Generate all APIs.

This CL expands the generator to create all the .rsh files, not just
the core_math one.  To do so, processing of types (simple, struct, enums)
and constants was added.  .spec files corresponding to each .rsh file was
created.  Documentation was added.

This CL also generates HTML documentation files.  This generation will soon
be upgraded.

To make the code easier to expand, I've done fairly extensive refactoring.

In a subsequent CL, the APIs will be regrouped in different header files to
simplify learning the APIs.  In an other, the documentation generation will
be futher improved and incorporated in the actual online help.

Also removes rs_path & related functions.

Change-Id: I2c88554c9c6a8625233772b89e055fc6c4ad5da5
diff --git a/api/rs_quaternion.spec b/api/rs_quaternion.spec
new file mode 100644
index 0000000..07051a9
--- /dev/null
+++ b/api/rs_quaternion.spec
@@ -0,0 +1,270 @@
+#
+# Copyright (C) 2015 The Android Open Source Project
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+header:
+summary: Quaternion routines
+description:
+end:
+
+function: rsQuaternionAdd
+ret: void
+arg: rs_quaternion* q, "destination quaternion to add to"
+arg: const rs_quaternion* rhs, "right hand side quaternion to add"
+summary:
+description:
+ Add two quaternions
+inline:
+ q->w *= rhs->w;
+ q->x *= rhs->x;
+ q->y *= rhs->y;
+ q->z *= rhs->z;
+test: none
+end:
+
+function: rsQuaternionConjugate
+ret: void
+arg: rs_quaternion* q, "quaternion to conjugate"
+summary:
+description:
+ Conjugates the quaternion
+inline:
+ q->x = -q->x;
+ q->y = -q->y;
+ q->z = -q->z;
+test: none
+end:
+
+function: rsQuaternionDot
+ret: float, "dot product between q0 and q1"
+arg: const rs_quaternion* q0, "first quaternion"
+arg: const rs_quaternion* q1, "second quaternion"
+summary:
+description:
+ Dot product of two quaternions
+inline:
+ return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z;
+test: none
+end:
+
+function: rsQuaternionGetMatrixUnit
+ret: void
+arg: rs_matrix4x4* m, "resulting matrix"
+arg: const rs_quaternion* q, "normalized quaternion"
+summary:
+description:
+ Computes rotation matrix from the normalized quaternion
+inline:
+ float xx = q->x * q->x;
+ float xy = q->x * q->y;
+ float xz = q->x * q->z;
+ float xw = q->x * q->w;
+ float yy = q->y * q->y;
+ float yz = q->y * q->z;
+ float yw = q->y * q->w;
+ float zz = q->z * q->z;
+ float zw = q->z * q->w;
+
+ m->m[0]  = 1.0f - 2.0f * ( yy + zz );
+ m->m[4]  =        2.0f * ( xy - zw );
+ m->m[8]  =        2.0f * ( xz + yw );
+ m->m[1]  =        2.0f * ( xy + zw );
+ m->m[5]  = 1.0f - 2.0f * ( xx + zz );
+ m->m[9]  =        2.0f * ( yz - xw );
+ m->m[2]  =        2.0f * ( xz - yw );
+ m->m[6]  =        2.0f * ( yz + xw );
+ m->m[10] = 1.0f - 2.0f * ( xx + yy );
+ m->m[3]  = m->m[7] = m->m[11] = m->m[12] = m->m[13] = m->m[14] = 0.0f;
+ m->m[15] = 1.0f;
+test: none
+end:
+
+function: rsQuaternionLoadRotateUnit
+ret: void
+arg: rs_quaternion* q, "quaternion to set"
+arg: float rot, "rot angle to rotate by"
+arg: float x, "component of a vector"
+arg: float y, "component of a vector"
+arg: float z, "component of a vector"
+summary:
+description:
+ Loads a quaternion that represents a rotation about an arbitrary unit vector
+inline:
+ rot *= (float)(M_PI / 180.0f) * 0.5f;
+ float c = cos(rot);
+ float s = sin(rot);
+
+ q->w = c;
+ q->x = x * s;
+ q->y = y * s;
+ q->z = z * s;
+test: none
+end:
+
+function: rsQuaternionSet
+ret: void
+arg: rs_quaternion* q, "destination quaternion"
+arg: float w, "component"
+arg: float x, "component"
+arg: float y, "component"
+arg: float z, "component"
+summary:
+description:
+ Set the quaternion from components or from another quaternion.
+inline:
+ q->w = w;
+ q->x = x;
+ q->y = y;
+ q->z = z;
+test: none
+end:
+
+function: rsQuaternionSet
+ret: void
+arg: rs_quaternion* q
+arg: const rs_quaternion* rhs, "source quaternion"
+inline:
+ q->w = rhs->w;
+ q->x = rhs->x;
+ q->y = rhs->y;
+ q->z = rhs->z;
+test: none
+end:
+
+# NOTE: The following inline definitions depend on each other.  The order must be preserved
+# for the compilation to work.
+
+function: rsQuaternionLoadRotate
+ret: void
+arg: rs_quaternion* q, "quaternion to set"
+arg: float rot, "angle to rotate by"
+arg: float x, "component of a vector"
+arg: float y, "component of a vector"
+arg: float z, "component of a vector"
+summary:
+description:
+ Loads a quaternion that represents a rotation about an arbitrary vector
+ (doesn't have to be unit)
+inline:
+ const float len = x*x + y*y + z*z;
+ if (len != 1) {
+     const float recipLen = 1.f / sqrt(len);
+     x *= recipLen;
+     y *= recipLen;
+     z *= recipLen;
+ }
+ rsQuaternionLoadRotateUnit(q, rot, x, y, z);
+test: none
+end:
+
+function: rsQuaternionNormalize
+ret: void
+arg: rs_quaternion* q, "quaternion to normalize"
+summary:
+description:
+ Normalizes the quaternion
+inline:
+ const float len = rsQuaternionDot(q, q);
+ if (len != 1) {
+     const float recipLen = 1.f / sqrt(len);
+     q->w *= recipLen;
+     q->x *= recipLen;
+     q->y *= recipLen;
+     q->z *= recipLen;
+ }
+test: none
+end:
+
+function: rsQuaternionMultiply
+ret: void
+arg: rs_quaternion* q, "destination quaternion"
+arg: float s, "scalar"
+summary:
+description:
+ Multiply quaternion by a scalar or another quaternion
+inline:
+ q->w *= s;
+ q->x *= s;
+ q->y *= s;
+ q->z *= s;
+test: none
+end:
+
+function: rsQuaternionMultiply
+ret: void
+arg: rs_quaternion* q
+arg: const rs_quaternion* rhs, "right hand side quaternion to multiply by"
+inline:
+ rs_quaternion qtmp;
+ rsQuaternionSet(&qtmp, q);
+
+ q->w = qtmp.w*rhs->w - qtmp.x*rhs->x - qtmp.y*rhs->y - qtmp.z*rhs->z;
+ q->x = qtmp.w*rhs->x + qtmp.x*rhs->w + qtmp.y*rhs->z - qtmp.z*rhs->y;
+ q->y = qtmp.w*rhs->y + qtmp.y*rhs->w + qtmp.z*rhs->x - qtmp.x*rhs->z;
+ q->z = qtmp.w*rhs->z + qtmp.z*rhs->w + qtmp.x*rhs->y - qtmp.y*rhs->x;
+ rsQuaternionNormalize(q);
+test: none
+end:
+
+function: rsQuaternionSlerp
+ret: void
+arg: rs_quaternion* q, "result quaternion from interpolation"
+arg: const rs_quaternion* q0, "first param"
+arg: const rs_quaternion* q1, "second param"
+arg: float t, "how much to interpolate by"
+summary:
+description:
+ Performs spherical linear interpolation between two quaternions
+inline:
+ if (t <= 0.0f) {
+     rsQuaternionSet(q, q0);
+     return;
+ }
+ if (t >= 1.0f) {
+     rsQuaternionSet(q, q1);
+     return;
+ }
+
+ rs_quaternion tempq0, tempq1;
+ rsQuaternionSet(&tempq0, q0);
+ rsQuaternionSet(&tempq1, q1);
+
+ float angle = rsQuaternionDot(q0, q1);
+ if (angle < 0) {
+     rsQuaternionMultiply(&tempq0, -1.0f);
+     angle *= -1.0f;
+ }
+
+ float scale, invScale;
+ if (angle + 1.0f > 0.05f) {
+     if (1.0f - angle >= 0.05f) {
+         float theta = acos(angle);
+         float invSinTheta = 1.0f / sin(theta);
+         scale = sin(theta * (1.0f - t)) * invSinTheta;
+         invScale = sin(theta * t) * invSinTheta;
+     } else {
+         scale = 1.0f - t;
+         invScale = t;
+     }
+ } else {
+     rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w);
+     scale = sin(M_PI * (0.5f - t));
+     invScale = sin(M_PI * t);
+ }
+
+ rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale,
+                     tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale);
+test: none
+end: