blob: 1b490839efdd29f80f851b95a145c75bc3cb4916 [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#define SHADOW_SHRINK_SCALE 0.1f
20
21#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080022#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080023#include <utils/Log.h>
24
ztenghui63d41ab2014-02-14 13:13:41 -080025#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080026#include "SpotShadow.h"
27#include "Vertex.h"
28
29namespace android {
30namespace uirenderer {
31
Chris Craik726118b2014-03-07 18:27:49 -080032static const double EPSILON = 1e-7;
33
ztenghui7b4516e2014-01-07 10:42:55 -080034/**
Chris Craik726118b2014-03-07 18:27:49 -080035 * Calculate the angle between and x and a y coordinate.
36 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -080037 */
Chris Craikb79a3e32014-03-11 12:20:17 -070038static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -080039 return atan2(point.y - center.y, point.x - center.x);
40}
41
42/**
43 * Calculate the intersection of a ray with the line segment defined by two points.
44 *
45 * Returns a negative value in error conditions.
46
47 * @param rayOrigin The start of the ray
48 * @param dx The x vector of the ray
49 * @param dy The y vector of the ray
50 * @param p1 The first point defining the line segment
51 * @param p2 The second point defining the line segment
52 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
53 */
Chris Craikb79a3e32014-03-11 12:20:17 -070054static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -080055 const Vector2& p1, const Vector2& p2) {
56 // The math below is derived from solving this formula, basically the
57 // intersection point should stay on both the ray and the edge of (p1, p2).
58 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
59
60 double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
61 if (divisor == 0) return -1.0f; // error, invalid divisor
62
63#if DEBUG_SHADOW
64 double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
65 if (interpVal < 0 || interpVal > 1) return -1.0f; // error, doesn't intersect between points
66#endif
67
68 double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
69 rayOrigin.x * (p2.y - p1.y)) / divisor;
70
71 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -080072}
73
74/**
ztenghui7b4516e2014-01-07 10:42:55 -080075 * Sort points by their X coordinates
76 *
77 * @param points the points as a Vector2 array.
78 * @param pointsLength the number of vertices of the polygon.
79 */
80void SpotShadow::xsort(Vector2* points, int pointsLength) {
81 quicksortX(points, 0, pointsLength - 1);
82}
83
84/**
85 * compute the convex hull of a collection of Points
86 *
87 * @param points the points as a Vector2 array.
88 * @param pointsLength the number of vertices of the polygon.
89 * @param retPoly pre allocated array of floats to put the vertices
90 * @return the number of points in the polygon 0 if no intersection
91 */
92int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
93 xsort(points, pointsLength);
94 int n = pointsLength;
95 Vector2 lUpper[n];
96 lUpper[0] = points[0];
97 lUpper[1] = points[1];
98
99 int lUpperSize = 2;
100
101 for (int i = 2; i < n; i++) {
102 lUpper[lUpperSize] = points[i];
103 lUpperSize++;
104
ztenghuif5ca8b42014-01-27 15:53:28 -0800105 while (lUpperSize > 2 && !ccw(
106 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
107 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
108 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800109 // Remove the middle point of the three last
110 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
111 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
112 lUpperSize--;
113 }
114 }
115
116 Vector2 lLower[n];
117 lLower[0] = points[n - 1];
118 lLower[1] = points[n - 2];
119
120 int lLowerSize = 2;
121
122 for (int i = n - 3; i >= 0; i--) {
123 lLower[lLowerSize] = points[i];
124 lLowerSize++;
125
ztenghuif5ca8b42014-01-27 15:53:28 -0800126 while (lLowerSize > 2 && !ccw(
127 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
128 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
129 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800130 // Remove the middle point of the three last
131 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
132 lLowerSize--;
133 }
134 }
ztenghui7b4516e2014-01-07 10:42:55 -0800135
Chris Craik726118b2014-03-07 18:27:49 -0800136 // output points in CW ordering
137 const int total = lUpperSize + lLowerSize - 2;
138 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800139 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800140 retPoly[outIndex] = lUpper[i];
141 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800142 }
143
144 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800145 retPoly[outIndex] = lLower[i];
146 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800147 }
148 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800149 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800150}
151
152/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800153 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800154 *
ztenghui7b4516e2014-01-07 10:42:55 -0800155 * @return true if a right hand turn
156 */
ztenghuif5ca8b42014-01-27 15:53:28 -0800157bool SpotShadow::ccw(double ax, double ay, double bx, double by,
ztenghui7b4516e2014-01-07 10:42:55 -0800158 double cx, double cy) {
159 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
160}
161
162/**
163 * Calculates the intersection of poly1 with poly2 and put in poly2.
ztenghui50ecf842014-03-11 16:52:30 -0700164 * Note that both poly1 and poly2 must be in CW order already!
ztenghui7b4516e2014-01-07 10:42:55 -0800165 *
166 * @param poly1 The 1st polygon, as a Vector2 array.
167 * @param poly1Length The number of vertices of 1st polygon.
168 * @param poly2 The 2nd and output polygon, as a Vector2 array.
169 * @param poly2Length The number of vertices of 2nd polygon.
170 * @return number of vertices in output polygon as poly2.
171 */
ztenghui50ecf842014-03-11 16:52:30 -0700172int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
ztenghui7b4516e2014-01-07 10:42:55 -0800173 Vector2* poly2, int poly2Length) {
ztenghui50ecf842014-03-11 16:52:30 -0700174#if DEBUG_SHADOW
175 if (!isClockwise(poly1, poly1Length)) {
176 ALOGW("Poly1 is not clockwise! Intersection is wrong!");
177 }
178 if (!isClockwise(poly2, poly2Length)) {
179 ALOGW("Poly2 is not clockwise! Intersection is wrong!");
180 }
181#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800182 Vector2 poly[poly1Length * poly2Length + 2];
183 int count = 0;
184 int pcount = 0;
185
186 // If one vertex from one polygon sits inside another polygon, add it and
187 // count them.
188 for (int i = 0; i < poly1Length; i++) {
189 if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
190 poly[count] = poly1[i];
191 count++;
192 pcount++;
193
194 }
195 }
196
197 int insidePoly2 = pcount;
198 for (int i = 0; i < poly2Length; i++) {
199 if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
200 poly[count] = poly2[i];
201 count++;
202 }
203 }
204
205 int insidePoly1 = count - insidePoly2;
206 // If all vertices from poly1 are inside poly2, then just return poly1.
207 if (insidePoly2 == poly1Length) {
208 memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
209 return poly1Length;
210 }
211
212 // If all vertices from poly2 are inside poly1, then just return poly2.
213 if (insidePoly1 == poly2Length) {
214 return poly2Length;
215 }
216
217 // Since neither polygon fully contain the other one, we need to add all the
218 // intersection points.
219 Vector2 intersection;
220 for (int i = 0; i < poly2Length; i++) {
221 for (int j = 0; j < poly1Length; j++) {
222 int poly2LineStart = i;
223 int poly2LineEnd = ((i + 1) % poly2Length);
224 int poly1LineStart = j;
225 int poly1LineEnd = ((j + 1) % poly1Length);
226 bool found = lineIntersection(
227 poly2[poly2LineStart].x, poly2[poly2LineStart].y,
228 poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
229 poly1[poly1LineStart].x, poly1[poly1LineStart].y,
230 poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
231 intersection);
232 if (found) {
233 poly[count].x = intersection.x;
234 poly[count].y = intersection.y;
235 count++;
236 } else {
237 Vector2 delta = poly2[i] - poly1[j];
ztenghuif5ca8b42014-01-27 15:53:28 -0800238 if (delta.lengthSquared() < EPSILON) {
ztenghui7b4516e2014-01-07 10:42:55 -0800239 poly[count] = poly2[i];
240 count++;
241 }
242 }
243 }
244 }
245
246 if (count == 0) {
247 return 0;
248 }
249
250 // Sort the result polygon around the center.
251 Vector2 center(0.0f, 0.0f);
252 for (int i = 0; i < count; i++) {
253 center += poly[i];
254 }
255 center /= count;
256 sort(poly, count, center);
257
ztenghuif5ca8b42014-01-27 15:53:28 -0800258#if DEBUG_SHADOW
259 // Since poly2 is overwritten as the result, we need to save a copy to do
260 // our verification.
261 Vector2 oldPoly2[poly2Length];
262 int oldPoly2Length = poly2Length;
263 memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
264#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800265
ztenghuif5ca8b42014-01-27 15:53:28 -0800266 // Filter the result out from poly and put it into poly2.
ztenghui7b4516e2014-01-07 10:42:55 -0800267 poly2[0] = poly[0];
ztenghuif5ca8b42014-01-27 15:53:28 -0800268 int lastOutputIndex = 0;
ztenghui7b4516e2014-01-07 10:42:55 -0800269 for (int i = 1; i < count; i++) {
ztenghuif5ca8b42014-01-27 15:53:28 -0800270 Vector2 delta = poly[i] - poly2[lastOutputIndex];
271 if (delta.lengthSquared() >= EPSILON) {
272 poly2[++lastOutputIndex] = poly[i];
273 } else {
274 // If the vertices are too close, pick the inner one, because the
275 // inner one is more likely to be an intersection point.
276 Vector2 delta1 = poly[i] - center;
277 Vector2 delta2 = poly2[lastOutputIndex] - center;
278 if (delta1.lengthSquared() < delta2.lengthSquared()) {
279 poly2[lastOutputIndex] = poly[i];
280 }
ztenghui7b4516e2014-01-07 10:42:55 -0800281 }
282 }
ztenghuif5ca8b42014-01-27 15:53:28 -0800283 int resultLength = lastOutputIndex + 1;
284
285#if DEBUG_SHADOW
286 testConvex(poly2, resultLength, "intersection");
287 testConvex(poly1, poly1Length, "input poly1");
288 testConvex(oldPoly2, oldPoly2Length, "input poly2");
289
290 testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
291#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800292
293 return resultLength;
294}
295
296/**
297 * Sort points about a center point
298 *
299 * @param poly The in and out polyogon as a Vector2 array.
300 * @param polyLength The number of vertices of the polygon.
301 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
302 */
303void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
304 quicksortCirc(poly, 0, polyLength - 1, center);
305}
306
307/**
ztenghui7b4516e2014-01-07 10:42:55 -0800308 * Swap points pointed to by i and j
309 */
310void SpotShadow::swap(Vector2* points, int i, int j) {
311 Vector2 temp = points[i];
312 points[i] = points[j];
313 points[j] = temp;
314}
315
316/**
317 * quick sort implementation about the center.
318 */
319void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
320 const Vector2& center) {
321 int i = low, j = high;
322 int p = low + (high - low) / 2;
323 float pivot = angle(points[p], center);
324 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800325 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800326 i++;
327 }
Chris Craik726118b2014-03-07 18:27:49 -0800328 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800329 j--;
330 }
331
332 if (i <= j) {
333 swap(points, i, j);
334 i++;
335 j--;
336 }
337 }
338 if (low < j) quicksortCirc(points, low, j, center);
339 if (i < high) quicksortCirc(points, i, high, center);
340}
341
342/**
343 * Sort points by x axis
344 *
345 * @param points points to sort
346 * @param low start index
347 * @param high end index
348 */
349void SpotShadow::quicksortX(Vector2* points, int low, int high) {
350 int i = low, j = high;
351 int p = low + (high - low) / 2;
352 float pivot = points[p].x;
353 while (i <= j) {
354 while (points[i].x < pivot) {
355 i++;
356 }
357 while (points[j].x > pivot) {
358 j--;
359 }
360
361 if (i <= j) {
362 swap(points, i, j);
363 i++;
364 j--;
365 }
366 }
367 if (low < j) quicksortX(points, low, j);
368 if (i < high) quicksortX(points, i, high);
369}
370
371/**
372 * Test whether a point is inside the polygon.
373 *
374 * @param testPoint the point to test
375 * @param poly the polygon
376 * @return true if the testPoint is inside the poly.
377 */
378bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
379 const Vector2* poly, int len) {
380 bool c = false;
381 double testx = testPoint.x;
382 double testy = testPoint.y;
383 for (int i = 0, j = len - 1; i < len; j = i++) {
384 double startX = poly[j].x;
385 double startY = poly[j].y;
386 double endX = poly[i].x;
387 double endY = poly[i].y;
388
389 if (((endY > testy) != (startY > testy)) &&
390 (testx < (startX - endX) * (testy - endY)
391 / (startY - endY) + endX)) {
392 c = !c;
393 }
394 }
395 return c;
396}
397
398/**
399 * Make the polygon turn clockwise.
400 *
401 * @param polygon the polygon as a Vector2 array.
402 * @param len the number of points of the polygon
403 */
404void SpotShadow::makeClockwise(Vector2* polygon, int len) {
405 if (polygon == 0 || len == 0) {
406 return;
407 }
408 if (!isClockwise(polygon, len)) {
409 reverse(polygon, len);
410 }
411}
412
413/**
414 * Test whether the polygon is order in clockwise.
415 *
416 * @param polygon the polygon as a Vector2 array
417 * @param len the number of points of the polygon
418 */
ztenghui50ecf842014-03-11 16:52:30 -0700419bool SpotShadow::isClockwise(const Vector2* polygon, int len) {
ztenghui7b4516e2014-01-07 10:42:55 -0800420 double sum = 0;
421 double p1x = polygon[len - 1].x;
422 double p1y = polygon[len - 1].y;
423 for (int i = 0; i < len; i++) {
424
425 double p2x = polygon[i].x;
426 double p2y = polygon[i].y;
427 sum += p1x * p2y - p2x * p1y;
428 p1x = p2x;
429 p1y = p2y;
430 }
431 return sum < 0;
432}
433
434/**
435 * Reverse the polygon
436 *
437 * @param polygon the polygon as a Vector2 array
438 * @param len the number of points of the polygon
439 */
440void SpotShadow::reverse(Vector2* polygon, int len) {
441 int n = len / 2;
442 for (int i = 0; i < n; i++) {
443 Vector2 tmp = polygon[i];
444 int k = len - 1 - i;
445 polygon[i] = polygon[k];
446 polygon[k] = tmp;
447 }
448}
449
450/**
451 * Intersects two lines in parametric form. This function is called in a tight
452 * loop, and we need double precision to get things right.
453 *
454 * @param x1 the x coordinate point 1 of line 1
455 * @param y1 the y coordinate point 1 of line 1
456 * @param x2 the x coordinate point 2 of line 1
457 * @param y2 the y coordinate point 2 of line 1
458 * @param x3 the x coordinate point 1 of line 2
459 * @param y3 the y coordinate point 1 of line 2
460 * @param x4 the x coordinate point 2 of line 2
461 * @param y4 the y coordinate point 2 of line 2
462 * @param ret the x,y location of the intersection
463 * @return true if it found an intersection
464 */
465inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
466 double x3, double y3, double x4, double y4, Vector2& ret) {
467 double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
468 if (d == 0.0) return false;
469
470 double dx = (x1 * y2 - y1 * x2);
471 double dy = (x3 * y4 - y3 * x4);
472 double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
473 double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
474
475 // The intersection should be in the middle of the point 1 and point 2,
476 // likewise point 3 and point 4.
477 if (((x - x1) * (x - x2) > EPSILON)
478 || ((x - x3) * (x - x4) > EPSILON)
479 || ((y - y1) * (y - y2) > EPSILON)
480 || ((y - y3) * (y - y4) > EPSILON)) {
481 // Not interesected
482 return false;
483 }
484 ret.x = x;
485 ret.y = y;
486 return true;
487
488}
489
490/**
491 * Compute a horizontal circular polygon about point (x , y , height) of radius
492 * (size)
493 *
494 * @param points number of the points of the output polygon.
495 * @param lightCenter the center of the light.
496 * @param size the light size.
497 * @param ret result polygon.
498 */
499void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
500 float size, Vector3* ret) {
501 // TODO: Caching all the sin / cos values and store them in a look up table.
502 for (int i = 0; i < points; i++) {
503 double angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800504 ret[i].x = cosf(angle) * size + lightCenter.x;
505 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800506 ret[i].z = lightCenter.z;
507 }
508}
509
510/**
511* Generate the shadow from a spot light.
512*
513* @param poly x,y,z vertexes of a convex polygon that occludes the light source
514* @param polyLength number of vertexes of the occluding polygon
515* @param lightCenter the center of the light
516* @param lightSize the radius of the light source
517* @param lightVertexCount the vertex counter for the light polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800518* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
519* empty strip if error.
520*
521*/
ztenghui50ecf842014-03-11 16:52:30 -0700522VertexBufferMode SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly,
523 int polyLength, const Vector3& lightCenter, float lightSize,
524 int lightVertexCount, VertexBuffer& retStrips) {
ztenghui7b4516e2014-01-07 10:42:55 -0800525 Vector3 light[lightVertexCount * 3];
526 computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
ztenghui50ecf842014-03-11 16:52:30 -0700527 computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
528 polyLength, retStrips);
529 return kVertexBufferMode_TwoPolyRingShadow;
ztenghui7b4516e2014-01-07 10:42:55 -0800530}
531
532/**
533 * Generate the shadow spot light of shape lightPoly and a object poly
534 *
535 * @param lightPoly x,y,z vertex of a convex polygon that is the light source
536 * @param lightPolyLength number of vertexes of the light source polygon
537 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
538 * @param polyLength number of vertexes of the occluding polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800539 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
540 * empty strip if error.
541 */
ztenghui50ecf842014-03-11 16:52:30 -0700542void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly,
543 int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
544 int polyLength, VertexBuffer& shadowTriangleStrip) {
ztenghui7b4516e2014-01-07 10:42:55 -0800545 // Point clouds for all the shadowed vertices
546 Vector2 shadowRegion[lightPolyLength * polyLength];
547 // Shadow polygon from one point light.
548 Vector2 outline[polyLength];
549 Vector2 umbraMem[polyLength * lightPolyLength];
550 Vector2* umbra = umbraMem;
551
552 int umbraLength = 0;
553
554 // Validate input, receiver is always at z = 0 plane.
555 bool inputPolyPositionValid = true;
556 for (int i = 0; i < polyLength; i++) {
ztenghui7b4516e2014-01-07 10:42:55 -0800557 if (poly[i].z >= lightPoly[0].z) {
558 inputPolyPositionValid = false;
Chris Craikb79a3e32014-03-11 12:20:17 -0700559 ALOGW("polygon above the light");
ztenghui7b4516e2014-01-07 10:42:55 -0800560 break;
561 }
562 }
563
564 // If the caster's position is invalid, don't draw anything.
565 if (!inputPolyPositionValid) {
566 return;
567 }
568
569 // Calculate the umbra polygon based on intersections of all outlines
570 int k = 0;
571 for (int j = 0; j < lightPolyLength; j++) {
572 int m = 0;
573 for (int i = 0; i < polyLength; i++) {
ztenghui50ecf842014-03-11 16:52:30 -0700574 float deltaZ = lightPoly[j].z - poly[i].z;
575 if (deltaZ == 0) {
ztenghui7b4516e2014-01-07 10:42:55 -0800576 return;
577 }
ztenghui50ecf842014-03-11 16:52:30 -0700578 float ratioZ = lightPoly[j].z / deltaZ;
579 float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
580 float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800581
582 Vector2 newPoint = Vector2(x, y);
583 shadowRegion[k] = newPoint;
584 outline[m] = newPoint;
585
586 k++;
587 m++;
588 }
589
590 // For the first light polygon's vertex, use the outline as the umbra.
591 // Later on, use the intersection of the outline and existing umbra.
592 if (umbraLength == 0) {
593 for (int i = 0; i < polyLength; i++) {
594 umbra[i] = outline[i];
595 }
596 umbraLength = polyLength;
597 } else {
598 int col = ((j * 255) / lightPolyLength);
599 umbraLength = intersection(outline, polyLength, umbra, umbraLength);
600 if (umbraLength == 0) {
601 break;
602 }
603 }
604 }
605
606 // Generate the penumbra area using the hull of all shadow regions.
607 int shadowRegionLength = k;
608 Vector2 penumbra[k];
609 int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
610
ztenghui5176c972014-01-31 17:17:55 -0800611 Vector2 fakeUmbra[polyLength];
ztenghui7b4516e2014-01-07 10:42:55 -0800612 if (umbraLength < 3) {
ztenghui5176c972014-01-31 17:17:55 -0800613 // If there is no real umbra, make a fake one.
ztenghui7b4516e2014-01-07 10:42:55 -0800614 for (int i = 0; i < polyLength; i++) {
ztenghui50ecf842014-03-11 16:52:30 -0700615 float deltaZ = lightCenter.z - poly[i].z;
616 if (deltaZ == 0) {
ztenghui7b4516e2014-01-07 10:42:55 -0800617 return;
618 }
ztenghui50ecf842014-03-11 16:52:30 -0700619 float ratioZ = lightCenter.z / deltaZ;
620 float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
621 float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800622
ztenghui5176c972014-01-31 17:17:55 -0800623 fakeUmbra[i].x = x;
624 fakeUmbra[i].y = y;
ztenghui7b4516e2014-01-07 10:42:55 -0800625 }
626
627 // Shrink the centroid's shadow by 10%.
628 // TODO: Study the magic number of 10%.
ztenghui63d41ab2014-02-14 13:13:41 -0800629 Vector2 shadowCentroid =
630 ShadowTessellator::centroid2d(fakeUmbra, polyLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800631 for (int i = 0; i < polyLength; i++) {
ztenghui5176c972014-01-31 17:17:55 -0800632 fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
633 fakeUmbra[i] * SHADOW_SHRINK_SCALE;
ztenghui7b4516e2014-01-07 10:42:55 -0800634 }
635#if DEBUG_SHADOW
636 ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
637 shadowCentroid.x, shadowCentroid.y);
638#endif
639 // Set the fake umbra, whose size is the same as the original polygon.
ztenghui5176c972014-01-31 17:17:55 -0800640 umbra = fakeUmbra;
ztenghui7b4516e2014-01-07 10:42:55 -0800641 umbraLength = polyLength;
642 }
643
ztenghui50ecf842014-03-11 16:52:30 -0700644 generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra,
645 umbraLength, poly, polyLength, shadowTriangleStrip);
ztenghui7b4516e2014-01-07 10:42:55 -0800646}
647
648/**
Chris Craik726118b2014-03-07 18:27:49 -0800649 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
650 *
651 * Returns false in error conditions
652 *
653 * @param poly Array of vertices. Note that these *must* be CW.
654 * @param polyLength The number of vertices in the polygon.
655 * @param polyCentroid The centroid of the polygon, from which rays will be cast
656 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
657 */
658bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
659 float* rayDist) {
660 const int rays = SHADOW_RAY_COUNT;
661 const float step = M_PI * 2 / rays;
662
663 const Vector2* lastVertex = &(poly[polyLength - 1]);
664 float startAngle = angle(*lastVertex, polyCentroid);
665
666 // Start with the ray that's closest to and less than startAngle
667 int rayIndex = floor((startAngle - EPSILON) / step);
668 rayIndex = (rayIndex + rays) % rays; // ensure positive
669
670 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
671 /*
672 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
673 * intersect these will be those that are between the two angles from the centroid that the
674 * vertices define.
675 *
676 * Because the polygon vertices are stored clockwise, the closest ray with an angle
677 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
678 * not intersect with poly[i-1], poly[i].
679 */
680 float currentAngle = angle(poly[polyIndex], polyCentroid);
681
682 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
683 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
684 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
685
686 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
687 // This may be 0 rays.
688 while (rayIndex != firstRayIndexOnNextSegment) {
689 float distanceToIntersect = rayIntersectPoints(polyCentroid,
690 cos(rayIndex * step),
691 sin(rayIndex * step),
692 *lastVertex, poly[polyIndex]);
ztenghui50ecf842014-03-11 16:52:30 -0700693 if (distanceToIntersect < 0) {
694#if DEBUG_SHADOW
695 ALOGW("ERROR: convertPolyToRayDist failed");
696#endif
697 return false; // error case, abort
698 }
Chris Craik726118b2014-03-07 18:27:49 -0800699
700 rayDist[rayIndex] = distanceToIntersect;
701
702 rayIndex = (rayIndex - 1 + rays) % rays;
703 }
704 lastVertex = &poly[polyIndex];
705 }
706
707 return true;
708}
709
ztenghui50ecf842014-03-11 16:52:30 -0700710int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
711 const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
712 // Occluded umbra area is computed as the intersection of the projected 2D
713 // poly and umbra.
714 for (int i = 0; i < polyLength; i++) {
715 occludedUmbra[i].x = poly[i].x;
716 occludedUmbra[i].y = poly[i].y;
717 }
718
719 // Both umbra and incoming polygon are guaranteed to be CW, so we can call
720 // intersection() directly.
721 return intersection(umbra, umbraLength,
722 occludedUmbra, polyLength);
723}
724
725#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
Chris Craik726118b2014-03-07 18:27:49 -0800726/**
ztenghui7b4516e2014-01-07 10:42:55 -0800727 * Generate a triangle strip given two convex polygons
728 *
729 * @param penumbra The outer polygon x,y vertexes
730 * @param penumbraLength The number of vertexes in the outer polygon
731 * @param umbra The inner outer polygon x,y vertexes
732 * @param umbraLength The number of vertexes in the inner polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800733 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
734 * empty strip if error.
735**/
ztenghui50ecf842014-03-11 16:52:30 -0700736void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra,
737 int penumbraLength, const Vector2* umbra, int umbraLength,
738 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
ztenghui63d41ab2014-02-14 13:13:41 -0800739 const int rays = SHADOW_RAY_COUNT;
Chris Craik726118b2014-03-07 18:27:49 -0800740 const int size = 2 * rays;
741 const float step = M_PI * 2 / rays;
ztenghui7b4516e2014-01-07 10:42:55 -0800742 // Centroid of the umbra.
ztenghui63d41ab2014-02-14 13:13:41 -0800743 Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800744#if DEBUG_SHADOW
745 ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
746#endif
747 // Intersection to the penumbra.
748 float penumbraDistPerRay[rays];
749 // Intersection to the umbra.
750 float umbraDistPerRay[rays];
ztenghui50ecf842014-03-11 16:52:30 -0700751 // Intersection to the occluded umbra area.
752 float occludedUmbraDistPerRay[rays];
ztenghui7b4516e2014-01-07 10:42:55 -0800753
Chris Craik726118b2014-03-07 18:27:49 -0800754 // convert CW polygons to ray distance encoding, aborting on conversion failure
755 if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
756 if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
ztenghui7b4516e2014-01-07 10:42:55 -0800757
ztenghui50ecf842014-03-11 16:52:30 -0700758 bool hasOccludedUmbraArea = false;
759 if (isCasterOpaque) {
760 Vector2 occludedUmbra[polyLength + umbraLength];
761 int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
762 occludedUmbra);
763 // Make sure the centroid is inside the umbra, otherwise, fall back to the
764 // approach as if there is no occluded umbra area.
765 if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
766 hasOccludedUmbraArea = true;
767 // Shrink the occluded umbra area to avoid pixel level artifacts.
768 for (int i = 0; i < occludedUmbraLength; i ++) {
769 occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
770 OCLLUDED_UMBRA_SHRINK_FACTOR;
771 }
772 if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
773 occludedUmbraDistPerRay)) {
774 return;
775 }
776 }
777 }
778
779 AlphaVertex* shadowVertices =
780 shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui7b4516e2014-01-07 10:42:55 -0800781
ztenghui63d41ab2014-02-14 13:13:41 -0800782 // Calculate the vertices (x, y, alpha) in the shadow area.
ztenghui50ecf842014-03-11 16:52:30 -0700783 AlphaVertex centroidXYA;
784 AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, 1.0f);
Chris Craik726118b2014-03-07 18:27:49 -0800785 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
786 float dx = cosf(step * rayIndex);
787 float dy = sinf(step * rayIndex);
788
ztenghui50ecf842014-03-11 16:52:30 -0700789 // penumbra ring
790 float penumbraDistance = penumbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800791 AlphaVertex::set(&shadowVertices[rayIndex],
ztenghui50ecf842014-03-11 16:52:30 -0700792 dx * penumbraDistance + centroid.x,
793 dy * penumbraDistance + centroid.y, 0.0f);
Chris Craik726118b2014-03-07 18:27:49 -0800794
ztenghui50ecf842014-03-11 16:52:30 -0700795 // umbra ring
796 float umbraDistance = umbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800797 AlphaVertex::set(&shadowVertices[rays + rayIndex],
ztenghui50ecf842014-03-11 16:52:30 -0700798 dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f);
799
800 // occluded umbra ring
801 if (hasOccludedUmbraArea) {
802 float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
803 AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
804 dx * occludedUmbraDistance + centroid.x,
805 dy * occludedUmbraDistance + centroid.y, 1.0f);
806 } else {
807 // Put all vertices of the occluded umbra ring at the centroid.
808 shadowVertices[2 * rays + rayIndex] = centroidXYA;
809 }
ztenghui7b4516e2014-01-07 10:42:55 -0800810 }
ztenghui7b4516e2014-01-07 10:42:55 -0800811}
812
813/**
814 * This is only for experimental purpose.
815 * After intersections are calculated, we could smooth the polygon if needed.
816 * So far, we don't think it is more appealing yet.
817 *
818 * @param level The level of smoothness.
819 * @param rays The total number of rays.
820 * @param rayDist (In and Out) The distance for each ray.
821 *
822 */
823void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
824 for (int k = 0; k < level; k++) {
825 for (int i = 0; i < rays; i++) {
826 float p1 = rayDist[(rays - 1 + i) % rays];
827 float p2 = rayDist[i];
828 float p3 = rayDist[(i + 1) % rays];
829 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
830 }
831 }
832}
833
ztenghuif5ca8b42014-01-27 15:53:28 -0800834#if DEBUG_SHADOW
835
836#define TEST_POINT_NUMBER 128
837
838/**
839 * Calculate the bounds for generating random test points.
840 */
841void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
842 Vector2& upperBound ) {
843 if (inVector.x < lowerBound.x) {
844 lowerBound.x = inVector.x;
845 }
846
847 if (inVector.y < lowerBound.y) {
848 lowerBound.y = inVector.y;
849 }
850
851 if (inVector.x > upperBound.x) {
852 upperBound.x = inVector.x;
853 }
854
855 if (inVector.y > upperBound.y) {
856 upperBound.y = inVector.y;
857 }
858}
859
860/**
861 * For debug purpose, when things go wrong, dump the whole polygon data.
862 */
863static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
864 for (int i = 0; i < polyLength; i++) {
865 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
866 }
867}
868
869/**
870 * Test whether the polygon is convex.
871 */
872bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
873 const char* name) {
874 bool isConvex = true;
875 for (int i = 0; i < polygonLength; i++) {
876 Vector2 start = polygon[i];
877 Vector2 middle = polygon[(i + 1) % polygonLength];
878 Vector2 end = polygon[(i + 2) % polygonLength];
879
880 double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
881 (double(middle.y) - start.y) * (double(end.x) - start.x);
882 bool isCCWOrCoLinear = (delta >= EPSILON);
883
884 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -0700885 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -0800886 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
887 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
888 isConvex = false;
889 break;
890 }
891 }
892 return isConvex;
893}
894
895/**
896 * Test whether or not the polygon (intersection) is within the 2 input polygons.
897 * Using Marte Carlo method, we generate a random point, and if it is inside the
898 * intersection, then it must be inside both source polygons.
899 */
900void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
901 const Vector2* poly2, int poly2Length,
902 const Vector2* intersection, int intersectionLength) {
903 // Find the min and max of x and y.
904 Vector2 lowerBound(FLT_MAX, FLT_MAX);
905 Vector2 upperBound(-FLT_MAX, -FLT_MAX);
906 for (int i = 0; i < poly1Length; i++) {
907 updateBound(poly1[i], lowerBound, upperBound);
908 }
909 for (int i = 0; i < poly2Length; i++) {
910 updateBound(poly2[i], lowerBound, upperBound);
911 }
912
913 bool dumpPoly = false;
914 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
915 // Generate a random point between minX, minY and maxX, maxY.
916 double randomX = rand() / double(RAND_MAX);
917 double randomY = rand() / double(RAND_MAX);
918
919 Vector2 testPoint;
920 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
921 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
922
923 // If the random point is in both poly 1 and 2, then it must be intersection.
924 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
925 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
926 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -0700927 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -0800928 " not in the poly1",
929 testPoint.x, testPoint.y);
930 }
931
932 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
933 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -0700934 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -0800935 " not in the poly2",
936 testPoint.x, testPoint.y);
937 }
938 }
939 }
940
941 if (dumpPoly) {
942 dumpPolygon(intersection, intersectionLength, "intersection");
943 for (int i = 1; i < intersectionLength; i++) {
944 Vector2 delta = intersection[i] - intersection[i - 1];
945 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
946 }
947
948 dumpPolygon(poly1, poly1Length, "poly 1");
949 dumpPolygon(poly2, poly2Length, "poly 2");
950 }
951}
952#endif
953
ztenghui7b4516e2014-01-07 10:42:55 -0800954}; // namespace uirenderer
955}; // namespace android