Merge "Support for a android.text.format.Time implemented entirely in Java"
diff --git a/luni/src/main/java/java/util/GregorianCalendar.java b/luni/src/main/java/java/util/GregorianCalendar.java
index 71b79dd..be96684 100644
--- a/luni/src/main/java/java/util/GregorianCalendar.java
+++ b/luni/src/main/java/java/util/GregorianCalendar.java
@@ -331,7 +331,16 @@
setTimeInMillis(System.currentTimeMillis());
}
- GregorianCalendar(boolean ignored) {
+ /**
+ * A minimum-cost constructor that does not initialize the current time or perform any date
+ * calculations. For use internally when the time will be set later. Other constructors, such as
+ * {@link GregorianCalendar#GregorianCalendar()}, set the time to the current system clock
+ * and recalculate the fields incurring unnecessary cost when the time or fields will be set
+ * later.
+ *
+ * @hide used internally
+ */
+ public GregorianCalendar(boolean ignored) {
super(TimeZone.getDefault());
setFirstDayOfWeek(SUNDAY);
setMinimalDaysInFirstWeek(1);
diff --git a/luni/src/main/java/libcore/util/ZoneInfo.java b/luni/src/main/java/libcore/util/ZoneInfo.java
index ed7ab64..fbd120b 100644
--- a/luni/src/main/java/libcore/util/ZoneInfo.java
+++ b/luni/src/main/java/libcore/util/ZoneInfo.java
@@ -13,11 +13,19 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
-
+/*
+ * Elements of the WallTime class are a port of Bionic's localtime.c to Java. That code had the
+ * following header:
+ *
+ * This file is in the public domain, so clarified as of
+ * 1996-06-05 by Arthur David Olson.
+ */
package libcore.util;
import java.util.Arrays;
+import java.util.Calendar;
import java.util.Date;
+import java.util.GregorianCalendar;
import java.util.TimeZone;
import libcore.io.BufferIterator;
@@ -310,4 +318,655 @@
// respectively.
return super.clone();
}
+
+ /**
+ * A class that represents a "wall time". This class is modeled on the C tm struct and
+ * is used to support android.text.format.Time behavior. Unlike the tm struct the year is
+ * represented as the full year, not the years since 1900.
+ *
+ * <p>This class contains a rewrite of various native functions that android.text.format.Time
+ * once relied on such as mktime_tz and localtime_tz. This replacement does not support leap
+ * seconds but does try to preserve behavior around ambiguous date/times found in the BSD
+ * version of mktime that was previously used.
+ *
+ * <p>The original native code used a 32-bit value for time_t on 32-bit Android, which
+ * was the only variant of Android available at the time. To preserve old behavior this code
+ * deliberately uses {@code int} rather than {@code long} for most things and performs
+ * calculations in seconds. This creates deliberate truncation issues for date / times before
+ * 1901 and after 2038. This is intentional but might be fixed in future if all the knock-ons
+ * can be resolved: Application code may have come to rely on the range so previously values
+ * like zero for year could indicate an invalid date but if we move to long the year zero would
+ * be valid.
+ *
+ * <p>All offsets are considered to be safe for addition / subtraction / multiplication without
+ * worrying about overflow. All absolute time arithmetic is checked for overflow / underflow.
+ */
+ public static class WallTime {
+
+ // We use a GregorianCalendar (set to UTC) to handle all the date/time normalization logic
+ // and to convert from a broken-down date/time to a millis value.
+ // Unfortunately, it cannot represent an initial state with a zero day and would
+ // automatically normalize it, so we must copy values into and out of it as needed.
+ private final GregorianCalendar calendar;
+
+ private int year;
+ private int month;
+ private int monthDay;
+ private int hour;
+ private int minute;
+ private int second;
+ private int weekDay;
+ private int yearDay;
+ private int isDst;
+ private int gmtOffsetSeconds;
+
+ public WallTime() {
+ this.calendar = new GregorianCalendar(false);
+ calendar.setTimeZone(TimeZone.getTimeZone("UTC"));
+ }
+
+ /**
+ * Sets the wall time to a point in time using the time zone information provided. This
+ * is a replacement for the old native localtime_tz() function.
+ *
+ * <p>When going from an instant to a wall time it is always unambiguous because there
+ * is only one offset rule acting at any given instant. We do not consider leap seconds.
+ */
+ public void localtime(int timeSeconds, ZoneInfo zoneInfo) {
+ try {
+ int offsetSeconds = zoneInfo.mRawOffset / 1000;
+
+ // Find out the timezone DST state and adjustment.
+ byte isDst;
+ if (zoneInfo.mTransitions.length == 0) {
+ isDst = 0;
+ } else {
+ // transitionIndex can be in the range -1..zoneInfo.mTransitions.length - 1
+ int transitionIndex = findTransitionIndex(zoneInfo, timeSeconds);
+ if (transitionIndex < 0) {
+ // -1 means timeSeconds is "before the first recorded transition". The first
+ // recorded transition is treated as a transition from non-DST and the raw
+ // offset.
+ isDst = 0;
+ } else {
+ byte transitionType = zoneInfo.mTypes[transitionIndex];
+ offsetSeconds += zoneInfo.mOffsets[transitionType];
+ isDst = zoneInfo.mIsDsts[transitionType];
+ }
+ }
+
+ // Perform arithmetic that might underflow before setting fields.
+ int wallTimeSeconds = checkedAdd(timeSeconds, offsetSeconds);
+
+ // Set fields.
+ calendar.setTimeInMillis(wallTimeSeconds * 1000L);
+ copyFieldsFromCalendar();
+ this.isDst = isDst;
+ this.gmtOffsetSeconds = offsetSeconds;
+ } catch (CheckedArithmeticException e) {
+ // Just stop, leaving fields untouched.
+ }
+ }
+
+ /**
+ * Returns the time in seconds since beginning of the Unix epoch for the wall time using the
+ * time zone information provided. This is a replacement for an old native mktime_tz() C
+ * function.
+ *
+ * <p>When going from a wall time to an instant the answer can be ambiguous. A wall
+ * time can map to zero, one or two instants given sane date/time transitions. Sane
+ * in this case means that transitions occur less frequently than the offset
+ * differences between them (which could cause all sorts of craziness like the
+ * skipping out of transitions).
+ *
+ * <p>For example, this is not fully supported:
+ * <ul>
+ * <li>t1 { time = 1, offset = 0 }
+ * <li>t2 { time = 2, offset = -1 }
+ * <li>t3 { time = 3, offset = -2 }
+ * </ul>
+ * A wall time in this case might map to t1, t2 or t3.
+ *
+ * <p>We do not handle leap seconds.
+ * <p>We assume that no timezone offset transition has an absolute offset > 24 hours.
+ * <p>We do not assume that adjacent transitions modify the DST state; adjustments can
+ * occur for other reasons such as when a zone changes its raw offset.
+ */
+ public int mktime(ZoneInfo zoneInfo) {
+ // Normalize isDst to -1, 0 or 1 to simplify isDst equality checks below.
+ this.isDst = this.isDst > 0 ? this.isDst = 1 : this.isDst < 0 ? this.isDst = -1 : 0;
+
+ copyFieldsToCalendar();
+ final long longWallTimeSeconds = calendar.getTimeInMillis() / 1000;
+ if (Integer.MIN_VALUE > longWallTimeSeconds
+ || longWallTimeSeconds > Integer.MAX_VALUE) {
+ // For compatibility with the old native 32-bit implementation we must treat
+ // this as an error. Note: -1 could be confused with a real time.
+ return -1;
+ }
+
+ try {
+ final int wallTimeSeconds = (int) longWallTimeSeconds;
+ final int rawOffsetSeconds = zoneInfo.mRawOffset / 1000;
+ final int rawTimeSeconds = checkedSubtract(wallTimeSeconds, rawOffsetSeconds);
+
+ if (zoneInfo.mTransitions.length == 0) {
+ // There is no transition information. There is just a raw offset for all time.
+ if (this.isDst > 0) {
+ // Caller has asserted DST, but there is no DST information available.
+ return -1;
+ }
+ copyFieldsFromCalendar();
+ this.isDst = 0;
+ this.gmtOffsetSeconds = rawOffsetSeconds;
+ return rawTimeSeconds;
+ }
+
+ // We cannot know for sure what instant the wall time will map to. Unfortunately, in
+ // order to know for sure we need the timezone information, but to get the timezone
+ // information we need an instant. To resolve this we use the raw offset to find an
+ // OffsetInterval; this will get us the OffsetInterval we need or very close.
+
+ // The initialTransition can be between -1 and (zoneInfo.mTransitions - 1). -1
+ // indicates the rawTime is before the first transition and is handled gracefully by
+ // createOffsetInterval().
+ final int initialTransitionIndex = findTransitionIndex(zoneInfo, rawTimeSeconds);
+
+ if (isDst < 0) {
+ // This is treated as a special case to get it out of the way:
+ // When a caller has set isDst == -1 it means we can return the first match for
+ // the wall time we find. If the caller has specified a wall time that cannot
+ // exist this always returns -1.
+
+ Integer result = doWallTimeSearch(zoneInfo, initialTransitionIndex,
+ wallTimeSeconds, true /* mustMatchDst */);
+ return result == null ? -1 : result;
+ }
+
+ // If the wall time asserts a DST (isDst == 0 or 1) the search is performed twice:
+ // 1) The first attempts to find a DST offset that matches isDst exactly.
+ // 2) If it fails, isDst is assumed to be incorrect and adjustments are made to see
+ // if a valid wall time can be created. The result can be somewhat arbitrary.
+
+ Integer result = doWallTimeSearch(zoneInfo, initialTransitionIndex, wallTimeSeconds,
+ true /* mustMatchDst */);
+ if (result == null) {
+ result = doWallTimeSearch(zoneInfo, initialTransitionIndex, wallTimeSeconds,
+ false /* mustMatchDst */);
+ }
+ if (result == null) {
+ result = -1;
+ }
+ return result;
+ } catch (CheckedArithmeticException e) {
+ return -1;
+ }
+ }
+
+ /**
+ * Attempt to apply DST adjustments to {@code oldWallTimeSeconds} to create a wall time in
+ * {@code targetInterval}.
+ *
+ * <p>This is used when a caller has made an assertion about standard time / DST that cannot
+ * be matched to any offset interval that exists. We must therefore assume that the isDst
+ * assertion is incorrect and the invalid wall time is the result of some modification the
+ * caller made to a valid wall time that pushed them outside of the offset interval they
+ * were in. We must correct for any DST change that should have been applied when they did
+ * so.
+ *
+ * <p>Unfortunately, we have no information about what adjustment they made and so cannot
+ * know which offset interval they were previously in. For example, they may have added a
+ * second or a year to a valid time to arrive at what they have.
+ *
+ * <p>We try all offset types that are not the same as the isDst the caller asserted. For
+ * each possible offset we work out the offset difference between that and
+ * {@code targetInterval}, apply it, and see if we are still in {@code targetInterval}. If
+ * we are, then we have found an adjustment.
+ */
+ private Integer tryOffsetAdjustments(ZoneInfo zoneInfo, int oldWallTimeSeconds,
+ OffsetInterval targetInterval, int transitionIndex, int isDstToFind)
+ throws CheckedArithmeticException {
+
+ int[] offsetsToTry = getOffsetsOfType(zoneInfo, transitionIndex, isDstToFind);
+ for (int j = 0; j < offsetsToTry.length; j++) {
+ int rawOffsetSeconds = zoneInfo.mRawOffset / 1000;
+ int jOffsetSeconds = rawOffsetSeconds + offsetsToTry[j];
+ int targetIntervalOffsetSeconds = targetInterval.getTotalOffsetSeconds();
+ int adjustmentSeconds = targetIntervalOffsetSeconds - jOffsetSeconds;
+ int adjustedWallTimeSeconds = checkedAdd(oldWallTimeSeconds, adjustmentSeconds);
+ if (targetInterval.containsWallTime(adjustedWallTimeSeconds)) {
+ // Perform any arithmetic that might overflow.
+ int returnValue = checkedSubtract(adjustedWallTimeSeconds,
+ targetIntervalOffsetSeconds);
+
+ // Modify field state and return the result.
+ calendar.setTimeInMillis(adjustedWallTimeSeconds * 1000L);
+ copyFieldsFromCalendar();
+ this.isDst = targetInterval.getIsDst();
+ this.gmtOffsetSeconds = targetIntervalOffsetSeconds;
+ return returnValue;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Return an array of offsets that have the requested {@code isDst} value.
+ * The {@code startIndex} is used as a starting point so transitions nearest
+ * to that index are returned first.
+ */
+ private static int[] getOffsetsOfType(ZoneInfo zoneInfo, int startIndex, int isDst) {
+ // +1 to account for the synthetic transition we invent before the first recorded one.
+ int[] offsets = new int[zoneInfo.mOffsets.length + 1];
+ boolean[] seen = new boolean[zoneInfo.mOffsets.length];
+ int numFound = 0;
+
+ int delta = 0;
+ boolean clampTop = false;
+ boolean clampBottom = false;
+ do {
+ // delta = { 1, -1, 2, -2, 3, -3...}
+ delta *= -1;
+ if (delta >= 0) {
+ delta++;
+ }
+
+ int transitionIndex = startIndex + delta;
+ if (delta < 0 && transitionIndex < -1) {
+ clampBottom = true;
+ continue;
+ } else if (delta > 0 && transitionIndex >= zoneInfo.mTypes.length) {
+ clampTop = true;
+ continue;
+ }
+
+ if (transitionIndex == -1) {
+ if (isDst == 0) {
+ // Synthesize a non-DST transition before the first transition we have
+ // data for.
+ offsets[numFound++] = 0; // offset of 0 from raw offset
+ }
+ continue;
+ }
+ byte type = zoneInfo.mTypes[transitionIndex];
+ if (!seen[type]) {
+ if (zoneInfo.mIsDsts[type] == isDst) {
+ offsets[numFound++] = zoneInfo.mOffsets[type];
+ }
+ seen[type] = true;
+ }
+ } while (!(clampTop && clampBottom));
+
+ int[] toReturn = new int[numFound];
+ System.arraycopy(offsets, 0, toReturn, 0, numFound);
+ return toReturn;
+ }
+
+ /**
+ * Find a time <em>in seconds</em> the same or close to {@code wallTimeSeconds} that
+ * satisfies {@code mustMatchDst}. The search begins around the timezone offset transition
+ * with {@code initialTransitionIndex}.
+ *
+ * <p>If {@code mustMatchDst} is {@code true} the method can only return times that
+ * use timezone offsets that satisfy the {@code this.isDst} requirements.
+ * If {@code this.isDst == -1} it means that any offset can be used.
+ *
+ * <p>If {@code mustMatchDst} is {@code false} any offset that covers the
+ * currently set time is acceptable. That is: if {@code this.isDst} == -1, any offset
+ * transition can be used, if it is 0 or 1 the offset used must match {@code this.isDst}.
+ *
+ * <p>Note: This method both uses and can modify field state. It returns the matching time
+ * in seconds if a match has been found and modifies fields, or it returns {@code null} and
+ * leaves the field state unmodified.
+ */
+ private Integer doWallTimeSearch(ZoneInfo zoneInfo, int initialTransitionIndex,
+ int wallTimeSeconds, boolean mustMatchDst) throws CheckedArithmeticException {
+
+ // The loop below starts at the initialTransitionIndex and radiates out from that point
+ // up to 24 hours in either direction by applying transitionIndexDelta to inspect
+ // adjacent transitions (0, -1, +1, -2, +2). 24 hours is used because we assume that no
+ // total offset from UTC is ever > 24 hours. clampTop and clampBottom are used to
+ // indicate whether the search has either searched > 24 hours or exhausted the
+ // transition data in that direction. The search stops when a match is found or if
+ // clampTop and clampBottom are both true.
+ // The match logic employed is determined by the mustMatchDst parameter.
+ final int MAX_SEARCH_SECONDS = 24 * 60 * 60;
+ boolean clampTop = false, clampBottom = false;
+ int loop = 0;
+ do {
+ // transitionIndexDelta = { 0, -1, 1, -2, 2,..}
+ int transitionIndexDelta = (loop + 1) / 2;
+ if (loop % 2 == 1) {
+ transitionIndexDelta *= -1;
+ }
+ loop++;
+
+ // Only do any work in this iteration if we need to.
+ if (transitionIndexDelta > 0 && clampTop
+ || transitionIndexDelta < 0 && clampBottom) {
+ continue;
+ }
+
+ // Obtain the OffsetInterval to use.
+ int currentTransitionIndex = initialTransitionIndex + transitionIndexDelta;
+ OffsetInterval offsetInterval =
+ OffsetInterval.create(zoneInfo, currentTransitionIndex);
+ if (offsetInterval == null) {
+ // No transition exists with the index we tried: Stop searching in the
+ // current direction.
+ clampTop |= (transitionIndexDelta > 0);
+ clampBottom |= (transitionIndexDelta < 0);
+ continue;
+ }
+
+ // Match the wallTimeSeconds against the OffsetInterval.
+ if (mustMatchDst) {
+ // Work out if the interval contains the wall time the caller specified and
+ // matches their isDst value.
+ if (offsetInterval.containsWallTime(wallTimeSeconds)) {
+ if (this.isDst == -1 || offsetInterval.getIsDst() == this.isDst) {
+ // This always returns the first OffsetInterval it finds that matches
+ // the wall time and isDst requirements. If this.isDst == -1 this means
+ // the result might be a DST or a non-DST answer for wall times that can
+ // exist in two OffsetIntervals.
+ int totalOffsetSeconds = offsetInterval.getTotalOffsetSeconds();
+ int returnValue = checkedSubtract(wallTimeSeconds,
+ totalOffsetSeconds);
+
+ copyFieldsFromCalendar();
+ this.isDst = offsetInterval.getIsDst();
+ this.gmtOffsetSeconds = totalOffsetSeconds;
+ return returnValue;
+ }
+ }
+ } else {
+ // To retain similar behavior to the old native implementation: if the caller is
+ // asserting the same isDst value as the OffsetInterval we are looking at we do
+ // not try to find an adjustment from another OffsetInterval of the same isDst
+ // type. If you remove this you get different results in situations like a
+ // DST -> DST transition or STD -> STD transition that results in an interval of
+ // "skipped" wall time. For example: if 01:30 (DST) is invalid and between two
+ // DST intervals, and the caller has passed isDst == 1, this results in a -1
+ // being returned.
+ if (isDst != offsetInterval.getIsDst()) {
+ final int isDstToFind = isDst;
+ Integer returnValue = tryOffsetAdjustments(zoneInfo, wallTimeSeconds,
+ offsetInterval, currentTransitionIndex, isDstToFind);
+ if (returnValue != null) {
+ return returnValue;
+ }
+ }
+ }
+
+ // See if we can avoid another loop in the current direction.
+ if (transitionIndexDelta > 0) {
+ // If we are searching forward and the OffsetInterval we have ends
+ // > MAX_SEARCH_SECONDS after the wall time, we don't need to look any further
+ // forward.
+ boolean endSearch = offsetInterval.getEndWallTimeSeconds() - wallTimeSeconds
+ > MAX_SEARCH_SECONDS;
+ if (endSearch) {
+ clampTop = true;
+ }
+ } else if (transitionIndexDelta < 0) {
+ boolean endSearch = wallTimeSeconds - offsetInterval.getStartWallTimeSeconds()
+ >= MAX_SEARCH_SECONDS;
+ if (endSearch) {
+ // If we are searching backward and the OffsetInterval starts
+ // > MAX_SEARCH_SECONDS before the wall time, we don't need to look any
+ // further backwards.
+ clampBottom = true;
+ }
+ }
+ } while (!(clampTop && clampBottom));
+ return null;
+ }
+
+ public void setYear(int year) {
+ this.year = year;
+ }
+
+ public void setMonth(int month) {
+ this.month = month;
+ }
+
+ public void setMonthDay(int monthDay) {
+ this.monthDay = monthDay;
+ }
+
+ public void setHour(int hour) {
+ this.hour = hour;
+ }
+
+ public void setMinute(int minute) {
+ this.minute = minute;
+ }
+
+ public void setSecond(int second) {
+ this.second = second;
+ }
+
+ public void setWeekDay(int weekDay) {
+ this.weekDay = weekDay;
+ }
+
+ public void setYearDay(int yearDay) {
+ this.yearDay = yearDay;
+ }
+
+ public void setIsDst(int isDst) {
+ this.isDst = isDst;
+ }
+
+ public void setGmtOffset(int gmtoff) {
+ this.gmtOffsetSeconds = gmtoff;
+ }
+
+ public int getYear() {
+ return year;
+ }
+
+ public int getMonth() {
+ return month;
+ }
+
+ public int getMonthDay() {
+ return monthDay;
+ }
+
+ public int getHour() {
+ return hour;
+ }
+
+ public int getMinute() {
+ return minute;
+ }
+
+ public int getSecond() {
+ return second;
+ }
+
+ public int getWeekDay() {
+ return weekDay;
+ }
+
+ public int getYearDay() {
+ return yearDay;
+ }
+
+ public int getGmtOffset() {
+ return gmtOffsetSeconds;
+ }
+
+ public int getIsDst() {
+ return isDst;
+ }
+
+ private void copyFieldsToCalendar() {
+ calendar.set(Calendar.YEAR, year);
+ calendar.set(Calendar.MONTH, month);
+ calendar.set(Calendar.DAY_OF_MONTH, monthDay);
+ calendar.set(Calendar.HOUR_OF_DAY, hour);
+ calendar.set(Calendar.MINUTE, minute);
+ calendar.set(Calendar.SECOND, second);
+ }
+
+ private void copyFieldsFromCalendar() {
+ year = calendar.get(Calendar.YEAR);
+ month = calendar.get(Calendar.MONTH);
+ monthDay = calendar.get(Calendar.DAY_OF_MONTH);
+ hour = calendar.get(Calendar.HOUR_OF_DAY);
+ minute = calendar.get(Calendar.MINUTE);
+ second = calendar.get(Calendar.SECOND);
+
+ // Calendar uses Sunday == 1. Android Time uses Sunday = 0.
+ weekDay = calendar.get(Calendar.DAY_OF_WEEK) - 1;
+ // Calendar enumerates from 1, Android Time enumerates from 0.
+ yearDay = calendar.get(Calendar.DAY_OF_YEAR) - 1;
+ }
+
+ /**
+ * Find the transition in the {@code timezone} in effect at {@code timeSeconds}.
+ *
+ * <p>Returns an index in the range -1..timeZone.mTransitions.length - 1. -1 is used to
+ * indicate the time is before the first transition. Other values are an index into
+ * timeZone.mTransitions.
+ */
+ private static int findTransitionIndex(ZoneInfo timeZone, int timeSeconds) {
+ int matchingRawTransition = Arrays.binarySearch(timeZone.mTransitions, timeSeconds);
+ if (matchingRawTransition < 0) {
+ matchingRawTransition = ~matchingRawTransition - 1;
+ }
+ return matchingRawTransition;
+ }
+ }
+
+ /**
+ * A wall-time representation of a timezone offset interval.
+ *
+ * <p>Wall-time means "as it would appear locally in the timezone in which it applies".
+ * For example in 2007:
+ * PST was a -8:00 offset that ran until Mar 11, 2:00 AM.
+ * PDT was a -7:00 offset and ran from Mar 11, 3:00 AM to Nov 4, 2:00 AM.
+ * PST was a -8:00 offset and ran from Nov 4, 1:00 AM.
+ * Crucially this means that there was a "gap" after PST when PDT started, and an overlap when
+ * PDT ended and PST began.
+ *
+ * <p>For convenience all wall-time values are represented as the number of seconds since the
+ * beginning of the Unix epoch <em>in UTC</em>. To convert from a wall-time to the actual time
+ * in the offset it is necessary to <em>subtract</em> the {@code totalOffsetSeconds}.
+ * For example: If the offset in PST is -07:00 hours, then:
+ * timeInPstSeconds = wallTimeUtcSeconds - offsetSeconds
+ * i.e. 13:00 UTC - (-07:00) = 20:00 UTC = 13:00 PST
+ */
+ static class OffsetInterval {
+
+ private final int startWallTimeSeconds;
+ private final int endWallTimeSeconds;
+ private final int isDst;
+ private final int totalOffsetSeconds;
+
+ /**
+ * Creates an {@link OffsetInterval}.
+ *
+ * <p>If {@code transitionIndex} is -1, the transition is synthesized to be a non-DST offset
+ * that runs from the beginning of time until the first transition in {@code timeZone} and
+ * has an offset of {@code timezone.mRawOffset}. If {@code transitionIndex} is the last
+ * transition that transition is considered to run until the end of representable time.
+ * Otherwise, the information is extracted from {@code timeZone.mTransitions},
+ * {@code timeZone.mOffsets} an {@code timeZone.mIsDsts}.
+ */
+ public static OffsetInterval create(ZoneInfo timeZone, int transitionIndex)
+ throws CheckedArithmeticException {
+
+ if (transitionIndex < -1 || transitionIndex >= timeZone.mTransitions.length) {
+ return null;
+ }
+
+ int rawOffsetSeconds = timeZone.mRawOffset / 1000;
+ if (transitionIndex == -1) {
+ int endWallTimeSeconds = checkedAdd(timeZone.mTransitions[0], rawOffsetSeconds);
+ return new OffsetInterval(Integer.MIN_VALUE, endWallTimeSeconds, 0 /* isDst */,
+ rawOffsetSeconds);
+ }
+
+ byte type = timeZone.mTypes[transitionIndex];
+ int totalOffsetSeconds = timeZone.mOffsets[type] + rawOffsetSeconds;
+ int endWallTimeSeconds;
+ if (transitionIndex == timeZone.mTransitions.length - 1) {
+ // If this is the last transition, make up the end time.
+ endWallTimeSeconds = Integer.MAX_VALUE;
+ } else {
+ endWallTimeSeconds = checkedAdd(timeZone.mTransitions[transitionIndex + 1],
+ totalOffsetSeconds);
+ }
+ int isDst = timeZone.mIsDsts[type];
+ int startWallTimeSeconds =
+ checkedAdd(timeZone.mTransitions[transitionIndex], totalOffsetSeconds);
+ return new OffsetInterval(
+ startWallTimeSeconds, endWallTimeSeconds, isDst, totalOffsetSeconds);
+ }
+
+ private OffsetInterval(int startWallTimeSeconds, int endWallTimeSeconds, int isDst,
+ int totalOffsetSeconds) {
+ this.startWallTimeSeconds = startWallTimeSeconds;
+ this.endWallTimeSeconds = endWallTimeSeconds;
+ this.isDst = isDst;
+ this.totalOffsetSeconds = totalOffsetSeconds;
+ }
+
+ public boolean containsWallTime(long wallTimeSeconds) {
+ return wallTimeSeconds >= startWallTimeSeconds && wallTimeSeconds < endWallTimeSeconds;
+ }
+
+ public int getIsDst() {
+ return isDst;
+ }
+
+ public int getTotalOffsetSeconds() {
+ return totalOffsetSeconds;
+ }
+
+ public long getEndWallTimeSeconds() {
+ return endWallTimeSeconds;
+ }
+
+ public long getStartWallTimeSeconds() {
+ return startWallTimeSeconds;
+ }
+ }
+
+ /**
+ * An exception used to indicate an arithmetic overflow or underflow.
+ */
+ private static class CheckedArithmeticException extends Exception {
+ }
+
+ /**
+ * Calculate (a + b).
+ *
+ * @throws CheckedArithmeticException if overflow or underflow occurs
+ */
+ private static int checkedAdd(int a, int b) throws CheckedArithmeticException {
+ // Adapted from Guava IntMath.checkedAdd();
+ long result = (long) a + b;
+ if (result != (int) result) {
+ throw new CheckedArithmeticException();
+ }
+ return (int) result;
+ }
+
+ /**
+ * Calculate (a - b).
+ *
+ * @throws CheckedArithmeticException if overflow or underflow occurs
+ */
+ private static int checkedSubtract(int a, int b) throws CheckedArithmeticException {
+ // Adapted from Guava IntMath.checkedSubtract();
+ long result = (long) a - b;
+ if (result != (int) result) {
+ throw new CheckedArithmeticException();
+ }
+ return (int) result;
+ }
}
diff --git a/luni/src/main/java/libcore/util/ZoneInfoDB.java b/luni/src/main/java/libcore/util/ZoneInfoDB.java
index 74947a6..07aaf04 100644
--- a/luni/src/main/java/libcore/util/ZoneInfoDB.java
+++ b/luni/src/main/java/libcore/util/ZoneInfoDB.java
@@ -229,9 +229,9 @@
}
public ZoneInfo makeTimeZone(String id) throws IOException {
- ZoneInfo zoneInfo = cache.get(id);
- // The object from the cache is cloned because TimeZone / ZoneInfo are mutable.
- return zoneInfo == null ? null : (ZoneInfo) zoneInfo.clone();
+ ZoneInfo zoneInfo = cache.get(id);
+ // The object from the cache is cloned because TimeZone / ZoneInfo are mutable.
+ return zoneInfo == null ? null : (ZoneInfo) zoneInfo.clone();
}
}