blob: 75cbfa14fb706996697dcd4fe8d116e2dd286e21 [file] [log] [blame]
ztenghui55bfb4e2013-12-03 10:38:55 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
Chris Craik564acf72014-01-02 16:46:18 -080021#include <utils/Vector.h>
ztenghui55bfb4e2013-12-03 10:38:55 -080022
23#include "AmbientShadow.h"
ztenghui63d41ab2014-02-14 13:13:41 -080024#include "ShadowTessellator.h"
ztenghui55bfb4e2013-12-03 10:38:55 -080025#include "Vertex.h"
26
27namespace android {
28namespace uirenderer {
29
30/**
31 * Calculate the shadows as a triangle strips while alpha value as the
32 * shadow values.
33 *
ztenghui50ecf842014-03-11 16:52:30 -070034 * @param isCasterOpaque Whether the caster is opaque.
ztenghui55bfb4e2013-12-03 10:38:55 -080035 * @param vertices The shadow caster's polygon, which is represented in a Vector3
36 * array.
37 * @param vertexCount The length of caster's polygon in terms of number of
38 * vertices.
ztenghui63d41ab2014-02-14 13:13:41 -080039 * @param centroid3d The centroid of the shadow caster.
ztenghui55bfb4e2013-12-03 10:38:55 -080040 * @param heightFactor The factor showing the higher the object, the lighter the
41 * shadow.
42 * @param geomFactor The factor scaling the geometry expansion along the normal.
43 *
44 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
45 * triangle strips mode.
46 */
Chris Craik05f3d6e2014-06-02 16:27:04 -070047void AmbientShadow::createAmbientShadow(bool isCasterOpaque,
ztenghui50ecf842014-03-11 16:52:30 -070048 const Vector3* vertices, int vertexCount, const Vector3& centroid3d,
49 float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
ztenghui63d41ab2014-02-14 13:13:41 -080050 const int rays = SHADOW_RAY_COUNT;
ztenghui55bfb4e2013-12-03 10:38:55 -080051 // Validate the inputs.
Chris Craik726118b2014-03-07 18:27:49 -080052 if (vertexCount < 3 || heightFactor <= 0 || rays <= 0
ztenghui55bfb4e2013-12-03 10:38:55 -080053 || geomFactor <= 0) {
54#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070055 ALOGW("Invalid input for createAmbientShadow(), early return!");
ztenghui55bfb4e2013-12-03 10:38:55 -080056#endif
Chris Craik05f3d6e2014-06-02 16:27:04 -070057 return;
ztenghui55bfb4e2013-12-03 10:38:55 -080058 }
ztenghui55bfb4e2013-12-03 10:38:55 -080059
Chris Craik564acf72014-01-02 16:46:18 -080060 Vector<Vector2> dir; // TODO: use C++11 unique_ptr
61 dir.setCapacity(rays);
ztenghui55bfb4e2013-12-03 10:38:55 -080062 float rayDist[rays];
63 float rayHeight[rays];
ztenghui7940dc52014-04-22 11:21:49 -070064 calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray());
ztenghui55bfb4e2013-12-03 10:38:55 -080065
66 // Calculate the length and height of the points along the edge.
67 //
68 // The math here is:
69 // Intersect each ray (starting from the centroid) with the polygon.
70 for (int i = 0; i < rays; i++) {
71 int edgeIndex;
72 float edgeFraction;
73 float rayDistance;
ztenghui63d41ab2014-02-14 13:13:41 -080074 calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -080075 edgeFraction, rayDistance);
76 rayDist[i] = rayDistance;
77 if (edgeIndex < 0 || edgeIndex >= vertexCount) {
78#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070079 ALOGW("Invalid edgeIndex!");
ztenghui55bfb4e2013-12-03 10:38:55 -080080#endif
81 edgeIndex = 0;
82 }
83 float h1 = vertices[edgeIndex].z;
84 float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
85 rayHeight[i] = h1 + edgeFraction * (h2 - h1);
86 }
87
88 // The output buffer length basically is roughly rays * layers, but since we
89 // need triangle strips, so we need to duplicate vertices to accomplish that.
ztenghui50ecf842014-03-11 16:52:30 -070090 AlphaVertex* shadowVertices =
91 shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui55bfb4e2013-12-03 10:38:55 -080092
93 // Calculate the vertex of the shadows.
94 //
95 // The math here is:
96 // Along the edges of the polygon, for each intersection point P (generated above),
97 // calculate the normal N, which should be perpendicular to the edge of the
98 // polygon (represented by the neighbor intersection points) .
99 // Shadow's vertices will be generated as : P + N * scale.
ztenghui50ecf842014-03-11 16:52:30 -0700100 const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y);
Chris Craik726118b2014-03-07 18:27:49 -0800101 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
102 Vector2 normal(1.0f, 0.0f);
103 calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);
ztenghui55bfb4e2013-12-03 10:38:55 -0800104
Chris Craik726118b2014-03-07 18:27:49 -0800105 // The vertex should be start from rayDist[i] then scale the
106 // normalizeNormal!
107 Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
ztenghui50ecf842014-03-11 16:52:30 -0700108 centroid2d;
ztenghui55bfb4e2013-12-03 10:38:55 -0800109
Chris Craik726118b2014-03-07 18:27:49 -0800110 // outer ring of points, expanded based upon height of each ray intersection
111 float expansionDist = rayHeight[rayIndex] * heightFactor *
112 geomFactor;
113 AlphaVertex::set(&shadowVertices[rayIndex],
114 intersection.x + normal.x * expansionDist,
115 intersection.y + normal.y * expansionDist,
116 0.0f);
ztenghui55bfb4e2013-12-03 10:38:55 -0800117
Chris Craik726118b2014-03-07 18:27:49 -0800118 // inner ring of points
119 float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor);
ztenghui50ecf842014-03-11 16:52:30 -0700120 AlphaVertex::set(&shadowVertices[rays + rayIndex],
Chris Craik726118b2014-03-07 18:27:49 -0800121 intersection.x,
122 intersection.y,
123 opacity);
ztenghui55bfb4e2013-12-03 10:38:55 -0800124 }
ztenghui50ecf842014-03-11 16:52:30 -0700125
Chris Craik9a89bc62014-07-23 17:21:25 -0700126 if (isCasterOpaque) {
127 // skip inner ring, calc bounds over filled portion of buffer
128 shadowVertexBuffer.computeBounds<AlphaVertex>(2 * rays);
129 shadowVertexBuffer.setMode(VertexBuffer::kOnePolyRingShadow);
130 } else {
131 // If caster isn't opaque, we need to to fill the umbra by storing the umbra's
132 // centroid in the innermost ring of vertices.
ztenghui50ecf842014-03-11 16:52:30 -0700133 float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor);
134 AlphaVertex centroidXYA;
135 AlphaVertex::set(&centroidXYA, centroid2d.x, centroid2d.y, centroidAlpha);
136 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
137 shadowVertices[2 * rays + rayIndex] = centroidXYA;
138 }
Chris Craik9a89bc62014-07-23 17:21:25 -0700139 // calc bounds over entire buffer
140 shadowVertexBuffer.computeBounds<AlphaVertex>();
141 shadowVertexBuffer.setMode(VertexBuffer::kTwoPolyRingShadow);
ztenghui50ecf842014-03-11 16:52:30 -0700142 }
ztenghui55bfb4e2013-12-03 10:38:55 -0800143
ztenghui55bfb4e2013-12-03 10:38:55 -0800144#if DEBUG_SHADOW
ztenghui63d41ab2014-02-14 13:13:41 -0800145 for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
146 ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
147 shadowVertices[i].y, shadowVertices[i].alpha);
148 }
149#endif
ztenghui55bfb4e2013-12-03 10:38:55 -0800150}
151
152/**
153 * Generate an array of rays' direction vectors.
ztenghui2e023f32014-04-28 16:43:13 -0700154 * To make sure the vertices generated are clockwise, the directions are from PI
155 * to -PI.
ztenghui55bfb4e2013-12-03 10:38:55 -0800156 *
157 * @param rays The number of rays shooting out from the centroid.
ztenghui7940dc52014-04-22 11:21:49 -0700158 * @param vertices Vertices of the polygon.
159 * @param vertexCount The number of vertices.
160 * @param centroid3d The centroid of the polygon.
ztenghui55bfb4e2013-12-03 10:38:55 -0800161 * @param dir Return the array of ray vectors.
162 */
ztenghui7940dc52014-04-22 11:21:49 -0700163void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices,
164 const int vertexCount, const Vector3& centroid3d, Vector2* dir) {
165 // If we don't have enough rays, then fall back to the uniform distribution.
166 if (vertexCount * 2 > rays) {
167 float deltaAngle = 2 * M_PI / rays;
168 for (int i = 0; i < rays; i++) {
ztenghui2e023f32014-04-28 16:43:13 -0700169 dir[i].x = cosf(M_PI - deltaAngle * i);
170 dir[i].y = sinf(M_PI - deltaAngle * i);
ztenghui7940dc52014-04-22 11:21:49 -0700171 }
172 return;
173 }
174
175 // If we have enough rays, then we assign each vertices a ray, and distribute
176 // the rest uniformly.
177 float rayThetas[rays];
178
179 const int uniformRayCount = rays - vertexCount;
180 const float deltaAngle = 2 * M_PI / uniformRayCount;
181
182 // We have to generate all the vertices' theta anyway and we also need to
183 // find the minimal, so let's precompute it first.
184 // Since the incoming polygon is clockwise, we can find the dip to identify
185 // the minimal theta.
186 float polyThetas[vertexCount];
ztenghui2e023f32014-04-28 16:43:13 -0700187 int maxPolyThetaIndex = 0;
ztenghui7940dc52014-04-22 11:21:49 -0700188 for (int i = 0; i < vertexCount; i++) {
189 polyThetas[i] = atan2(vertices[i].y - centroid3d.y,
190 vertices[i].x - centroid3d.x);
ztenghui2e023f32014-04-28 16:43:13 -0700191 if (i > 0 && polyThetas[i] > polyThetas[i - 1]) {
192 maxPolyThetaIndex = i;
ztenghui7940dc52014-04-22 11:21:49 -0700193 }
194 }
195
ztenghui2e023f32014-04-28 16:43:13 -0700196 // Both poly's thetas and uniform thetas are in decrease order(clockwise)
197 // from PI to -PI.
198 int polyThetaIndex = maxPolyThetaIndex;
199 float polyTheta = polyThetas[maxPolyThetaIndex];
ztenghui7940dc52014-04-22 11:21:49 -0700200 int uniformThetaIndex = 0;
ztenghui2e023f32014-04-28 16:43:13 -0700201 float uniformTheta = M_PI;
ztenghui7940dc52014-04-22 11:21:49 -0700202 for (int i = 0; i < rays; i++) {
203 // Compare both thetas and pick the smaller one and move on.
204 bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA;
ztenghui2e023f32014-04-28 16:43:13 -0700205 if (polyTheta > uniformTheta || hasThetaCollision) {
ztenghui7940dc52014-04-22 11:21:49 -0700206 if (hasThetaCollision) {
207 // Shift the uniformTheta to middle way between current polyTheta
208 // and next uniform theta. The next uniform theta can wrap around
209 // to exactly PI safely here.
210 // Note that neither polyTheta nor uniformTheta can be FLT_MAX
211 // due to the hasThetaCollision is true.
ztenghui2e023f32014-04-28 16:43:13 -0700212 uniformTheta = (polyTheta + M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2;
ztenghui7940dc52014-04-22 11:21:49 -0700213#if DEBUG_SHADOW
214 ALOGD("Shifted uniformTheta to %f", uniformTheta);
215#endif
216 }
217 rayThetas[i] = polyTheta;
218 polyThetaIndex = (polyThetaIndex + 1) % vertexCount;
ztenghui2e023f32014-04-28 16:43:13 -0700219 if (polyThetaIndex != maxPolyThetaIndex) {
ztenghui7940dc52014-04-22 11:21:49 -0700220 polyTheta = polyThetas[polyThetaIndex];
221 } else {
222 // out of poly points.
ztenghui2e023f32014-04-28 16:43:13 -0700223 polyTheta = - FLT_MAX;
ztenghui7940dc52014-04-22 11:21:49 -0700224 }
225 } else {
226 rayThetas[i] = uniformTheta;
227 uniformThetaIndex++;
228 if (uniformThetaIndex < uniformRayCount) {
ztenghui2e023f32014-04-28 16:43:13 -0700229 uniformTheta = M_PI - deltaAngle * uniformThetaIndex;
ztenghui7940dc52014-04-22 11:21:49 -0700230 } else {
231 // out of uniform points.
ztenghui2e023f32014-04-28 16:43:13 -0700232 uniformTheta = - FLT_MAX;
ztenghui7940dc52014-04-22 11:21:49 -0700233 }
234 }
235 }
ztenghui55bfb4e2013-12-03 10:38:55 -0800236
237 for (int i = 0; i < rays; i++) {
ztenghui7940dc52014-04-22 11:21:49 -0700238#if DEBUG_SHADOW
239 ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI);
240#endif
241 // TODO: Fix the intersection precision problem and remvoe the delta added
242 // here.
ztenghui2e023f32014-04-28 16:43:13 -0700243 dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA);
244 dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA);
ztenghui55bfb4e2013-12-03 10:38:55 -0800245 }
246}
247
248/**
249 * Calculate the intersection of a ray hitting the polygon.
250 *
251 * @param vertices The shadow caster's polygon, which is represented in a
252 * Vector3 array.
253 * @param vertexCount The length of caster's polygon in terms of number of vertices.
254 * @param start The starting point of the ray.
255 * @param dir The direction vector of the ray.
256 *
257 * @param outEdgeIndex Return the index of the segment (or index of the starting
258 * vertex) that ray intersect with.
259 * @param outEdgeFraction Return the fraction offset from the segment starting
260 * index.
261 * @param outRayDist Return the ray distance from centroid to the intersection.
262 */
263void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
ztenghui63d41ab2014-02-14 13:13:41 -0800264 const Vector3& start, const Vector2& dir, int& outEdgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -0800265 float& outEdgeFraction, float& outRayDist) {
266 float startX = start.x;
267 float startY = start.y;
268 float dirX = dir.x;
269 float dirY = dir.y;
270 // Start the search from the last edge from poly[len-1] to poly[0].
271 int p1 = vertexCount - 1;
272
273 for (int p2 = 0; p2 < vertexCount; p2++) {
274 float p1x = vertices[p1].x;
275 float p1y = vertices[p1].y;
276 float p2x = vertices[p2].x;
277 float p2y = vertices[p2].y;
278
279 // The math here is derived from:
280 // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
281 // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
282 float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
283 if (div != 0) {
284 float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
285 if (t > 0 && t <= 1) {
286 float t2 = (p1x * (startY - p2y)
287 + p2x * (p1y - startY)
288 + startX * (p2y - p1y)) / div;
289 if (t2 > 0) {
290 outEdgeIndex = p1;
291 outRayDist = t2;
292 outEdgeFraction = t;
293 return;
294 }
295 }
296 }
297 p1 = p2;
298 }
299 return;
300};
301
302/**
303 * Calculate the normal at the intersection point between a ray and the polygon.
304 *
305 * @param rays The total number of rays.
306 * @param currentRayIndex The index of the ray which the normal is based on.
307 * @param dir The array of the all the rays directions.
308 * @param rayDist The pre-computed ray distances array.
309 *
310 * @param normal Return the normal.
311 */
312void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
313 const Vector2* dir, const float* rayDist, Vector2& normal) {
314 int preIndex = (currentRayIndex - 1 + rays) % rays;
315 int postIndex = (currentRayIndex + 1) % rays;
316 Vector2 p1 = dir[preIndex] * rayDist[preIndex];
317 Vector2 p2 = dir[postIndex] * rayDist[postIndex];
318
ztenghui2e023f32014-04-28 16:43:13 -0700319 // Now the rays are going CW around the poly.
ztenghui55bfb4e2013-12-03 10:38:55 -0800320 Vector2 delta = p2 - p1;
321 if (delta.length() != 0) {
322 delta.normalize();
ztenghui2e023f32014-04-28 16:43:13 -0700323 // Calculate the normal , which is CCW 90 rotate to the delta.
324 normal.x = - delta.y;
ztenghui55bfb4e2013-12-03 10:38:55 -0800325 normal.y = delta.x;
326 }
327}
328
329}; // namespace uirenderer
330}; // namespace android