Update clang-tools to ab/7645251

Bug: http://b/196888576

This is generated from clang-r428724.

Command: development/vndk/tools/header-checker/android/update_clang-tools.sh 7645251

Test: presubmit
Change-Id: If6684c524af6e5c54ccf8f8ac5e13889ae061450
diff --git a/linux-x86/lib64/clang/13.0.1/include/fuzzer/FuzzedDataProvider.h b/linux-x86/lib64/clang/13.0.1/include/fuzzer/FuzzedDataProvider.h
new file mode 100644
index 0000000..71cb427
--- /dev/null
+++ b/linux-x86/lib64/clang/13.0.1/include/fuzzer/FuzzedDataProvider.h
@@ -0,0 +1,397 @@
+//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+// A single header library providing an utility class to break up an array of
+// bytes. Whenever run on the same input, provides the same output, as long as
+// its methods are called in the same order, with the same arguments.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
+#define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
+
+#include <algorithm>
+#include <array>
+#include <climits>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <initializer_list>
+#include <limits>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+// In addition to the comments below, the API is also briefly documented at
+// https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
+class FuzzedDataProvider {
+ public:
+  // |data| is an array of length |size| that the FuzzedDataProvider wraps to
+  // provide more granular access. |data| must outlive the FuzzedDataProvider.
+  FuzzedDataProvider(const uint8_t *data, size_t size)
+      : data_ptr_(data), remaining_bytes_(size) {}
+  ~FuzzedDataProvider() = default;
+
+  // See the implementation below (after the class definition) for more verbose
+  // comments for each of the methods.
+
+  // Methods returning std::vector of bytes. These are the most popular choice
+  // when splitting fuzzing input into pieces, as every piece is put into a
+  // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
+  // will be released automatically.
+  template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes);
+  template <typename T>
+  std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0);
+  template <typename T> std::vector<T> ConsumeRemainingBytes();
+
+  // Methods returning strings. Use only when you need a std::string or a null
+  // terminated C-string. Otherwise, prefer the methods returning std::vector.
+  std::string ConsumeBytesAsString(size_t num_bytes);
+  std::string ConsumeRandomLengthString(size_t max_length);
+  std::string ConsumeRandomLengthString();
+  std::string ConsumeRemainingBytesAsString();
+
+  // Methods returning integer values.
+  template <typename T> T ConsumeIntegral();
+  template <typename T> T ConsumeIntegralInRange(T min, T max);
+
+  // Methods returning floating point values.
+  template <typename T> T ConsumeFloatingPoint();
+  template <typename T> T ConsumeFloatingPointInRange(T min, T max);
+
+  // 0 <= return value <= 1.
+  template <typename T> T ConsumeProbability();
+
+  bool ConsumeBool();
+
+  // Returns a value chosen from the given enum.
+  template <typename T> T ConsumeEnum();
+
+  // Returns a value from the given array.
+  template <typename T, size_t size> T PickValueInArray(const T (&array)[size]);
+  template <typename T, size_t size>
+  T PickValueInArray(const std::array<T, size> &array);
+  template <typename T> T PickValueInArray(std::initializer_list<const T> list);
+
+  // Writes data to the given destination and returns number of bytes written.
+  size_t ConsumeData(void *destination, size_t num_bytes);
+
+  // Reports the remaining bytes available for fuzzed input.
+  size_t remaining_bytes() { return remaining_bytes_; }
+
+ private:
+  FuzzedDataProvider(const FuzzedDataProvider &) = delete;
+  FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
+
+  void CopyAndAdvance(void *destination, size_t num_bytes);
+
+  void Advance(size_t num_bytes);
+
+  template <typename T>
+  std::vector<T> ConsumeBytes(size_t size, size_t num_bytes);
+
+  template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value);
+
+  const uint8_t *data_ptr_;
+  size_t remaining_bytes_;
+};
+
+// Returns a std::vector containing |num_bytes| of input data. If fewer than
+// |num_bytes| of data remain, returns a shorter std::vector containing all
+// of the data that's left. Can be used with any byte sized type, such as
+// char, unsigned char, uint8_t, etc.
+template <typename T>
+std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) {
+  num_bytes = std::min(num_bytes, remaining_bytes_);
+  return ConsumeBytes<T>(num_bytes, num_bytes);
+}
+
+// Similar to |ConsumeBytes|, but also appends the terminator value at the end
+// of the resulting vector. Useful, when a mutable null-terminated C-string is
+// needed, for example. But that is a rare case. Better avoid it, if possible,
+// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
+template <typename T>
+std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes,
+                                                              T terminator) {
+  num_bytes = std::min(num_bytes, remaining_bytes_);
+  std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
+  result.back() = terminator;
+  return result;
+}
+
+// Returns a std::vector containing all remaining bytes of the input data.
+template <typename T>
+std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() {
+  return ConsumeBytes<T>(remaining_bytes_);
+}
+
+// Returns a std::string containing |num_bytes| of input data. Using this and
+// |.c_str()| on the resulting string is the best way to get an immutable
+// null-terminated C string. If fewer than |num_bytes| of data remain, returns
+// a shorter std::string containing all of the data that's left.
+inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) {
+  static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
+                "ConsumeBytesAsString cannot convert the data to a string.");
+
+  num_bytes = std::min(num_bytes, remaining_bytes_);
+  std::string result(
+      reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes);
+  Advance(num_bytes);
+  return result;
+}
+
+// Returns a std::string of length from 0 to |max_length|. When it runs out of
+// input data, returns what remains of the input. Designed to be more stable
+// with respect to a fuzzer inserting characters than just picking a random
+// length and then consuming that many bytes with |ConsumeBytes|.
+inline std::string
+FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) {
+  // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
+  // followed by anything else to the end of the string. As a result of this
+  // logic, a fuzzer can insert characters into the string, and the string
+  // will be lengthened to include those new characters, resulting in a more
+  // stable fuzzer than picking the length of a string independently from
+  // picking its contents.
+  std::string result;
+
+  // Reserve the anticipated capaticity to prevent several reallocations.
+  result.reserve(std::min(max_length, remaining_bytes_));
+  for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
+    char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
+    Advance(1);
+    if (next == '\\' && remaining_bytes_ != 0) {
+      next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
+      Advance(1);
+      if (next != '\\')
+        break;
+    }
+    result += next;
+  }
+
+  result.shrink_to_fit();
+  return result;
+}
+
+// Returns a std::string of length from 0 to |remaining_bytes_|.
+inline std::string FuzzedDataProvider::ConsumeRandomLengthString() {
+  return ConsumeRandomLengthString(remaining_bytes_);
+}
+
+// Returns a std::string containing all remaining bytes of the input data.
+// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
+// object.
+inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() {
+  return ConsumeBytesAsString(remaining_bytes_);
+}
+
+// Returns a number in the range [Type's min, Type's max]. The value might
+// not be uniformly distributed in the given range. If there's no input data
+// left, always returns |min|.
+template <typename T> T FuzzedDataProvider::ConsumeIntegral() {
+  return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
+                                std::numeric_limits<T>::max());
+}
+
+// Returns a number in the range [min, max] by consuming bytes from the
+// input data. The value might not be uniformly distributed in the given
+// range. If there's no input data left, always returns |min|. |min| must
+// be less than or equal to |max|.
+template <typename T>
+T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) {
+  static_assert(std::is_integral<T>::value, "An integral type is required.");
+  static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
+
+  if (min > max)
+    abort();
+
+  // Use the biggest type possible to hold the range and the result.
+  uint64_t range = static_cast<uint64_t>(max) - min;
+  uint64_t result = 0;
+  size_t offset = 0;
+
+  while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
+         remaining_bytes_ != 0) {
+    // Pull bytes off the end of the seed data. Experimentally, this seems to
+    // allow the fuzzer to more easily explore the input space. This makes
+    // sense, since it works by modifying inputs that caused new code to run,
+    // and this data is often used to encode length of data read by
+    // |ConsumeBytes|. Separating out read lengths makes it easier modify the
+    // contents of the data that is actually read.
+    --remaining_bytes_;
+    result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
+    offset += CHAR_BIT;
+  }
+
+  // Avoid division by 0, in case |range + 1| results in overflow.
+  if (range != std::numeric_limits<decltype(range)>::max())
+    result = result % (range + 1);
+
+  return static_cast<T>(min + result);
+}
+
+// Returns a floating point value in the range [Type's lowest, Type's max] by
+// consuming bytes from the input data. If there's no input data left, always
+// returns approximately 0.
+template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() {
+  return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
+                                        std::numeric_limits<T>::max());
+}
+
+// Returns a floating point value in the given range by consuming bytes from
+// the input data. If there's no input data left, returns |min|. Note that
+// |min| must be less than or equal to |max|.
+template <typename T>
+T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) {
+  if (min > max)
+    abort();
+
+  T range = .0;
+  T result = min;
+  constexpr T zero(.0);
+  if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
+    // The diff |max - min| would overflow the given floating point type. Use
+    // the half of the diff as the range and consume a bool to decide whether
+    // the result is in the first of the second part of the diff.
+    range = (max / 2.0) - (min / 2.0);
+    if (ConsumeBool()) {
+      result += range;
+    }
+  } else {
+    range = max - min;
+  }
+
+  return result + range * ConsumeProbability<T>();
+}
+
+// Returns a floating point number in the range [0.0, 1.0]. If there's no
+// input data left, always returns 0.
+template <typename T> T FuzzedDataProvider::ConsumeProbability() {
+  static_assert(std::is_floating_point<T>::value,
+                "A floating point type is required.");
+
+  // Use different integral types for different floating point types in order
+  // to provide better density of the resulting values.
+  using IntegralType =
+      typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
+                                uint64_t>::type;
+
+  T result = static_cast<T>(ConsumeIntegral<IntegralType>());
+  result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
+  return result;
+}
+
+// Reads one byte and returns a bool, or false when no data remains.
+inline bool FuzzedDataProvider::ConsumeBool() {
+  return 1 & ConsumeIntegral<uint8_t>();
+}
+
+// Returns an enum value. The enum must start at 0 and be contiguous. It must
+// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
+// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
+template <typename T> T FuzzedDataProvider::ConsumeEnum() {
+  static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
+  return static_cast<T>(
+      ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue)));
+}
+
+// Returns a copy of the value selected from the given fixed-size |array|.
+template <typename T, size_t size>
+T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) {
+  static_assert(size > 0, "The array must be non empty.");
+  return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
+}
+
+template <typename T, size_t size>
+T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) {
+  static_assert(size > 0, "The array must be non empty.");
+  return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
+}
+
+template <typename T>
+T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) {
+  // TODO(Dor1s): switch to static_assert once C++14 is allowed.
+  if (!list.size())
+    abort();
+
+  return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
+}
+
+// Writes |num_bytes| of input data to the given destination pointer. If there
+// is not enough data left, writes all remaining bytes. Return value is the
+// number of bytes written.
+// In general, it's better to avoid using this function, but it may be useful
+// in cases when it's necessary to fill a certain buffer or object with
+// fuzzing data.
+inline size_t FuzzedDataProvider::ConsumeData(void *destination,
+                                              size_t num_bytes) {
+  num_bytes = std::min(num_bytes, remaining_bytes_);
+  CopyAndAdvance(destination, num_bytes);
+  return num_bytes;
+}
+
+// Private methods.
+inline void FuzzedDataProvider::CopyAndAdvance(void *destination,
+                                               size_t num_bytes) {
+  std::memcpy(destination, data_ptr_, num_bytes);
+  Advance(num_bytes);
+}
+
+inline void FuzzedDataProvider::Advance(size_t num_bytes) {
+  if (num_bytes > remaining_bytes_)
+    abort();
+
+  data_ptr_ += num_bytes;
+  remaining_bytes_ -= num_bytes;
+}
+
+template <typename T>
+std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) {
+  static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
+
+  // The point of using the size-based constructor below is to increase the
+  // odds of having a vector object with capacity being equal to the length.
+  // That part is always implementation specific, but at least both libc++ and
+  // libstdc++ allocate the requested number of bytes in that constructor,
+  // which seems to be a natural choice for other implementations as well.
+  // To increase the odds even more, we also call |shrink_to_fit| below.
+  std::vector<T> result(size);
+  if (size == 0) {
+    if (num_bytes != 0)
+      abort();
+    return result;
+  }
+
+  CopyAndAdvance(result.data(), num_bytes);
+
+  // Even though |shrink_to_fit| is also implementation specific, we expect it
+  // to provide an additional assurance in case vector's constructor allocated
+  // a buffer which is larger than the actual amount of data we put inside it.
+  result.shrink_to_fit();
+  return result;
+}
+
+template <typename TS, typename TU>
+TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) {
+  static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
+  static_assert(!std::numeric_limits<TU>::is_signed,
+                "Source type must be unsigned.");
+
+  // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
+  if (std::numeric_limits<TS>::is_modulo)
+    return static_cast<TS>(value);
+
+  // Avoid using implementation-defined unsigned to signed conversions.
+  // To learn more, see https://stackoverflow.com/questions/13150449.
+  if (value <= std::numeric_limits<TS>::max()) {
+    return static_cast<TS>(value);
+  } else {
+    constexpr auto TS_min = std::numeric_limits<TS>::min();
+    return TS_min + static_cast<TS>(value - TS_min);
+  }
+}
+
+#endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_