properties.clear();
properties.id = id;
properties.toolType = in.toolType;
// Write id index.
mCurrentCookedPointerData.idToIndex[id] = i;
}
}
void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags,
bool isTimeout) {
// Update current gesture coordinates.
bool cancelPreviousGesture, finishPreviousGesture;
bool sendEvents = preparePointerGestures(when,
&cancelPreviousGesture, &finishPreviousGesture, isTimeout);
if (!sendEvents) {
return;
}
if (finishPreviousGesture) {
cancelPreviousGesture = false;
}
// Update the pointer presentation and spots.
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
if (finishPreviousGesture || cancelPreviousGesture) {
mPointerController->clearSpots();
}
mPointerController->setSpots(mPointerGesture.currentGestureCoords,
mPointerGesture.currentGestureIdToIndex,
mPointerGesture.currentGestureIdBits);
} else {
mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER);
}
// Show or hide the pointer if needed.
switch (mPointerGesture.currentGestureMode) {
case PointerGesture::NEUTRAL:
case PointerGesture::QUIET:
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
&& (mPointerGesture.lastGestureMode == PointerGesture::SWIPE
|| mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) {
// Remind the user of where the pointer is after finishing a gesture with spots.
mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL);
}
break;
case PointerGesture::TAP:
case PointerGesture::TAP_DRAG:
case PointerGesture::BUTTON_CLICK_OR_DRAG:
case PointerGesture::HOVER:
case PointerGesture::PRESS:
// Unfade the pointer when the current gesture manipulates the
// area directly under the pointer.
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
break;
case PointerGesture::SWIPE:
case PointerGesture::FREEFORM:
// Fade the pointer when the current gesture manipulates a different
// area and there are spots to guide the user experience.
if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
} else {
mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
}
break;
}
// Send events!
int32_t metaState = getContext()->getGlobalMetaState();
int32_t buttonState = mCurrentButtonState;
// Update last coordinates of pointers that have moved so that we observe the new
// pointer positions at the same time as other pointers that have just gone up.
bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP
|| mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG
|| mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
|| mPointerGesture.currentGestureMode == PointerGesture::PRESS
|| mPointerGesture.currentGestureMode == PointerGesture::SWIPE
|| mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
bool moveNeeded = false;
if (down && !cancelPreviousGesture && !finishPreviousGesture
&& !mPointerGesture.lastGestureIdBits.isEmpty()
&& !mPointerGesture.currentGestureIdBits.isEmpty()) {
BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
& mPointerGesture.lastGestureIdBits.value);
moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties,
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
mPointerGesture.lastGestureProperties,
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
movedGestureIdBits);
if (buttonState != mLastButtonState) {
moveNeeded = true;
}
}
// Send motion events for all pointers that went up or were canceled.
BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
if (!dispatchedGestureIdBits.isEmpty()) {
if (cancelPreviousGesture) {
dispatchMotion(when, policyFlags, mPointerSource,
AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState,
AMOTION_EVENT_EDGE_FLAG_NONE,
mPointerGesture.lastGestureProperties,
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
dispatchedGestureIdBits, -1,
0, 0, mPointerGesture.downTime);
dispatchedGestureIdBits.clear();
} else {
BitSet32 upGestureIdBits;
if (finishPreviousGesture) {
upGestureIdBits = dispatchedGestureIdBits;
} else {
upGestureIdBits.value = dispatchedGestureIdBits.value
& ~mPointerGesture.currentGestureIdBits.value;
}
while (!upGestureIdBits.isEmpty()) {
uint32_t id = upGestureIdBits.clearFirstMarkedBit();
dispatchMotion(when, policyFlags, mPointerSource,
AMOTION_EVENT_ACTION_POINTER_UP, 0,
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
mPointerGesture.lastGestureProperties,
mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
dispatchedGestureIdBits, id,
0, 0, mPointerGesture.downTime);
dispatchedGestureIdBits.clearBit(id);
}
}
}
// Send motion events for all pointers that moved.
if (moveNeeded) {
dispatchMotion(when, policyFlags, mPointerSource,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
mPointerGesture.currentGestureProperties,
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
dispatchedGestureIdBits, -1,
0, 0, mPointerGesture.downTime);
}
// Send motion events for all pointers that went down.
if (down) {
BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
& ~dispatchedGestureIdBits.value);
while (!downGestureIdBits.isEmpty()) {
uint32_t id = downGestureIdBits.clearFirstMarkedBit();
dispatchedGestureIdBits.markBit(id);
if (dispatchedGestureIdBits.count() == 1) {
mPointerGesture.downTime = when;
}
dispatchMotion(when, policyFlags, mPointerSource,
AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0,
mPointerGesture.currentGestureProperties,
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
dispatchedGestureIdBits, id,
0, 0, mPointerGesture.downTime);
}
}
// Send motion events for hover.
if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
dispatchMotion(when, policyFlags, mPointerSource,
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
mPointerGesture.currentGestureProperties,
mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
mPointerGesture.currentGestureIdBits, -1,
0, 0, mPointerGesture.downTime);
} else if (dispatchedGestureIdBits.isEmpty()
&& !mPointerGesture.lastGestureIdBits.isEmpty()) {
// Synthesize a hover move event after all pointers go up to indicate that
// the pointer is hovering again even if the user is not currently touching
// the touch pad. This ensures that a view will receive a fresh hover enter
// event after a tap.
float x, y;
mPointerController->getPosition(&x, &y);
PointerProperties pointerProperties;
pointerProperties.clear();
pointerProperties.id = 0;
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
PointerCoords pointerCoords;
pointerCoords.clear();
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
NotifyMotionArgs args(when, getDeviceId(), mPointerSource, policyFlags,
AMOTION_EVENT_ACTION_HOVER_MOVE, 0,
metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
1, &pointerProperties, &pointerCoords, 0, 0, mPointerGesture.downTime);
getListener()->notifyMotion(&args);
}
// Update state.
mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
if (!down) {
mPointerGesture.lastGestureIdBits.clear();
} else {
mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
mPointerGesture.lastGestureProperties[index].copyFrom(
mPointerGesture.currentGestureProperties[index]);
mPointerGesture.lastGestureCoords[index].copyFrom(
mPointerGesture.currentGestureCoords[index]);
mPointerGesture.lastGestureIdToIndex[id] = index;
}
}
}
bool TouchInputMapper::preparePointerGestures(nsecs_t when,
bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) {
*outCancelPreviousGesture = false;
*outFinishPreviousGesture = false;
// Handle TAP timeout.
if (isTimeout) {
#if DEBUG_GESTURES
LOGD("Gestures: Processing timeout");
#endif
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
// The tap/drag timeout has not yet expired.
getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime
+ mConfig.pointerGestureTapDragInterval);
} else {
// The tap is finished.
#if DEBUG_GESTURES
LOGD("Gestures: TAP finished");
#endif
*outFinishPreviousGesture = true;
mPointerGesture.activeGestureId = -1;
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.pointerVelocityControl.reset();
return true;
}
}
// We did not handle this timeout.
return false;
}
// Update the velocity tracker.
{
VelocityTracker::Position positions[MAX_POINTERS];
uint32_t count = 0;
for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits); !idBits.isEmpty(); count++) {
uint32_t id = idBits.clearFirstMarkedBit();
const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id);
positions[count].x = pointer.x * mPointerGestureXMovementScale;
positions[count].y = pointer.y * mPointerGestureYMovementScale;
}
mPointerGesture.velocityTracker.addMovement(when,
mCurrentRawPointerData.touchingIdBits, positions);
}
// Pick a new active touch id if needed.
// Choose an arbitrary pointer that just went down, if there is one.
// Otherwise choose an arbitrary remaining pointer.
// This guarantees we always have an active touch id when there is at least one pointer.
// We keep the same active touch id for as long as possible.
bool activeTouchChanged = false;
int32_t lastActiveTouchId = mPointerGesture.activeTouchId;
int32_t activeTouchId = lastActiveTouchId;
if (activeTouchId < 0) {
if (!mCurrentRawPointerData.touchingIdBits.isEmpty()) {
activeTouchChanged = true;
activeTouchId = mPointerGesture.activeTouchId =
mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
mPointerGesture.firstTouchTime = when;
}
} else if (!mCurrentRawPointerData.touchingIdBits.hasBit(activeTouchId)) {
activeTouchChanged = true;
if (!mCurrentRawPointerData.touchingIdBits.isEmpty()) {
activeTouchId = mPointerGesture.activeTouchId =
mCurrentRawPointerData.touchingIdBits.firstMarkedBit();
} else {
activeTouchId = mPointerGesture.activeTouchId = -1;
}
}
uint32_t currentTouchingPointerCount = mCurrentRawPointerData.touchingIdBits.count();
uint32_t lastTouchingPointerCount = mLastRawPointerData.touchingIdBits.count();
// Determine whether we are in quiet time.
bool isQuietTime = false;
if (activeTouchId < 0) {
mPointerGesture.resetQuietTime();
} else {
isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval;
if (!isQuietTime) {
if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS
|| mPointerGesture.lastGestureMode == PointerGesture::SWIPE
|| mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
&& currentTouchingPointerCount < 2) {
// Enter quiet time when exiting swipe or freeform state.
// This is to prevent accidentally entering the hover state and flinging the
// pointer when finishing a swipe and there is still one pointer left onscreen.
isQuietTime = true;
} else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
&& currentTouchingPointerCount >= 2
&& !isPointerDown(mCurrentButtonState)) {
// Enter quiet time when releasing the button and there are still two or more
// fingers down. This may indicate that one finger was used to press the button
// but it has not gone up yet.
isQuietTime = true;
}
if (isQuietTime) {
mPointerGesture.quietTime = when;
}
}
}
// Switch states based on button and pointer state.
if (isQuietTime) {
// Case 1: Quiet time. (QUIET)
#if DEBUG_GESTURES
LOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime
+ mConfig.pointerGestureQuietInterval - when) * 0.000001f);
#endif
if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) {
*outFinishPreviousGesture = true;
}
mPointerGesture.activeGestureId = -1;
mPointerGesture.currentGestureMode = PointerGesture::QUIET;
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.pointerVelocityControl.reset();
} else if (isPointerDown(mCurrentButtonState)) {
// Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG)
// The pointer follows the active touch point.
// Emit DOWN, MOVE, UP events at the pointer location.
//
// Only the active touch matters; other fingers are ignored. This policy helps
// to handle the case where the user places a second finger on the touch pad
// to apply the necessary force to depress an integrated button below the surface.
// We don't want the second finger to be delivered to applications.
//
// For this to work well, we need to make sure to track the pointer that is really
// active. If the user first puts one finger down to click then adds another
// finger to drag then the active pointer should switch to the finger that is
// being dragged.
#if DEBUG_GESTURES
LOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, "
"currentTouchingPointerCount=%d", activeTouchId, currentTouchingPointerCount);
#endif
// Reset state when just starting.
if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) {
*outFinishPreviousGesture = true;
mPointerGesture.activeGestureId = 0;
}
// Switch pointers if needed.
// Find the fastest pointer and follow it.
if (activeTouchId >= 0 && currentTouchingPointerCount > 1) {
int32_t bestId = -1;
float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed;
for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
float vx, vy;
if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
float speed = hypotf(vx, vy);
if (speed > bestSpeed) {
bestId = id;
bestSpeed = speed;
}
}
}
if (bestId >= 0 && bestId != activeTouchId) {
mPointerGesture.activeTouchId = activeTouchId = bestId;
activeTouchChanged = true;
#if DEBUG_GESTURES
LOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, "
"bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
#endif
}
}
if (activeTouchId >= 0 && mLastRawPointerData.touchingIdBits.hasBit(activeTouchId)) {
const RawPointerData::Pointer& currentPointer =
mCurrentRawPointerData.pointerForId(activeTouchId);
const RawPointerData::Pointer& lastPointer =
mLastRawPointerData.pointerForId(activeTouchId);
float deltaX = (currentPointer.x - lastPointer.x) * mPointerGestureXMovementScale;
float deltaY = (currentPointer.y - lastPointer.y) * mPointerGestureYMovementScale;
rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
// Move the pointer using a relative motion.
// When using spots, the click will occur at the position of the anchor
// spot and all other spots will move there.
mPointerController->move(deltaX, deltaY);
} else {
mPointerGesture.pointerVelocityControl.reset();
}
float x, y;
mPointerController->getPosition(&x, &y);
mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG;
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
mPointerGesture.currentGestureProperties[0].clear();
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
mPointerGesture.currentGestureCoords[0].clear();
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
} else if (currentTouchingPointerCount == 0) {
// Case 3. No fingers down and button is not pressed. (NEUTRAL)
if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) {
*outFinishPreviousGesture = true;
}
// Watch for taps coming out of HOVER or TAP_DRAG mode.
// Checking for taps after TAP_DRAG allows us to detect double-taps.
bool tapped = false;
if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER
|| mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG)
&& lastTouchingPointerCount == 1) {
if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) {
float x, y;
mPointerController->getPosition(&x, &y);
if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
&& fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
#if DEBUG_GESTURES
LOGD("Gestures: TAP");
#endif
mPointerGesture.tapUpTime = when;
getContext()->requestTimeoutAtTime(when
+ mConfig.pointerGestureTapDragInterval);
mPointerGesture.activeGestureId = 0;
mPointerGesture.currentGestureMode = PointerGesture::TAP;
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.currentGestureIdBits.markBit(
mPointerGesture.activeGestureId);
mPointerGesture.currentGestureIdToIndex[
mPointerGesture.activeGestureId] = 0;
mPointerGesture.currentGestureProperties[0].clear();
mPointerGesture.currentGestureProperties[0].id =
mPointerGesture.activeGestureId;
mPointerGesture.currentGestureProperties[0].toolType =
AMOTION_EVENT_TOOL_TYPE_FINGER;
mPointerGesture.currentGestureCoords[0].clear();
mPointerGesture.currentGestureCoords[0].setAxisValue(
AMOTION_EVENT_AXIS_X, mPointerGesture.tapX);
mPointerGesture.currentGestureCoords[0].setAxisValue(
AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY);
mPointerGesture.currentGestureCoords[0].setAxisValue(
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
tapped = true;
} else {
#if DEBUG_GESTURES
LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
x - mPointerGesture.tapX,
y - mPointerGesture.tapY);
#endif
}
} else {
#if DEBUG_GESTURES
LOGD("Gestures: Not a TAP, %0.3fms since down",
(when - mPointerGesture.tapDownTime) * 0.000001f);
#endif
}
}
mPointerGesture.pointerVelocityControl.reset();
if (!tapped) {
#if DEBUG_GESTURES
LOGD("Gestures: NEUTRAL");
#endif
mPointerGesture.activeGestureId = -1;
mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
mPointerGesture.currentGestureIdBits.clear();
}
} else if (currentTouchingPointerCount == 1) {
// Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG)
// The pointer follows the active touch point.
// When in HOVER, emit HOVER_MOVE events at the pointer location.
// When in TAP_DRAG, emit MOVE events at the pointer location.
LOG_ASSERT(activeTouchId >= 0);
mPointerGesture.currentGestureMode = PointerGesture::HOVER;
if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) {
float x, y;
mPointerController->getPosition(&x, &y);
if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop
&& fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) {
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
} else {
#if DEBUG_GESTURES
LOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f",
x - mPointerGesture.tapX,
y - mPointerGesture.tapY);
#endif
}
} else {
#if DEBUG_GESTURES
LOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up",
(when - mPointerGesture.tapUpTime) * 0.000001f);
#endif
}
} else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) {
mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
}
if (mLastRawPointerData.touchingIdBits.hasBit(activeTouchId)) {
const RawPointerData::Pointer& currentPointer =
mCurrentRawPointerData.pointerForId(activeTouchId);
const RawPointerData::Pointer& lastPointer =
mLastRawPointerData.pointerForId(activeTouchId);
float deltaX = (currentPointer.x - lastPointer.x)
* mPointerGestureXMovementScale;
float deltaY = (currentPointer.y - lastPointer.y)
* mPointerGestureYMovementScale;
rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
// Move the pointer using a relative motion.
// When using spots, the hover or drag will occur at the position of the anchor spot.
mPointerController->move(deltaX, deltaY);
} else {
mPointerGesture.pointerVelocityControl.reset();
}
bool down;
if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) {
#if DEBUG_GESTURES
LOGD("Gestures: TAP_DRAG");
#endif
down = true;
} else {
#if DEBUG_GESTURES
LOGD("Gestures: HOVER");
#endif
if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) {
*outFinishPreviousGesture = true;
}
mPointerGesture.activeGestureId = 0;
down = false;
}
float x, y;
mPointerController->getPosition(&x, &y);
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
mPointerGesture.currentGestureProperties[0].clear();
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
mPointerGesture.currentGestureProperties[0].toolType =
AMOTION_EVENT_TOOL_TYPE_FINGER;
mPointerGesture.currentGestureCoords[0].clear();
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
down ? 1.0f : 0.0f);
if (lastTouchingPointerCount == 0 && currentTouchingPointerCount != 0) {
mPointerGesture.resetTap();
mPointerGesture.tapDownTime = when;
mPointerGesture.tapX = x;
mPointerGesture.tapY = y;
}
} else {
// Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM)
// We need to provide feedback for each finger that goes down so we cannot wait
// for the fingers to move before deciding what to do.
//
// The ambiguous case is deciding what to do when there are two fingers down but they
// have not moved enough to determine whether they are part of a drag or part of a
// freeform gesture, or just a press or long-press at the pointer location.
//
// When there are two fingers we start with the PRESS hypothesis and we generate a
// down at the pointer location.
//
// When the two fingers move enough or when additional fingers are added, we make
// a decision to transition into SWIPE or FREEFORM mode accordingly.
LOG_ASSERT(activeTouchId >= 0);
bool settled = when >= mPointerGesture.firstTouchTime
+ mConfig.pointerGestureMultitouchSettleInterval;
if (mPointerGesture.lastGestureMode != PointerGesture::PRESS
&& mPointerGesture.lastGestureMode != PointerGesture::SWIPE
&& mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
*outFinishPreviousGesture = true;
} else if (!settled && currentTouchingPointerCount > lastTouchingPointerCount) {
// Additional pointers have gone down but not yet settled.
// Reset the gesture.
#if DEBUG_GESTURES
LOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, "
"settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
+ mConfig.pointerGestureMultitouchSettleInterval - when)
* 0.000001f);
#endif
*outCancelPreviousGesture = true;
} else {
// Continue previous gesture.
mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
}
if (*outFinishPreviousGesture || *outCancelPreviousGesture) {
mPointerGesture.currentGestureMode = PointerGesture::PRESS;
mPointerGesture.activeGestureId = 0;
mPointerGesture.referenceIdBits.clear();
mPointerGesture.pointerVelocityControl.reset();
// Use the centroid and pointer location as the reference points for the gesture.
#if DEBUG_GESTURES
LOGD("Gestures: Using centroid as reference for MULTITOUCH, "
"settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
+ mConfig.pointerGestureMultitouchSettleInterval - when)
* 0.000001f);
#endif
mCurrentRawPointerData.getCentroidOfTouchingPointers(
&mPointerGesture.referenceTouchX,
&mPointerGesture.referenceTouchY);
mPointerController->getPosition(&mPointerGesture.referenceGestureX,
&mPointerGesture.referenceGestureY);
}
// Clear the reference deltas for fingers not yet included in the reference calculation.
for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits.value
& ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
mPointerGesture.referenceDeltas[id].dx = 0;
mPointerGesture.referenceDeltas[id].dy = 0;
}
mPointerGesture.referenceIdBits = mCurrentRawPointerData.touchingIdBits;
// Add delta for all fingers and calculate a common movement delta.
float commonDeltaX = 0, commonDeltaY = 0;
BitSet32 commonIdBits(mLastRawPointerData.touchingIdBits.value
& mCurrentRawPointerData.touchingIdBits.value);
for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) {
bool first = (idBits == commonIdBits);
uint32_t id = idBits.clearFirstMarkedBit();
const RawPointerData::Pointer& cpd = mCurrentRawPointerData.pointerForId(id);
const RawPointerData::Pointer& lpd = mLastRawPointerData.pointerForId(id);
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
delta.dx += cpd.x - lpd.x;
delta.dy += cpd.y - lpd.y;
if (first) {
commonDeltaX = delta.dx;
commonDeltaY = delta.dy;
} else {
commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx);
commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy);
}
}
// Consider transitions from PRESS to SWIPE or MULTITOUCH.
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
float dist[MAX_POINTER_ID + 1];
int32_t distOverThreshold = 0;
for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
dist[id] = hypotf(delta.dx * mPointerGestureXZoomScale,
delta.dy * mPointerGestureYZoomScale);
if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) {
distOverThreshold += 1;
}
}
// Only transition when at least two pointers have moved further than
// the minimum distance threshold.
if (distOverThreshold >= 2) {
if (currentTouchingPointerCount > 2) {
// There are more than two pointers, switch to FREEFORM.
#if DEBUG_GESTURES
LOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2",
currentTouchingPointerCount);
#endif
*outCancelPreviousGesture = true;
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
} else {
// There are exactly two pointers.
BitSet32 idBits(mCurrentRawPointerData.touchingIdBits);
uint32_t id1 = idBits.clearFirstMarkedBit();
uint32_t id2 = idBits.firstMarkedBit();
const RawPointerData::Pointer& p1 = mCurrentRawPointerData.pointerForId(id1);
const RawPointerData::Pointer& p2 = mCurrentRawPointerData.pointerForId(id2);
float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y);
if (mutualDistance > mPointerGestureMaxSwipeWidth) {
// There are two pointers but they are too far apart for a SWIPE,
// switch to FREEFORM.
#if DEBUG_GESTURES
LOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f",
mutualDistance, mPointerGestureMaxSwipeWidth);
#endif
*outCancelPreviousGesture = true;
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
} else {
// There are two pointers. Wait for both pointers to start moving
// before deciding whether this is a SWIPE or FREEFORM gesture.
float dist1 = dist[id1];
float dist2 = dist[id2];
if (dist1 >= mConfig.pointerGestureMultitouchMinDistance
&& dist2 >= mConfig.pointerGestureMultitouchMinDistance) {
// Calculate the dot product of the displacement vectors.
// When the vectors are oriented in approximately the same direction,
// the angle betweeen them is near zero and the cosine of the angle
// approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1];
PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2];
float dx1 = delta1.dx * mPointerGestureXZoomScale;
float dy1 = delta1.dy * mPointerGestureYZoomScale;
float dx2 = delta2.dx * mPointerGestureXZoomScale;
float dy2 = delta2.dy * mPointerGestureYZoomScale;
float dot = dx1 * dx2 + dy1 * dy2;
float cosine = dot / (dist1 * dist2); // denominator always > 0
if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) {
// Pointers are moving in the same direction. Switch to SWIPE.
#if DEBUG_GESTURES
LOGD("Gestures: PRESS transitioned to SWIPE, "
"dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
"cosine %0.3f >= %0.3f",
dist1, mConfig.pointerGestureMultitouchMinDistance,
dist2, mConfig.pointerGestureMultitouchMinDistance,
cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
#endif
mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
} else {
// Pointers are moving in different directions. Switch to FREEFORM.
#if DEBUG_GESTURES
LOGD("Gestures: PRESS transitioned to FREEFORM, "
"dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
"cosine %0.3f < %0.3f",
dist1, mConfig.pointerGestureMultitouchMinDistance,
dist2, mConfig.pointerGestureMultitouchMinDistance,
cosine, mConfig.pointerGestureSwipeTransitionAngleCosine);
#endif
*outCancelPreviousGesture = true;
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
}
}
}
}
}
} else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
// Switch from SWIPE to FREEFORM if additional pointers go down.
// Cancel previous gesture.
if (currentTouchingPointerCount > 2) {
#if DEBUG_GESTURES
LOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2",
currentTouchingPointerCount);
#endif
*outCancelPreviousGesture = true;
mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
}
}
// Move the reference points based on the overall group motion of the fingers
// except in PRESS mode while waiting for a transition to occur.
if (mPointerGesture.currentGestureMode != PointerGesture::PRESS
&& (commonDeltaX || commonDeltaY)) {
for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
delta.dx = 0;
delta.dy = 0;
}
mPointerGesture.referenceTouchX += commonDeltaX;
mPointerGesture.referenceTouchY += commonDeltaY;
commonDeltaX *= mPointerGestureXMovementScale;
commonDeltaY *= mPointerGestureYMovementScale;
rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY);
mPointerGesture.pointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY);
mPointerGesture.referenceGestureX += commonDeltaX;
mPointerGesture.referenceGestureY += commonDeltaY;
}
// Report gestures.
if (mPointerGesture.currentGestureMode == PointerGesture::PRESS
|| mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
// PRESS or SWIPE mode.
#if DEBUG_GESTURES
LOGD("Gestures: PRESS or SWIPE activeTouchId=%d,"
"activeGestureId=%d, currentTouchPointerCount=%d",
activeTouchId, mPointerGesture.activeGestureId, currentTouchingPointerCount);
#endif
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
mPointerGesture.currentGestureIdBits.clear();
mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
mPointerGesture.currentGestureProperties[0].clear();
mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId;
mPointerGesture.currentGestureProperties[0].toolType =
AMOTION_EVENT_TOOL_TYPE_FINGER;
mPointerGesture.currentGestureCoords[0].clear();
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
mPointerGesture.referenceGestureX);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
mPointerGesture.referenceGestureY);
mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
} else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
// FREEFORM mode.
#if DEBUG_GESTURES
LOGD("Gestures: FREEFORM activeTouchId=%d,"
"activeGestureId=%d, currentTouchPointerCount=%d",
activeTouchId, mPointerGesture.activeGestureId, currentTouchingPointerCount);
#endif
LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
mPointerGesture.currentGestureIdBits.clear();
BitSet32 mappedTouchIdBits;
BitSet32 usedGestureIdBits;
if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
// Initially, assign the active gesture id to the active touch point
// if there is one. No other touch id bits are mapped yet.
if (!*outCancelPreviousGesture) {
mappedTouchIdBits.markBit(activeTouchId);
usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
mPointerGesture.activeGestureId;
} else {
mPointerGesture.activeGestureId = -1;
}
} else {
// Otherwise, assume we mapped all touches from the previous frame.
// Reuse all mappings that are still applicable.
mappedTouchIdBits.value = mLastRawPointerData.touchingIdBits.value
& mCurrentRawPointerData.touchingIdBits.value;
usedGestureIdBits = mPointerGesture.lastGestureIdBits;
// Check whether we need to choose a new active gesture id because the
// current went went up.
for (BitSet32 upTouchIdBits(mLastRawPointerData.touchingIdBits.value
& ~mCurrentRawPointerData.touchingIdBits.value);
!upTouchIdBits.isEmpty(); ) {
uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit();
uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
mPointerGesture.activeGestureId = -1;
break;
}
}
}
#if DEBUG_GESTURES
LOGD("Gestures: FREEFORM follow up "
"mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
"activeGestureId=%d",
mappedTouchIdBits.value, usedGestureIdBits.value,
mPointerGesture.activeGestureId);
#endif
BitSet32 idBits(mCurrentRawPointerData.touchingIdBits);
for (uint32_t i = 0; i < currentTouchingPointerCount; i++) {
uint32_t touchId = idBits.clearFirstMarkedBit();
uint32_t gestureId;
if (!mappedTouchIdBits.hasBit(touchId)) {
gestureId = usedGestureIdBits.markFirstUnmarkedBit();
mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
#if DEBUG_GESTURES
LOGD("Gestures: FREEFORM "
"new mapping for touch id %d -> gesture id %d",
touchId, gestureId);
#endif
} else {
gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
#if DEBUG_GESTURES
LOGD("Gestures: FREEFORM "
"existing mapping for touch id %d -> gesture id %d",
touchId, gestureId);
#endif
}
mPointerGesture.currentGestureIdBits.markBit(gestureId);
mPointerGesture.currentGestureIdToIndex[gestureId] = i;
const RawPointerData::Pointer& pointer =
mCurrentRawPointerData.pointerForId(touchId);
float deltaX = (pointer.x - mPointerGesture.referenceTouchX)
* mPointerGestureXZoomScale;
float deltaY = (pointer.y - mPointerGesture.referenceTouchY)
* mPointerGestureYZoomScale;
rotateDelta(mSurfaceOrientation, &deltaX, &deltaY);
mPointerGesture.currentGestureProperties[i].clear();
mPointerGesture.currentGestureProperties[i].id = gestureId;
mPointerGesture.currentGestureProperties[i].toolType =
AMOTION_EVENT_TOOL_TYPE_FINGER;
mPointerGesture.currentGestureCoords[i].clear();
mPointerGesture.currentGestureCoords[i].setAxisValue(
AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX);
mPointerGesture.currentGestureCoords[i].setAxisValue(
AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY);
mPointerGesture.currentGestureCoords[i].setAxisValue(
AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
}
if (mPointerGesture.activeGestureId < 0) {
mPointerGesture.activeGestureId =
mPointerGesture.currentGestureIdBits.firstMarkedBit();
#if DEBUG_GESTURES
LOGD("Gestures: FREEFORM new "
"activeGestureId=%d", mPointerGesture.activeGestureId);
#endif
}
}
}
mPointerController->setButtonState(mCurrentButtonState);
#if DEBUG_GESTURES
LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
"currentGestureMode=%d, currentGestureIdBits=0x%08x, "
"lastGestureMode=%d, lastGestureIdBits=0x%08x",
toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value,
mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value);
for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
const PointerProperties& properties = mPointerGesture.currentGestureProperties[index];
const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
LOGD(" currentGesture[%d]: index=%d, toolType=%d, "
"x=%0.3f, y=%0.3f, pressure=%0.3f",
id, index, properties.toolType,
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
}
for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
const PointerProperties& properties = mPointerGesture.lastGestureProperties[index];
const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
LOGD(" lastGesture[%d]: index=%d, toolType=%d, "
"x=%0.3f, y=%0.3f, pressure=%0.3f",
id, index, properties.toolType,
coords.getAxisValue(AMOTION_EVENT_AXIS_X),
coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
}
#endif
return true;
}
void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
const PointerProperties* properties, const PointerCoords* coords,
const uint32_t* idToIndex, BitSet32 idBits,
int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
PointerCoords pointerCoords[MAX_POINTERS];
PointerProperties pointerProperties[MAX_POINTERS];
uint32_t pointerCount = 0;
while (!idBits.isEmpty()) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t index = idToIndex[id];
pointerProperties[pointerCount].copyFrom(properties[index]);
pointerCoords[pointerCount].copyFrom(coords[index]);
if (changedId >= 0 && id == uint32_t(changedId)) {
action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
pointerCount += 1;
}
LOG_ASSERT(pointerCount != 0);
if (changedId >= 0 && pointerCount == 1) {
// Replace initial down and final up action.
// We can compare the action without masking off the changed pointer index
// because we know the index is 0.
if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
action = AMOTION_EVENT_ACTION_DOWN;
} else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
action = AMOTION_EVENT_ACTION_UP;
} else {
// Can't happen.
LOG_ASSERT(false);
}
}
NotifyMotionArgs args(when, getDeviceId(), source, policyFlags,
action, flags, metaState, buttonState, edgeFlags,
pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, downTime);
getListener()->notifyMotion(&args);
}
bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties,
const PointerCoords* inCoords, const uint32_t* inIdToIndex,
PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex,
BitSet32 idBits) const {
bool changed = false;
while (!idBits.isEmpty()) {
uint32_t id = idBits.clearFirstMarkedBit();
uint32_t inIndex = inIdToIndex[id];
uint32_t outIndex = outIdToIndex[id];
const PointerProperties& curInProperties = inProperties[inIndex];
const PointerCoords& curInCoords = inCoords[inIndex];
PointerProperties& curOutProperties = outProperties[outIndex];
PointerCoords& curOutCoords = outCoords[outIndex];
if (curInProperties != curOutProperties) {
curOutProperties.copyFrom(curInProperties);
changed = true;
}
if (curInCoords != curOutCoords) {
curOutCoords.copyFrom(curInCoords);
changed = true;
}
}
return changed;
}
void TouchInputMapper::fadePointer() {
if (mPointerController != NULL) {
mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
}
}
bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) {
return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue
&& y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue;
}
const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit(
int32_t x, int32_t y) {
size_t numVirtualKeys = mVirtualKeys.size();
for (size_t i = 0; i < numVirtualKeys; i++) {
const VirtualKey& virtualKey = mVirtualKeys[i];
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
"left=%d, top=%d, right=%d, bottom=%d",
x, y,
virtualKey.keyCode, virtualKey.scanCode,
virtualKey.hitLeft, virtualKey.hitTop,
virtualKey.hitRight, virtualKey.hitBottom);
#endif
if (virtualKey.isHit(x, y)) {
return & virtualKey;
}
}
return NULL;
}
void TouchInputMapper::assignPointerIds() {
uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount;
uint32_t lastPointerCount = mLastRawPointerData.pointerCount;
mCurrentRawPointerData.clearIdBits();
if (currentPointerCount == 0) {
// No pointers to assign.
return;
}
if (lastPointerCount == 0) {
// All pointers are new.
for (uint32_t i = 0; i < currentPointerCount; i++) {
uint32_t id = i;
mCurrentRawPointerData.pointers[i].id = id;
mCurrentRawPointerData.idToIndex[id] = i;
mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i));
}
return;
}
if (currentPointerCount == 1 && lastPointerCount == 1
&& mCurrentRawPointerData.pointers[0].toolType
== mLastRawPointerData.pointers[0].toolType) {
// Only one pointer and no change in count so it must have the same id as before.
uint32_t id = mLastRawPointerData.pointers[0].id;
mCurrentRawPointerData.pointers[0].id = id;
mCurrentRawPointerData.idToIndex[id] = 0;
mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0));
return;
}
// General case.
// We build a heap of squared euclidean distances between current and last pointers
// associated with the current and last pointer indices. Then, we find the best
// match (by distance) for each current pointer.
// The pointers must have the same tool type but it is possible for them to
// transition from hovering to touching or vice-versa while retaining the same id.
PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
uint32_t heapSize = 0;
for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
currentPointerIndex++) {
for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
lastPointerIndex++) {
const RawPointerData::Pointer& currentPointer =
mCurrentRawPointerData.pointers[currentPointerIndex];
const RawPointerData::Pointer& lastPointer =
mLastRawPointerData.pointers[lastPointerIndex];
if (currentPointer.toolType == lastPointer.toolType) {
int64_t deltaX = currentPointer.x - lastPointer.x;
int64_t deltaY = currentPointer.y - lastPointer.y;
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
// Insert new element into the heap (sift up).
heap[heapSize].currentPointerIndex = currentPointerIndex;
heap[heapSize].lastPointerIndex = lastPointerIndex;
heap[heapSize].distance = distance;
heapSize += 1;
}
}
}
// Heapify
for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
startIndex -= 1;
for (uint32_t parentIndex = startIndex; ;) {
uint32_t childIndex = parentIndex * 2 + 1;
if (childIndex >= heapSize) {
break;
}
if (childIndex + 1 < heapSize
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
childIndex += 1;
}
if (heap[parentIndex].distance <= heap[childIndex].distance) {
break;
}
swap(heap[parentIndex], heap[childIndex]);
parentIndex = childIndex;
}
}
#if DEBUG_POINTER_ASSIGNMENT
LOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize);
for (size_t i = 0; i < heapSize; i++) {
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
heap[i].distance);
}
#endif
// Pull matches out by increasing order of distance.
// To avoid reassigning pointers that have already been matched, the loop keeps track
// of which last and current pointers have been matched using the matchedXXXBits variables.
// It also tracks the used pointer id bits.
BitSet32 matchedLastBits(0);
BitSet32 matchedCurrentBits(0);
BitSet32 usedIdBits(0);
bool first = true;
for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) {
while (heapSize > 0) {
if (first) {
// The first time through the loop, we just consume the root element of
// the heap (the one with smallest distance).
first = false;
} else {
// Previous iterations consumed the root element of the heap.
// Pop root element off of the heap (sift down).
heap[0] = heap[heapSize];
for (uint32_t parentIndex = 0; ;) {
uint32_t childIndex = parentIndex * 2 + 1;
if (childIndex >= heapSize) {
break;
}
if (childIndex + 1 < heapSize
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
childIndex += 1;
}
if (heap[parentIndex].distance <= heap[childIndex].distance) {
break;
}
swap(heap[parentIndex], heap[childIndex]);
parentIndex = childIndex;
}
#if DEBUG_POINTER_ASSIGNMENT
LOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize);
for (size_t i = 0; i < heapSize; i++) {
LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld",
i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
heap[i].distance);
}
#endif
}
heapSize -= 1;
uint32_t currentPointerIndex = heap[0].currentPointerIndex;
if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
uint32_t lastPointerIndex = heap[0].lastPointerIndex;
if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
matchedCurrentBits.markBit(currentPointerIndex);
matchedLastBits.markBit(lastPointerIndex);
uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id;
mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
mCurrentRawPointerData.markIdBit(id,
mCurrentRawPointerData.isHovering(currentPointerIndex));
usedIdBits.markBit(id);
#if DEBUG_POINTER_ASSIGNMENT
LOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
lastPointerIndex, currentPointerIndex, id, heap[0].distance);
#endif
break;
}
}
// Assign fresh ids to pointers that were not matched in the process.
for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) {
uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit();
uint32_t id = usedIdBits.markFirstUnmarkedBit();
mCurrentRawPointerData.pointers[currentPointerIndex].id = id;
mCurrentRawPointerData.idToIndex[id] = currentPointerIndex;
mCurrentRawPointerData.markIdBit(id,
mCurrentRawPointerData.isHovering(currentPointerIndex));
#if DEBUG_POINTER_ASSIGNMENT
LOGD("assignPointerIds - assigned: cur=%d, id=%d",
currentPointerIndex, id);
#endif
}
}
int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) {
return AKEY_STATE_VIRTUAL;
}
size_t numVirtualKeys = mVirtualKeys.size();
for (size_t i = 0; i < numVirtualKeys; i++) {
const VirtualKey& virtualKey = mVirtualKeys[i];
if (virtualKey.keyCode == keyCode) {
return AKEY_STATE_UP;
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) {
return AKEY_STATE_VIRTUAL;
}
size_t numVirtualKeys = mVirtualKeys.size();
for (size_t i = 0; i < numVirtualKeys; i++) {
const VirtualKey& virtualKey = mVirtualKeys[i];
if (virtualKey.scanCode == scanCode) {
return AKEY_STATE_UP;
}
}
return AKEY_STATE_UNKNOWN;
}
bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
size_t numVirtualKeys = mVirtualKeys.size();
for (size_t i = 0; i < numVirtualKeys; i++) {
const VirtualKey& virtualKey = mVirtualKeys[i];
for (size_t i = 0; i < numCodes; i++) {
if (virtualKey.keyCode == keyCodes[i]) {
outFlags[i] = 1;
}
}
}
return true;
}
// --- SingleTouchInputMapper ---
SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
TouchInputMapper(device) {
clearState();
}
SingleTouchInputMapper::~SingleTouchInputMapper() {
}
void SingleTouchInputMapper::clearState() {
mCursorButtonAccumulator.clearButtons();
mTouchButtonAccumulator.clearButtons();
mSingleTouchMotionAccumulator.clearAbsoluteAxes();
}
void SingleTouchInputMapper::reset() {
TouchInputMapper::reset();
clearState();
}
void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
mCursorButtonAccumulator.process(rawEvent);
mTouchButtonAccumulator.process(rawEvent);
mSingleTouchMotionAccumulator.process(rawEvent);
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
sync(rawEvent->when);
}
}
void SingleTouchInputMapper::sync(nsecs_t when) {
mCurrentRawPointerData.clear();
mCurrentButtonState = 0;
if (mTouchButtonAccumulator.isToolActive()) {
mCurrentRawPointerData.pointerCount = 1;
mCurrentRawPointerData.idToIndex[0] = 0;
bool isHovering = mTouchButtonAccumulator.isHovering()
|| mSingleTouchMotionAccumulator.getAbsoluteDistance() > 0;
mCurrentRawPointerData.markIdBit(0, isHovering);
RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[0];
outPointer.id = 0;
outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX();
outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY();
outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure();
outPointer.touchMajor = 0;
outPointer.touchMinor = 0;
outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth();
outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth();
outPointer.orientation = 0;
outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance();
outPointer.toolType = mTouchButtonAccumulator.getToolType();
if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
}
outPointer.isHovering = isHovering;
}
mCurrentButtonState = mTouchButtonAccumulator.getButtonState()
| mCursorButtonAccumulator.getButtonState();
syncTouch(when, true);
}
void SingleTouchInputMapper::configureRawPointerAxes() {
TouchInputMapper::configureRawPointerAxes();
mTouchButtonAccumulator.configure(getDevice());
getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x);
getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y);
getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure);
getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor);
getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance);
}
// --- MultiTouchInputMapper ---
MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
TouchInputMapper(device) {
}
MultiTouchInputMapper::~MultiTouchInputMapper() {
}
void MultiTouchInputMapper::clearState() {
mCursorButtonAccumulator.clearButtons();
mTouchButtonAccumulator.clearButtons();
mPointerIdBits.clear();
if (mMultiTouchMotionAccumulator.isUsingSlotsProtocol()) {
// Query the driver for the current slot index and use it as the initial slot
// before we start reading events from the device. It is possible that the
// current slot index will not be the same as it was when the first event was
// written into the evdev buffer, which means the input mapper could start
// out of sync with the initial state of the events in the evdev buffer.
// In the extremely unlikely case that this happens, the data from
// two slots will be confused until the next ABS_MT_SLOT event is received.
// This can cause the touch point to "jump", but at least there will be
// no stuck touches.
int32_t initialSlot;
status_t status = getEventHub()->getAbsoluteAxisValue(getDeviceId(), ABS_MT_SLOT,
&initialSlot);
if (status) {
LOGW("Could not retrieve current multitouch slot index. status=%d", status);
initialSlot = -1;
}
mMultiTouchMotionAccumulator.clearSlots(initialSlot);
} else {
mMultiTouchMotionAccumulator.clearSlots(-1);
}
}
void MultiTouchInputMapper::reset() {
TouchInputMapper::reset();
clearState();
}
void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
mCursorButtonAccumulator.process(rawEvent);
mTouchButtonAccumulator.process(rawEvent);
mMultiTouchMotionAccumulator.process(rawEvent);
if (rawEvent->type == EV_SYN && rawEvent->scanCode == SYN_REPORT) {
sync(rawEvent->when);
}
}
void MultiTouchInputMapper::sync(nsecs_t when) {
size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();
size_t outCount = 0;
bool havePointerIds = true;
BitSet32 newPointerIdBits;
mCurrentRawPointerData.clear();
for (size_t inIndex = 0; inIndex < inCount; inIndex++) {
const MultiTouchMotionAccumulator::Slot* inSlot =
mMultiTouchMotionAccumulator.getSlot(inIndex);
if (!inSlot->isInUse()) {
continue;
}
if (outCount >= MAX_POINTERS) {
#if DEBUG_POINTERS
LOGD("MultiTouch device %s emitted more than maximum of %d pointers; "
"ignoring the rest.",
getDeviceName().string(), MAX_POINTERS);
#endif
break; // too many fingers!
}
RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount];
outPointer.x = inSlot->getX();
outPointer.y = inSlot->getY();
outPointer.pressure = inSlot->getPressure();
outPointer.touchMajor = inSlot->getTouchMajor();
outPointer.touchMinor = inSlot->getTouchMinor();
outPointer.toolMajor = inSlot->getToolMajor();
outPointer.toolMinor = inSlot->getToolMinor();
outPointer.orientation = inSlot->getOrientation();
outPointer.distance = inSlot->getDistance();
outPointer.toolType = inSlot->getToolType();
if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
outPointer.toolType = mTouchButtonAccumulator.getToolType();
if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) {
outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
}
}
bool isHovering = mTouchButtonAccumulator.isHovering()
|| inSlot->getDistance() > 0;
outPointer.isHovering = isHovering;
// Assign pointer id using tracking id if available.
if (havePointerIds) {
int32_t trackingId = inSlot->getTrackingId();
int32_t id = -1;
if (trackingId >= 0) {
for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) {
uint32_t n = idBits.clearFirstMarkedBit();
if (mPointerTrackingIdMap[n] == trackingId) {
id = n;
}
}
if (id < 0 && !mPointerIdBits.isFull()) {
id = mPointerIdBits.markFirstUnmarkedBit();
mPointerTrackingIdMap[id] = trackingId;
}
}
if (id < 0) {
havePointerIds = false;
mCurrentRawPointerData.clearIdBits();
newPointerIdBits.clear();
} else {
outPointer.id = id;
mCurrentRawPointerData.idToIndex[id] = outCount;
mCurrentRawPointerData.markIdBit(id, isHovering);
newPointerIdBits.markBit(id);
}
}
outCount += 1;
}
mCurrentRawPointerData.pointerCount = outCount;
mCurrentButtonState = mTouchButtonAccumulator.getButtonState()
| mCursorButtonAccumulator.getButtonState();
mPointerIdBits = newPointerIdBits;
syncTouch(when, havePointerIds);
if (!mMultiTouchMotionAccumulator.isUsingSlotsProtocol()) {
mMultiTouchMotionAccumulator.clearSlots(-1);
}
}
void MultiTouchInputMapper::configureRawPointerAxes() {
TouchInputMapper::configureRawPointerAxes();
mTouchButtonAccumulator.configure(getDevice());
getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x);
getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y);
getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor);
getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor);
getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor);
getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor);
getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation);
getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure);
getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance);
getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId);
getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot);
if (mRawPointerAxes.trackingId.valid
&& mRawPointerAxes.slot.valid
&& mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) {
size_t slotCount = mRawPointerAxes.slot.maxValue + 1;
if (slotCount > MAX_SLOTS) {
LOGW("MultiTouch Device %s reported %d slots but the framework "
"only supports a maximum of %d slots at this time.",
getDeviceName().string(), slotCount, MAX_SLOTS);
slotCount = MAX_SLOTS;
}
mMultiTouchMotionAccumulator.configure(slotCount, true /*usingSlotsProtocol*/);
} else {
mMultiTouchMotionAccumulator.configure(MAX_POINTERS, false /*usingSlotsProtocol*/);
}
clearState();
}
// --- JoystickInputMapper ---
JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
InputMapper(device) {
}
JoystickInputMapper::~JoystickInputMapper() {
}
uint32_t JoystickInputMapper::getSources() {
return AINPUT_SOURCE_JOYSTICK;
}
void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
InputMapper::populateDeviceInfo(info);
for (size_t i = 0; i < mAxes.size(); i++) {
const Axis& axis = mAxes.valueAt(i);
info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK,
axis.min, axis.max, axis.flat, axis.fuzz);
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK,
axis.min, axis.max, axis.flat, axis.fuzz);
}
}
}
void JoystickInputMapper::dump(String8& dump) {
dump.append(INDENT2 "Joystick Input Mapper:\n");
dump.append(INDENT3 "Axes:\n");
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
const Axis& axis = mAxes.valueAt(i);
const char* label = getAxisLabel(axis.axisInfo.axis);
if (label) {
dump.appendFormat(INDENT4 "%s", label);
} else {
dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
}
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
label = getAxisLabel(axis.axisInfo.highAxis);
if (label) {
dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
} else {
dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
axis.axisInfo.splitValue);
}
} else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
dump.append(" (invert)");
}
dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
axis.min, axis.max, axis.flat, axis.fuzz);
dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, "
"highScale=%0.5f, highOffset=%0.5f\n",
axis.scale, axis.offset, axis.highScale, axis.highOffset);
dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, "
"rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution);
}
}
void JoystickInputMapper::configure(const InputReaderConfiguration* config, uint32_t changes) {
InputMapper::configure(config, changes);
if (!changes) { // first time only
// Collect all axes.
for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
RawAbsoluteAxisInfo rawAxisInfo;
getAbsoluteAxisInfo(abs, &rawAxisInfo);
if (rawAxisInfo.valid) {
// Map axis.
AxisInfo axisInfo;
bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
if (!explicitlyMapped) {
// Axis is not explicitly mapped, will choose a generic axis later.
axisInfo.mode = AxisInfo::MODE_NORMAL;
axisInfo.axis = -1;
}
// Apply flat override.
int32_t rawFlat = axisInfo.flatOverride < 0
? rawAxisInfo.flat : axisInfo.flatOverride;
// Calculate scaling factors and limits.
Axis axis;
if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
scale, 0.0f, highScale, 0.0f,
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
} else if (isCenteredAxis(axisInfo.axis)) {
float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
scale, offset, scale, offset,
-1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
} else {
float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
scale, 0.0f, scale, 0.0f,
0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
}
// To eliminate noise while the joystick is at rest, filter out small variations
// in axis values up front.
axis.filter = axis.flat * 0.25f;
mAxes.add(abs, axis);
}
}
// If there are too many axes, start dropping them.
// Prefer to keep explicitly mapped axes.
if (mAxes.size() > PointerCoords::MAX_AXES) {
LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
pruneAxes(true);
pruneAxes(false);
}
// Assign generic axis ids to remaining axes.
int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
Axis& axis = mAxes.editValueAt(i);
if (axis.axisInfo.axis < 0) {
while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
&& haveAxis(nextGenericAxisId)) {
nextGenericAxisId += 1;
}
if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
axis.axisInfo.axis = nextGenericAxisId;
nextGenericAxisId += 1;
} else {
LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
"have already been assigned to other axes.",
getDeviceName().string(), mAxes.keyAt(i));
mAxes.removeItemsAt(i--);
numAxes -= 1;
}
}
}
}
}
bool JoystickInputMapper::haveAxis(int32_t axisId) {
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
const Axis& axis = mAxes.valueAt(i);
if (axis.axisInfo.axis == axisId
|| (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
&& axis.axisInfo.highAxis == axisId)) {
return true;
}
}
return false;
}
void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
size_t i = mAxes.size();
while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
continue;
}
LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
getDeviceName().string(), mAxes.keyAt(i));
mAxes.removeItemsAt(i);
}
}
bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
switch (axis) {
case AMOTION_EVENT_AXIS_X:
case AMOTION_EVENT_AXIS_Y:
case AMOTION_EVENT_AXIS_Z:
case AMOTION_EVENT_AXIS_RX:
case AMOTION_EVENT_AXIS_RY:
case AMOTION_EVENT_AXIS_RZ:
case AMOTION_EVENT_AXIS_HAT_X:
case AMOTION_EVENT_AXIS_HAT_Y:
case AMOTION_EVENT_AXIS_ORIENTATION:
case AMOTION_EVENT_AXIS_RUDDER:
case AMOTION_EVENT_AXIS_WHEEL:
return true;
default:
return false;
}
}
void JoystickInputMapper::reset() {
// Recenter all axes.
nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
Axis& axis = mAxes.editValueAt(i);
axis.resetValue();
}
sync(when, true /*force*/);
InputMapper::reset();
}
void JoystickInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_ABS: {
ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
if (index >= 0) {
Axis& axis = mAxes.editValueAt(index);
float newValue, highNewValue;
switch (axis.axisInfo.mode) {
case AxisInfo::MODE_INVERT:
newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
* axis.scale + axis.offset;
highNewValue = 0.0f;
break;
case AxisInfo::MODE_SPLIT:
if (rawEvent->value < axis.axisInfo.splitValue) {
newValue = (axis.axisInfo.splitValue - rawEvent->value)
* axis.scale + axis.offset;
highNewValue = 0.0f;
} else if (rawEvent->value > axis.axisInfo.splitValue) {
newValue = 0.0f;
highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
* axis.highScale + axis.highOffset;
} else {
newValue = 0.0f;
highNewValue = 0.0f;
}
break;
default:
newValue = rawEvent->value * axis.scale + axis.offset;
highNewValue = 0.0f;
break;
}
axis.newValue = newValue;
axis.highNewValue = highNewValue;
}
break;
}
case EV_SYN:
switch (rawEvent->scanCode) {
case SYN_REPORT:
sync(rawEvent->when, false /*force*/);
break;
}
break;
}
}
void JoystickInputMapper::sync(nsecs_t when, bool force) {
if (!filterAxes(force)) {
return;
}
int32_t metaState = mContext->getGlobalMetaState();
int32_t buttonState = 0;
PointerProperties pointerProperties;
pointerProperties.clear();
pointerProperties.id = 0;
pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
PointerCoords pointerCoords;
pointerCoords.clear();
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
const Axis& axis = mAxes.valueAt(i);
pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
}
}
// Moving a joystick axis should not wake the devide because joysticks can
// be fairly noisy even when not in use. On the other hand, pushing a gamepad
// button will likely wake the device.
// TODO: Use the input device configuration to control this behavior more finely.
uint32_t policyFlags = 0;
NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE,
1, &pointerProperties, &pointerCoords, 0, 0, 0);
getListener()->notifyMotion(&args);
}
bool JoystickInputMapper::filterAxes(bool force) {
bool atLeastOneSignificantChange = force;
size_t numAxes = mAxes.size();
for (size_t i = 0; i < numAxes; i++) {
Axis& axis = mAxes.editValueAt(i);
if (force || hasValueChangedSignificantly(axis.filter,
axis.newValue, axis.currentValue, axis.min, axis.max)) {
axis.currentValue = axis.newValue;
atLeastOneSignificantChange = true;
}
if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
if (force || hasValueChangedSignificantly(axis.filter,
axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
axis.highCurrentValue = axis.highNewValue;
atLeastOneSignificantChange = true;
}
}
}
return atLeastOneSignificantChange;
}
bool JoystickInputMapper::hasValueChangedSignificantly(
float filter, float newValue, float currentValue, float min, float max) {
if (newValue != currentValue) {
// Filter out small changes in value unless the value is converging on the axis
// bounds or center point. This is intended to reduce the amount of information
// sent to applications by particularly noisy joysticks (such as PS3).
if (fabs(newValue - currentValue) > filter
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
|| hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
return true;
}
}
return false;
}
bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
float filter, float newValue, float currentValue, float thresholdValue) {
float newDistance = fabs(newValue - thresholdValue);
if (newDistance < filter) {
float oldDistance = fabs(currentValue - thresholdValue);
if (newDistance < oldDistance) {
return true;
}
}
return false;
}
} // namespace android