Add a basic hashtable data structure, with tests!

The basic hashtable is intended to be used to support a variety
of different datastructures such as map, set, multimap,
multiset, linkedmap, generationcache, etc.

Consequently its interface is fairly primitive.

The basic hashtable supports copy-on-write style functionality
using SharedBuffer.

The change introduces a simple generic function in TypeHelpers for
specifying hash functions.  The idea is to add template
specializations of hash_type<T> next to the relevant data structures
such as String8, String16, sp<T>, etc.

Change-Id: I2c479229e9d4527b4fbfe3b8b04776a2fd32c973
diff --git a/include/utils/BasicHashtable.h b/include/utils/BasicHashtable.h
new file mode 100644
index 0000000..fdf9738
--- /dev/null
+++ b/include/utils/BasicHashtable.h
@@ -0,0 +1,393 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_BASIC_HASHTABLE_H
+#define ANDROID_BASIC_HASHTABLE_H
+
+#include <stdint.h>
+#include <sys/types.h>
+#include <utils/SharedBuffer.h>
+#include <utils/TypeHelpers.h>
+
+namespace android {
+
+/* Implementation type.  Nothing to see here. */
+class BasicHashtableImpl {
+protected:
+    struct Bucket {
+        // The collision flag indicates that the bucket is part of a collision chain
+        // such that at least two entries both hash to this bucket.  When true, we
+        // may need to seek further along the chain to find the entry.
+        static const uint32_t COLLISION = 0x80000000UL;
+
+        // The present flag indicates that the bucket contains an initialized entry value.
+        static const uint32_t PRESENT   = 0x40000000UL;
+
+        // Mask for 30 bits worth of the hash code that are stored within the bucket to
+        // speed up lookups and rehashing by eliminating the need to recalculate the
+        // hash code of the entry's key.
+        static const uint32_t HASH_MASK = 0x3fffffffUL;
+
+        // Combined value that stores the collision and present flags as well as
+        // a 30 bit hash code.
+        uint32_t cookie;
+
+        // Storage for the entry begins here.
+        char entry[0];
+    };
+
+    BasicHashtableImpl(size_t entrySize, bool hasTrivialDestructor,
+            size_t minimumInitialCapacity, float loadFactor);
+    BasicHashtableImpl(const BasicHashtableImpl& other);
+
+    void dispose();
+
+    inline void edit() {
+        if (mBuckets && !SharedBuffer::bufferFromData(mBuckets)->onlyOwner()) {
+            clone();
+        }
+    }
+
+    void setTo(const BasicHashtableImpl& other);
+    void clear();
+
+    ssize_t next(ssize_t index) const;
+    ssize_t find(ssize_t index, hash_t hash, const void* __restrict__ key) const;
+    size_t add(hash_t hash, const void* __restrict__ entry);
+    void removeAt(size_t index);
+    void rehash(size_t minimumCapacity, float loadFactor);
+
+    const size_t mBucketSize; // number of bytes per bucket including the entry
+    const bool mHasTrivialDestructor; // true if the entry type does not require destruction
+    size_t mCapacity;         // number of buckets that can be filled before exceeding load factor
+    float mLoadFactor;        // load factor
+    size_t mSize;             // number of elements actually in the table
+    size_t mFilledBuckets;    // number of buckets for which collision or present is true
+    size_t mBucketCount;      // number of slots in the mBuckets array
+    void* mBuckets;           // array of buckets, as a SharedBuffer
+
+    inline const Bucket& bucketAt(const void* __restrict__ buckets, size_t index) const {
+        return *reinterpret_cast<const Bucket*>(
+                static_cast<const uint8_t*>(buckets) + index * mBucketSize);
+    }
+
+    inline Bucket& bucketAt(void* __restrict__ buckets, size_t index) const {
+        return *reinterpret_cast<Bucket*>(static_cast<uint8_t*>(buckets) + index * mBucketSize);
+    }
+
+    virtual bool compareBucketKey(const Bucket& bucket, const void* __restrict__ key) const = 0;
+    virtual void initializeBucketEntry(Bucket& bucket, const void* __restrict__ entry) const = 0;
+    virtual void destroyBucketEntry(Bucket& bucket) const = 0;
+
+private:
+    void clone();
+
+    // Allocates a bucket array as a SharedBuffer.
+    void* allocateBuckets(size_t count) const;
+
+    // Releases a bucket array's associated SharedBuffer.
+    void releaseBuckets(void* __restrict__ buckets, size_t count) const;
+
+    // Destroys the contents of buckets (invokes destroyBucketEntry for each
+    // populated bucket if needed).
+    void destroyBuckets(void* __restrict__ buckets, size_t count) const;
+
+    // Copies the content of buckets (copies the cookie and invokes copyBucketEntry
+    // for each populated bucket if needed).
+    void copyBuckets(const void* __restrict__ fromBuckets,
+            void* __restrict__ toBuckets, size_t count) const;
+
+    // Determines the appropriate size of a bucket array to store a certain minimum
+    // number of entries and returns its effective capacity.
+    static void determineCapacity(size_t minimumCapacity, float loadFactor,
+            size_t* __restrict__ outBucketCount, size_t* __restrict__ outCapacity);
+
+    // Trim a hash code to 30 bits to match what we store in the bucket's cookie.
+    inline static hash_t trimHash(hash_t hash) {
+        return (hash & Bucket::HASH_MASK) ^ (hash >> 30);
+    }
+
+    // Returns the index of the first bucket that is in the collision chain
+    // for the specified hash code, given the total number of buckets.
+    // (Primary hash)
+    inline static size_t chainStart(hash_t hash, size_t count) {
+        return hash % count;
+    }
+
+    // Returns the increment to add to a bucket index to seek to the next bucket
+    // in the collision chain for the specified hash code, given the total number of buckets.
+    // (Secondary hash)
+    inline static size_t chainIncrement(hash_t hash, size_t count) {
+        return ((hash >> 7) | (hash << 25)) % (count - 1) + 1;
+    }
+
+    // Returns the index of the next bucket that is in the collision chain
+    // that is defined by the specified increment, given the total number of buckets.
+    inline static size_t chainSeek(size_t index, size_t increment, size_t count) {
+        return (index + increment) % count;
+    }
+};
+
+/*
+ * A BasicHashtable stores entries that are indexed by hash code in place
+ * within an array.  The basic operations are finding entries by key,
+ * adding new entries and removing existing entries.
+ *
+ * This class provides a very limited set of operations with simple semantics.
+ * It is intended to be used as a building block to construct more complex
+ * and interesting data structures such as HashMap.  Think very hard before
+ * adding anything extra to BasicHashtable, it probably belongs at a
+ * higher level of abstraction.
+ *
+ * TKey: The key type.
+ * TEntry: The entry type which is what is actually stored in the array.
+ *
+ * TKey must support the following contract:
+ *     bool operator==(const TKey& other) const;  // return true if equal
+ *     bool operator!=(const TKey& other) const;  // return true if unequal
+ *
+ * TEntry must support the following contract:
+ *     const TKey& getKey() const;  // get the key from the entry
+ *
+ * This class supports storing entries with duplicate keys.  Of course, it can't
+ * tell them apart during removal so only the first entry will be removed.
+ * We do this because it means that operations like add() can't fail.
+ */
+template <typename TKey, typename TEntry>
+class BasicHashtable : private BasicHashtableImpl {
+public:
+    /* Creates a hashtable with the specified minimum initial capacity.
+     * The underlying array will be created when the first entry is added.
+     *
+     * minimumInitialCapacity: The minimum initial capacity for the hashtable.
+     *     Default is 0.
+     * loadFactor: The desired load factor for the hashtable, between 0 and 1.
+     *     Default is 0.75.
+     */
+    BasicHashtable(size_t minimumInitialCapacity = 0, float loadFactor = 0.75f);
+
+    /* Copies a hashtable.
+     * The underlying storage is shared copy-on-write.
+     */
+    BasicHashtable(const BasicHashtable& other);
+
+    /* Clears and destroys the hashtable.
+     */
+    virtual ~BasicHashtable();
+
+    /* Making this hashtable a copy of the other hashtable.
+     * The underlying storage is shared copy-on-write.
+     *
+     * other: The hashtable to copy.
+     */
+    inline BasicHashtable<TKey, TEntry>& operator =(const BasicHashtable<TKey, TEntry> & other) {
+        setTo(other);
+        return *this;
+    }
+
+    /* Returns the number of entries in the hashtable.
+     */
+    inline size_t size() const {
+        return mSize;
+    }
+
+    /* Returns the capacity of the hashtable, which is the number of elements that can
+     * added to the hashtable without requiring it to be grown.
+     */
+    inline size_t capacity() const {
+        return mCapacity;
+    }
+
+    /* Returns the number of buckets that the hashtable has, which is the size of its
+     * underlying array.
+     */
+    inline size_t bucketCount() const {
+        return mBucketCount;
+    }
+
+    /* Returns the load factor of the hashtable. */
+    inline float loadFactor() const {
+        return mLoadFactor;
+    };
+
+    /* Returns a const reference to the entry at the specified index.
+     *
+     * index:   The index of the entry to retrieve.  Must be a valid index within
+     *          the bounds of the hashtable.
+     */
+    inline const TEntry& entryAt(size_t index) const {
+        return entryFor(bucketAt(mBuckets, index));
+    }
+
+    /* Returns a non-const reference to the entry at the specified index.
+     *
+     * index: The index of the entry to edit.  Must be a valid index within
+     *        the bounds of the hashtable.
+     */
+    inline TEntry& editEntryAt(size_t index) {
+        edit();
+        return entryFor(bucketAt(mBuckets, index));
+    }
+
+    /* Clears the hashtable.
+     * All entries in the hashtable are destroyed immediately.
+     * If you need to do something special with the entries in the hashtable then iterate
+     * over them and do what you need before clearing the hashtable.
+     */
+    inline void clear() {
+        BasicHashtableImpl::clear();
+    }
+
+    /* Returns the index of the next entry in the hashtable given the index of a previous entry.
+     * If the given index is -1, then returns the index of the first entry in the hashtable,
+     * if there is one, or -1 otherwise.
+     * If the given index is not -1, then returns the index of the next entry in the hashtable,
+     * in strictly increasing order, or -1 if there are none left.
+     *
+     * index:   The index of the previous entry that was iterated, or -1 to begin
+     *          iteration at the beginning of the hashtable.
+     */
+    inline ssize_t next(ssize_t index) const {
+        return BasicHashtableImpl::next(index);
+    }
+
+    /* Finds the index of an entry with the specified key.
+     * If the given index is -1, then returns the index of the first matching entry,
+     * otherwise returns the index of the next matching entry.
+     * If the hashtable contains multiple entries with keys that match the requested
+     * key, then the sequence of entries returned is arbitrary.
+     * Returns -1 if no entry was found.
+     *
+     * index:   The index of the previous entry with the specified key, or -1 to
+     *          find the first matching entry.
+     * hash:    The hashcode of the key.
+     * key:     The key.
+     */
+    inline ssize_t find(ssize_t index, hash_t hash, const TKey& key) const {
+        return BasicHashtableImpl::find(index, hash, &key);
+    }
+
+    /* Adds the entry to the hashtable.
+     * Returns the index of the newly added entry.
+     * If an entry with the same key already exists, then a duplicate entry is added.
+     * If the entry will not fit, then the hashtable's capacity is increased and
+     * its contents are rehashed.  See rehash().
+     *
+     * hash:    The hashcode of the key.
+     * entry:   The entry to add.
+     */
+    inline size_t add(hash_t hash, const TEntry& entry) {
+        return BasicHashtableImpl::add(hash, &entry);
+    }
+
+    /* Removes the entry with the specified index from the hashtable.
+     * The entry is destroyed immediately.
+     * The index must be valid.
+     *
+     * The hashtable is not compacted after an item is removed, so it is legal
+     * to continue iterating over the hashtable using next() or find().
+     *
+     * index:   The index of the entry to remove.  Must be a valid index within the
+     *          bounds of the hashtable, and it must refer to an existing entry.
+     */
+    inline void removeAt(size_t index) {
+        BasicHashtableImpl::removeAt(index);
+    }
+
+    /* Rehashes the contents of the hashtable.
+     * Grows the hashtable to at least the specified minimum capacity or the
+     * current number of elements, whichever is larger.
+     *
+     * Rehashing causes all entries to be copied and the entry indices may change.
+     * Although the hash codes are cached by the hashtable, rehashing can be an
+     * expensive operation and should be avoided unless the hashtable's size
+     * needs to be changed.
+     *
+     * Rehashing is the only way to change the capacity or load factor of the
+     * hashtable once it has been created.  It can be used to compact the
+     * hashtable by choosing a minimum capacity that is smaller than the current
+     * capacity (such as 0).
+     *
+     * minimumCapacity: The desired minimum capacity after rehashing.
+     * loadFactor: The desired load factor after rehashing.
+     */
+    inline void rehash(size_t minimumCapacity, float loadFactor) {
+        BasicHashtableImpl::rehash(minimumCapacity, loadFactor);
+    }
+
+protected:
+    static inline const TEntry& entryFor(const Bucket& bucket) {
+        return reinterpret_cast<const TEntry&>(bucket.entry);
+    }
+
+    static inline TEntry& entryFor(Bucket& bucket) {
+        return reinterpret_cast<TEntry&>(bucket.entry);
+    }
+
+    virtual bool compareBucketKey(const Bucket& bucket, const void* __restrict__ key) const;
+    virtual void initializeBucketEntry(Bucket& bucket, const void* __restrict__ entry) const;
+    virtual void destroyBucketEntry(Bucket& bucket) const;
+
+private:
+    // For dumping the raw contents of a hashtable during testing.
+    friend class BasicHashtableTest;
+    inline uint32_t cookieAt(size_t index) const {
+        return bucketAt(mBuckets, index).cookie;
+    }
+};
+
+template <typename TKey, typename TEntry>
+BasicHashtable<TKey, TEntry>::BasicHashtable(size_t minimumInitialCapacity, float loadFactor) :
+        BasicHashtableImpl(sizeof(TEntry), traits<TEntry>::has_trivial_dtor,
+                minimumInitialCapacity, loadFactor) {
+}
+
+template <typename TKey, typename TEntry>
+BasicHashtable<TKey, TEntry>::BasicHashtable(const BasicHashtable<TKey, TEntry>& other) :
+        BasicHashtableImpl(other) {
+}
+
+template <typename TKey, typename TEntry>
+BasicHashtable<TKey, TEntry>::~BasicHashtable() {
+    dispose();
+}
+
+template <typename TKey, typename TEntry>
+bool BasicHashtable<TKey, TEntry>::compareBucketKey(const Bucket& bucket,
+        const void* __restrict__ key) const {
+    return entryFor(bucket).getKey() == *static_cast<const TKey*>(key);
+}
+
+template <typename TKey, typename TEntry>
+void BasicHashtable<TKey, TEntry>::initializeBucketEntry(Bucket& bucket,
+        const void* __restrict__ entry) const {
+    if (!traits<TEntry>::has_trivial_copy) {
+        new (&entryFor(bucket)) TEntry(*(static_cast<const TEntry*>(entry)));
+    } else {
+        memcpy(&entryFor(bucket), entry, sizeof(TEntry));
+    }
+}
+
+template <typename TKey, typename TEntry>
+void BasicHashtable<TKey, TEntry>::destroyBucketEntry(Bucket& bucket) const {
+    if (!traits<TEntry>::has_trivial_dtor) {
+        entryFor(bucket).~TEntry();
+    }
+}
+
+}; // namespace android
+
+#endif // ANDROID_BASIC_HASHTABLE_H
diff --git a/include/utils/TypeHelpers.h b/include/utils/TypeHelpers.h
index a1663f3..7538817 100644
--- a/include/utils/TypeHelpers.h
+++ b/include/utils/TypeHelpers.h
@@ -213,6 +213,9 @@
 
 template <typename KEY, typename VALUE>
 struct key_value_pair_t {
+    typedef KEY key_t;
+    typedef VALUE value_t;
+
     KEY     key;
     VALUE   value;
     key_value_pair_t() { }
@@ -222,6 +225,12 @@
     inline bool operator < (const key_value_pair_t& o) const {
         return strictly_order_type(key, o.key);
     }
+    inline const KEY& getKey() const {
+        return key;
+    }
+    inline const VALUE& getValue() const {
+        return value;
+    }
 };
 
 template<>
@@ -243,6 +252,41 @@
 
 // ---------------------------------------------------------------------------
 
+/*
+ * Hash codes.
+ */
+typedef uint32_t hash_t;
+
+template <typename TKey>
+hash_t hash_type(const TKey& key);
+
+/* Built-in hash code specializations.
+ * Assumes pointers are 32bit. */
+#define ANDROID_INT32_HASH(T) \
+        template <> inline hash_t hash_type(const T& value) { return hash_t(value); }
+#define ANDROID_INT64_HASH(T) \
+        template <> inline hash_t hash_type(const T& value) { \
+                return hash_t((value >> 32) ^ value); }
+#define ANDROID_REINTERPRET_HASH(T, R) \
+        template <> inline hash_t hash_type(const T& value) { \
+                return hash_type(*reinterpret_cast<const R*>(&value)); }
+
+ANDROID_INT32_HASH(bool)
+ANDROID_INT32_HASH(char)
+ANDROID_INT32_HASH(unsigned char)
+ANDROID_INT32_HASH(short)
+ANDROID_INT32_HASH(unsigned short)
+ANDROID_INT32_HASH(int)
+ANDROID_INT32_HASH(unsigned int)
+ANDROID_INT64_HASH(long)
+ANDROID_INT64_HASH(unsigned long)
+ANDROID_REINTERPRET_HASH(float, uint32_t)
+ANDROID_REINTERPRET_HASH(double, uint64_t)
+
+template <typename T> inline hash_t hash_type(const T*& value) {
+    return hash_type(uintptr_t(value));
+}
+
 }; // namespace android
 
 // ---------------------------------------------------------------------------
diff --git a/libs/utils/Android.mk b/libs/utils/Android.mk
index d168d19..544ab74 100644
--- a/libs/utils/Android.mk
+++ b/libs/utils/Android.mk
@@ -21,6 +21,7 @@
 	Asset.cpp \
 	AssetDir.cpp \
 	AssetManager.cpp \
+	BasicHashtable.cpp \
 	BlobCache.cpp \
 	BufferedTextOutput.cpp \
 	CallStack.cpp \
diff --git a/libs/utils/BasicHashtable.cpp b/libs/utils/BasicHashtable.cpp
new file mode 100644
index 0000000..fb8ec9f
--- /dev/null
+++ b/libs/utils/BasicHashtable.cpp
@@ -0,0 +1,338 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "BasicHashtable"
+
+#include <math.h>
+
+#include <utils/Log.h>
+#include <utils/BasicHashtable.h>
+#include <utils/misc.h>
+
+namespace android {
+
+BasicHashtableImpl::BasicHashtableImpl(size_t entrySize, bool hasTrivialDestructor,
+        size_t minimumInitialCapacity, float loadFactor) :
+        mBucketSize(entrySize + sizeof(Bucket)), mHasTrivialDestructor(hasTrivialDestructor),
+        mLoadFactor(loadFactor), mSize(0),
+        mFilledBuckets(0), mBuckets(NULL) {
+    determineCapacity(minimumInitialCapacity, mLoadFactor, &mBucketCount, &mCapacity);
+}
+
+BasicHashtableImpl::BasicHashtableImpl(const BasicHashtableImpl& other) :
+        mBucketSize(other.mBucketSize), mHasTrivialDestructor(other.mHasTrivialDestructor),
+        mCapacity(other.mCapacity), mLoadFactor(other.mLoadFactor),
+        mSize(other.mSize), mFilledBuckets(other.mFilledBuckets),
+        mBucketCount(other.mBucketCount), mBuckets(other.mBuckets) {
+    if (mBuckets) {
+        SharedBuffer::bufferFromData(mBuckets)->acquire();
+    }
+}
+
+void BasicHashtableImpl::dispose() {
+    if (mBuckets) {
+        releaseBuckets(mBuckets, mBucketCount);
+    }
+}
+
+void BasicHashtableImpl::clone() {
+    if (mBuckets) {
+        void* newBuckets = allocateBuckets(mBucketCount);
+        copyBuckets(mBuckets, newBuckets, mBucketCount);
+        releaseBuckets(mBuckets, mBucketCount);
+        mBuckets = newBuckets;
+    }
+}
+
+void BasicHashtableImpl::setTo(const BasicHashtableImpl& other) {
+    if (mBuckets) {
+        releaseBuckets(mBuckets, mBucketCount);
+    }
+
+    mCapacity = other.mCapacity;
+    mLoadFactor = other.mLoadFactor;
+    mSize = other.mSize;
+    mFilledBuckets = other.mFilledBuckets;
+    mBucketCount = other.mBucketCount;
+    mBuckets = other.mBuckets;
+
+    if (mBuckets) {
+        SharedBuffer::bufferFromData(mBuckets)->acquire();
+    }
+}
+
+void BasicHashtableImpl::clear() {
+    if (mBuckets) {
+        if (mFilledBuckets) {
+            SharedBuffer* sb = SharedBuffer::bufferFromData(mBuckets);
+            if (sb->onlyOwner()) {
+                destroyBuckets(mBuckets, mBucketCount);
+                for (size_t i = 0; i < mSize; i++) {
+                    Bucket& bucket = bucketAt(mBuckets, i);
+                    bucket.cookie = 0;
+                }
+            } else {
+                releaseBuckets(mBuckets, mBucketCount);
+                mBuckets = NULL;
+            }
+            mFilledBuckets = 0;
+        }
+        mSize = 0;
+    }
+}
+
+ssize_t BasicHashtableImpl::next(ssize_t index) const {
+    if (mSize) {
+        while (size_t(++index) < mBucketCount) {
+            const Bucket& bucket = bucketAt(mBuckets, index);
+            if (bucket.cookie & Bucket::PRESENT) {
+                return index;
+            }
+        }
+    }
+    return -1;
+}
+
+ssize_t BasicHashtableImpl::find(ssize_t index, hash_t hash,
+        const void* __restrict__ key) const {
+    if (!mSize) {
+        return -1;
+    }
+
+    hash = trimHash(hash);
+    if (index < 0) {
+        index = chainStart(hash, mBucketCount);
+
+        const Bucket& bucket = bucketAt(mBuckets, size_t(index));
+        if (bucket.cookie & Bucket::PRESENT) {
+            if (compareBucketKey(bucket, key)) {
+                return index;
+            }
+        } else {
+            if (!(bucket.cookie & Bucket::COLLISION)) {
+                return -1;
+            }
+        }
+    }
+
+    size_t inc = chainIncrement(hash, mBucketCount);
+    for (;;) {
+        index = chainSeek(index, inc, mBucketCount);
+
+        const Bucket& bucket = bucketAt(mBuckets, size_t(index));
+        if (bucket.cookie & Bucket::PRESENT) {
+            if ((bucket.cookie & Bucket::HASH_MASK) == hash
+                    && compareBucketKey(bucket, key)) {
+                return index;
+            }
+        }
+        if (!(bucket.cookie & Bucket::COLLISION)) {
+            return -1;
+        }
+    }
+}
+
+size_t BasicHashtableImpl::add(hash_t hash, const void* entry) {
+    if (!mBuckets) {
+        mBuckets = allocateBuckets(mBucketCount);
+    } else {
+        edit();
+    }
+
+    hash = trimHash(hash);
+    for (;;) {
+        size_t index = chainStart(hash, mBucketCount);
+        Bucket* bucket = &bucketAt(mBuckets, size_t(index));
+        if (bucket->cookie & Bucket::PRESENT) {
+            size_t inc = chainIncrement(hash, mBucketCount);
+            do {
+                bucket->cookie |= Bucket::COLLISION;
+                index = chainSeek(index, inc, mBucketCount);
+                bucket = &bucketAt(mBuckets, size_t(index));
+            } while (bucket->cookie & Bucket::PRESENT);
+        }
+
+        uint32_t collision = bucket->cookie & Bucket::COLLISION;
+        if (!collision) {
+            if (mFilledBuckets >= mCapacity) {
+                rehash(mCapacity * 2, mLoadFactor);
+                continue;
+            }
+            mFilledBuckets += 1;
+        }
+
+        bucket->cookie = collision | Bucket::PRESENT | hash;
+        mSize += 1;
+        initializeBucketEntry(*bucket, entry);
+        return index;
+    }
+}
+
+void BasicHashtableImpl::removeAt(size_t index) {
+    edit();
+
+    Bucket& bucket = bucketAt(mBuckets, index);
+    bucket.cookie &= ~Bucket::PRESENT;
+    if (!(bucket.cookie & Bucket::COLLISION)) {
+        mFilledBuckets -= 1;
+    }
+    mSize -= 1;
+    if (!mHasTrivialDestructor) {
+        destroyBucketEntry(bucket);
+    }
+}
+
+void BasicHashtableImpl::rehash(size_t minimumCapacity, float loadFactor) {
+    if (minimumCapacity < mSize) {
+        minimumCapacity = mSize;
+    }
+    size_t newBucketCount, newCapacity;
+    determineCapacity(minimumCapacity, loadFactor, &newBucketCount, &newCapacity);
+
+    if (newBucketCount != mBucketCount || newCapacity != mCapacity) {
+        if (mBuckets) {
+            void* newBuckets;
+            if (mSize) {
+                newBuckets = allocateBuckets(newBucketCount);
+                for (size_t i = 0; i < mBucketCount; i++) {
+                    const Bucket& fromBucket = bucketAt(mBuckets, i);
+                    if (fromBucket.cookie & Bucket::PRESENT) {
+                        hash_t hash = fromBucket.cookie & Bucket::HASH_MASK;
+                        size_t index = chainStart(hash, newBucketCount);
+                        Bucket* toBucket = &bucketAt(newBuckets, size_t(index));
+                        if (toBucket->cookie & Bucket::PRESENT) {
+                            size_t inc = chainIncrement(hash, newBucketCount);
+                            do {
+                                toBucket->cookie |= Bucket::COLLISION;
+                                index = chainSeek(index, inc, newBucketCount);
+                                toBucket = &bucketAt(newBuckets, size_t(index));
+                            } while (toBucket->cookie & Bucket::PRESENT);
+                        }
+                        toBucket->cookie = Bucket::PRESENT | hash;
+                        initializeBucketEntry(*toBucket, fromBucket.entry);
+                    }
+                }
+            } else {
+                newBuckets = NULL;
+            }
+            releaseBuckets(mBuckets, mBucketCount);
+            mBuckets = newBuckets;
+            mFilledBuckets = mSize;
+        }
+        mBucketCount = newBucketCount;
+        mCapacity = newCapacity;
+    }
+    mLoadFactor = loadFactor;
+}
+
+void* BasicHashtableImpl::allocateBuckets(size_t count) const {
+    size_t bytes = count * mBucketSize;
+    SharedBuffer* sb = SharedBuffer::alloc(bytes);
+    LOG_ALWAYS_FATAL_IF(!sb, "Could not allocate %u bytes for hashtable with %u buckets.",
+            uint32_t(bytes), uint32_t(count));
+    void* buckets = sb->data();
+    for (size_t i = 0; i < count; i++) {
+        Bucket& bucket = bucketAt(buckets, i);
+        bucket.cookie = 0;
+    }
+    return buckets;
+}
+
+void BasicHashtableImpl::releaseBuckets(void* __restrict__ buckets, size_t count) const {
+    SharedBuffer* sb = SharedBuffer::bufferFromData(buckets);
+    if (sb->release(SharedBuffer::eKeepStorage) == 1) {
+        destroyBuckets(buckets, count);
+        SharedBuffer::dealloc(sb);
+    }
+}
+
+void BasicHashtableImpl::destroyBuckets(void* __restrict__ buckets, size_t count) const {
+    if (!mHasTrivialDestructor) {
+        for (size_t i = 0; i < count; i++) {
+            Bucket& bucket = bucketAt(buckets, i);
+            if (bucket.cookie & Bucket::PRESENT) {
+                destroyBucketEntry(bucket);
+            }
+        }
+    }
+}
+
+void BasicHashtableImpl::copyBuckets(const void* __restrict__ fromBuckets,
+        void* __restrict__ toBuckets, size_t count) const {
+    for (size_t i = 0; i < count; i++) {
+        const Bucket& fromBucket = bucketAt(fromBuckets, i);
+        Bucket& toBucket = bucketAt(toBuckets, i);
+        toBucket.cookie = fromBucket.cookie;
+        if (fromBucket.cookie & Bucket::PRESENT) {
+            initializeBucketEntry(toBucket, fromBucket.entry);
+        }
+    }
+}
+
+// Table of 31-bit primes where each prime is no less than twice as large
+// as the previous one.  Generated by "primes.py".
+static size_t PRIMES[] = {
+    5,
+    11,
+    23,
+    47,
+    97,
+    197,
+    397,
+    797,
+    1597,
+    3203,
+    6421,
+    12853,
+    25717,
+    51437,
+    102877,
+    205759,
+    411527,
+    823117,
+    1646237,
+    3292489,
+    6584983,
+    13169977,
+    26339969,
+    52679969,
+    105359939,
+    210719881,
+    421439783,
+    842879579,
+    1685759167,
+    0,
+};
+
+void BasicHashtableImpl::determineCapacity(size_t minimumCapacity, float loadFactor,
+        size_t* __restrict__ outBucketCount, size_t* __restrict__ outCapacity) {
+    LOG_ALWAYS_FATAL_IF(loadFactor <= 0.0f || loadFactor > 1.0f,
+            "Invalid load factor %0.3f.  Must be in the range (0, 1].", loadFactor);
+
+    size_t count = ceilf(minimumCapacity / loadFactor) + 1;
+    size_t i = 0;
+    while (count > PRIMES[i] && i < NELEM(PRIMES)) {
+        i++;
+    }
+    count = PRIMES[i];
+    LOG_ALWAYS_FATAL_IF(!count, "Could not determine required number of buckets for "
+            "hashtable with minimum capacity %u and load factor %0.3f.",
+            uint32_t(minimumCapacity), loadFactor);
+    *outBucketCount = count;
+    *outCapacity = ceilf((count - 1) * loadFactor);
+}
+
+}; // namespace android
diff --git a/libs/utils/primes.py b/libs/utils/primes.py
new file mode 100755
index 0000000..e161dd8
--- /dev/null
+++ b/libs/utils/primes.py
@@ -0,0 +1,47 @@
+#!/usr/bin/env python2.6
+#
+# Copyright (C) 2011 The Android Open Source Project
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+#
+# Generates a table of prime numbers for use in BasicHashtable.cpp.
+#
+# Each prime is chosen such that it is a little more than twice as large as
+# the previous prime in the table.  This makes it easier to choose a new
+# hashtable size when the underlying array is grown by as nominal factor
+# of two each time.
+#
+
+def is_odd_prime(n):
+  limit = (n - 1) / 2
+  d = 3
+  while d <= limit:
+    if n % d == 0:
+      return False
+    d += 2
+  return True
+
+print "static size_t PRIMES[] = {"
+
+n = 5
+max = 2**31 - 1
+while n < max:
+  print "    %d," % (n)
+  n = n * 2 + 1
+  while not is_odd_prime(n):
+    n += 2
+
+print "    0,"
+print "};"
diff --git a/libs/utils/tests/Android.mk b/libs/utils/tests/Android.mk
index b97f52f..58230f4 100644
--- a/libs/utils/tests/Android.mk
+++ b/libs/utils/tests/Android.mk
@@ -4,9 +4,10 @@
 
 # Build the unit tests.
 test_src_files := \
+	BasicHashtable_test.cpp \
 	BlobCache_test.cpp \
-	ObbFile_test.cpp \
 	Looper_test.cpp \
+	ObbFile_test.cpp \
 	String8_test.cpp \
 	Unicode_test.cpp \
 	ZipFileRO_test.cpp \
diff --git a/libs/utils/tests/BasicHashtable_test.cpp b/libs/utils/tests/BasicHashtable_test.cpp
new file mode 100644
index 0000000..764082d
--- /dev/null
+++ b/libs/utils/tests/BasicHashtable_test.cpp
@@ -0,0 +1,577 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "BasicHashtable_test"
+
+#include <utils/BasicHashtable.h>
+#include <cutils/log.h>
+#include <gtest/gtest.h>
+#include <unistd.h>
+
+namespace android {
+
+typedef int SimpleKey;
+typedef int SimpleValue;
+typedef key_value_pair_t<SimpleKey, SimpleValue> SimpleEntry;
+typedef BasicHashtable<SimpleKey, SimpleEntry> SimpleHashtable;
+
+struct ComplexKey {
+    int k;
+
+    explicit ComplexKey(int k) : k(k) {
+        instanceCount += 1;
+    }
+
+    ComplexKey(const ComplexKey& other) : k(other.k) {
+        instanceCount += 1;
+    }
+
+    ~ComplexKey() {
+        instanceCount -= 1;
+    }
+
+    bool operator ==(const ComplexKey& other) const {
+        return k == other.k;
+    }
+
+    bool operator !=(const ComplexKey& other) const {
+        return k != other.k;
+    }
+
+    static ssize_t instanceCount;
+};
+
+ssize_t ComplexKey::instanceCount = 0;
+
+template<> inline hash_t hash_type(const ComplexKey& value) {
+    return hash_type(value.k);
+}
+
+struct ComplexValue {
+    int v;
+
+    explicit ComplexValue(int v) : v(v) {
+        instanceCount += 1;
+    }
+
+    ComplexValue(const ComplexValue& other) : v(other.v) {
+        instanceCount += 1;
+    }
+
+    ~ComplexValue() {
+        instanceCount -= 1;
+    }
+
+    static ssize_t instanceCount;
+};
+
+ssize_t ComplexValue::instanceCount = 0;
+
+typedef key_value_pair_t<ComplexKey, ComplexValue> ComplexEntry;
+typedef BasicHashtable<ComplexKey, ComplexEntry> ComplexHashtable;
+
+class BasicHashtableTest : public testing::Test {
+protected:
+    virtual void SetUp() {
+        ComplexKey::instanceCount = 0;
+        ComplexValue::instanceCount = 0;
+    }
+
+    virtual void TearDown() {
+        ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+    }
+
+    void assertInstanceCount(ssize_t keys, ssize_t values) {
+        if (keys != ComplexKey::instanceCount || values != ComplexValue::instanceCount) {
+            FAIL() << "Expected " << keys << " keys and " << values << " values "
+                    "but there were actually " << ComplexKey::instanceCount << " keys and "
+                    << ComplexValue::instanceCount << " values";
+        }
+    }
+
+public:
+    template <typename TKey, typename TEntry>
+    static void cookieAt(const BasicHashtable<TKey, TEntry>& h, size_t index,
+            bool* collision, bool* present, hash_t* hash) {
+        uint32_t cookie = h.cookieAt(index);
+        *collision = cookie & BasicHashtable<TKey, TEntry>::Bucket::COLLISION;
+        *present = cookie & BasicHashtable<TKey, TEntry>::Bucket::PRESENT;
+        *hash = cookie & BasicHashtable<TKey, TEntry>::Bucket::HASH_MASK;
+    }
+
+    template <typename TKey, typename TEntry>
+    static const void* getBuckets(const BasicHashtable<TKey, TEntry>& h) {
+        return h.mBuckets;
+    }
+};
+
+template <typename TKey, typename TValue>
+static size_t add(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h,
+        const TKey& key, const TValue& value) {
+    return h.add(hash_type(key), key_value_pair_t<TKey, TValue>(key, value));
+}
+
+template <typename TKey, typename TValue>
+static ssize_t find(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h,
+        ssize_t index, const TKey& key) {
+    return h.find(index, hash_type(key), key);
+}
+
+template <typename TKey, typename TValue>
+static bool remove(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h,
+        const TKey& key) {
+    ssize_t index = find(h, -1, key);
+    if (index >= 0) {
+        h.removeAt(index);
+        return true;
+    }
+    return false;
+}
+
+template <typename TEntry>
+static void getKeyValue(const TEntry& entry, int* key, int* value);
+
+template <> void getKeyValue(const SimpleEntry& entry, int* key, int* value) {
+    *key = entry.key;
+    *value = entry.value;
+}
+
+template <> void getKeyValue(const ComplexEntry& entry, int* key, int* value) {
+    *key = entry.key.k;
+    *value = entry.value.v;
+}
+
+template <typename TKey, typename TValue>
+static void dump(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h) {
+    LOGD("hashtable %p, size=%u, capacity=%u, bucketCount=%u",
+            &h, h.size(), h.capacity(), h.bucketCount());
+    for (size_t i = 0; i < h.bucketCount(); i++) {
+        bool collision, present;
+        hash_t hash;
+        BasicHashtableTest::cookieAt(h, i, &collision, &present, &hash);
+        if (present) {
+            int key, value;
+            getKeyValue(h.entryAt(i), &key, &value);
+            LOGD("  [%3u] = collision=%d, present=%d, hash=0x%08x, key=%3d, value=%3d, "
+                    "hash_type(key)=0x%08x",
+                    i, collision, present, hash, key, value, hash_type(key));
+        } else {
+            LOGD("  [%3u] = collision=%d, present=%d",
+                    i, collision, present);
+        }
+    }
+}
+
+TEST_F(BasicHashtableTest, DefaultConstructor_WithDefaultProperties) {
+    SimpleHashtable h;
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Constructor_WithNonUnityLoadFactor) {
+    SimpleHashtable h(52, 0.8f);
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(77U, h.capacity());
+    EXPECT_EQ(97U, h.bucketCount());
+    EXPECT_EQ(0.8f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Constructor_WithUnityLoadFactorAndExactCapacity) {
+    SimpleHashtable h(46, 1.0f);
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(46U, h.capacity()); // must be one less than bucketCount because loadFactor == 1.0f
+    EXPECT_EQ(47U, h.bucketCount());
+    EXPECT_EQ(1.0f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Constructor_WithUnityLoadFactorAndInexactCapacity) {
+    SimpleHashtable h(42, 1.0f);
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(46U, h.capacity()); // must be one less than bucketCount because loadFactor == 1.0f
+    EXPECT_EQ(47U, h.bucketCount());
+    EXPECT_EQ(1.0f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, FindAddFindRemoveFind_OneEntry) {
+    SimpleHashtable h;
+    ssize_t index = find(h, -1, 8);
+    ASSERT_EQ(-1, index);
+
+    index = add(h, 8, 1);
+    ASSERT_EQ(1U, h.size());
+
+    ASSERT_EQ(index, find(h, -1, 8));
+    ASSERT_EQ(8, h.entryAt(index).key);
+    ASSERT_EQ(1, h.entryAt(index).value);
+
+    index = find(h, index, 8);
+    ASSERT_EQ(-1, index);
+
+    ASSERT_TRUE(remove(h, 8));
+    ASSERT_EQ(0U, h.size());
+
+    index = find(h, -1, 8);
+    ASSERT_EQ(-1, index);
+}
+
+TEST_F(BasicHashtableTest, FindAddFindRemoveFind_MultipleEntryWithUniqueKey) {
+    const size_t N = 11;
+
+    SimpleHashtable h;
+    for (size_t i = 0; i < N; i++) {
+        ssize_t index = find(h, -1, int(i));
+        ASSERT_EQ(-1, index);
+
+        index = add(h, int(i), int(i * 10));
+        ASSERT_EQ(i + 1, h.size());
+
+        ASSERT_EQ(index, find(h, -1, int(i)));
+        ASSERT_EQ(int(i), h.entryAt(index).key);
+        ASSERT_EQ(int(i * 10), h.entryAt(index).value);
+
+        index = find(h, index, int(i));
+        ASSERT_EQ(-1, index);
+    }
+
+    for (size_t i = N; --i > 0; ) {
+        ASSERT_TRUE(remove(h, int(i))) << "i = " << i;
+        ASSERT_EQ(i, h.size());
+
+        ssize_t index = find(h, -1, int(i));
+        ASSERT_EQ(-1, index);
+    }
+}
+
+TEST_F(BasicHashtableTest, FindAddFindRemoveFind_MultipleEntryWithDuplicateKey) {
+    const size_t N = 11;
+    const int K = 1;
+
+    SimpleHashtable h;
+    for (size_t i = 0; i < N; i++) {
+        ssize_t index = find(h, -1, K);
+        if (i == 0) {
+            ASSERT_EQ(-1, index);
+        } else {
+            ASSERT_NE(-1, index);
+        }
+
+        add(h, K, int(i));
+        ASSERT_EQ(i + 1, h.size());
+
+        index = -1;
+        int values = 0;
+        for (size_t j = 0; j <= i; j++) {
+            index = find(h, index, K);
+            ASSERT_GE(index, 0);
+            ASSERT_EQ(K, h.entryAt(index).key);
+            values |= 1 << h.entryAt(index).value;
+        }
+        ASSERT_EQ(values, (1 << (i + 1)) - 1);
+
+        index = find(h, index, K);
+        ASSERT_EQ(-1, index);
+    }
+
+    for (size_t i = N; --i > 0; ) {
+        ASSERT_TRUE(remove(h, K)) << "i = " << i;
+        ASSERT_EQ(i, h.size());
+
+        ssize_t index = -1;
+        for (size_t j = 0; j < i; j++) {
+            index = find(h, index, K);
+            ASSERT_GE(index, 0);
+            ASSERT_EQ(K, h.entryAt(index).key);
+        }
+
+        index = find(h, index, K);
+        ASSERT_EQ(-1, index);
+    }
+}
+
+TEST_F(BasicHashtableTest, Clear_WhenAlreadyEmpty_DoesNothing) {
+    SimpleHashtable h;
+    h.clear();
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Clear_AfterElementsAdded_RemovesThem) {
+    SimpleHashtable h;
+    add(h, 0, 0);
+    add(h, 1, 0);
+    h.clear();
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Clear_AfterElementsAdded_DestroysThem) {
+    ComplexHashtable h;
+    add(h, ComplexKey(0), ComplexValue(0));
+    add(h, ComplexKey(1), ComplexValue(0));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+
+    h.clear();
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Remove_AfterElementsAdded_DestroysThem) {
+    ComplexHashtable h;
+    add(h, ComplexKey(0), ComplexValue(0));
+    add(h, ComplexKey(1), ComplexValue(0));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+
+    ASSERT_TRUE(remove(h, ComplexKey(0)));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1));
+
+    ASSERT_TRUE(remove(h, ComplexKey(1)));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+}
+
+TEST_F(BasicHashtableTest, Destructor_AfterElementsAdded_DestroysThem) {
+    {
+        ComplexHashtable h;
+        add(h, ComplexKey(0), ComplexValue(0));
+        add(h, ComplexKey(1), ComplexValue(0));
+        ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    } // h is destroyed here
+
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+}
+
+TEST_F(BasicHashtableTest, Next_WhenEmpty_ReturnsMinusOne) {
+    SimpleHashtable h;
+
+    ASSERT_EQ(-1, h.next(-1));
+}
+
+TEST_F(BasicHashtableTest, Next_WhenNonEmpty_IteratesOverAllEntries) {
+    const int N = 88;
+
+    SimpleHashtable h;
+    for (int i = 0; i < N; i++) {
+        add(h, i, i * 10);
+    }
+
+    bool set[N];
+    memset(set, 0, sizeof(bool) * N);
+    int count = 0;
+    for (ssize_t index = -1; (index = h.next(index)) != -1; ) {
+        ASSERT_GE(index, 0);
+        ASSERT_LT(size_t(index), h.bucketCount());
+
+        const SimpleEntry& entry = h.entryAt(index);
+        ASSERT_GE(entry.key, 0);
+        ASSERT_LT(entry.key, N);
+        ASSERT_EQ(false, set[entry.key]);
+        ASSERT_EQ(entry.key * 10, entry.value);
+
+        set[entry.key] = true;
+        count += 1;
+    }
+    ASSERT_EQ(N, count);
+}
+
+TEST_F(BasicHashtableTest, Add_RehashesOnDemand) {
+    SimpleHashtable h;
+    size_t initialCapacity = h.capacity();
+    size_t initialBucketCount = h.bucketCount();
+
+    for (size_t i = 0; i < initialCapacity; i++) {
+        add(h, int(i), 0);
+    }
+
+    EXPECT_EQ(initialCapacity, h.size());
+    EXPECT_EQ(initialCapacity, h.capacity());
+    EXPECT_EQ(initialBucketCount, h.bucketCount());
+
+    add(h, -1, -1);
+
+    EXPECT_EQ(initialCapacity + 1, h.size());
+    EXPECT_GT(h.capacity(), initialCapacity);
+    EXPECT_GT(h.bucketCount(), initialBucketCount);
+    EXPECT_GT(h.bucketCount(), h.capacity());
+}
+
+TEST_F(BasicHashtableTest, Rehash_WhenCapacityAndBucketCountUnchanged_DoesNothing) {
+    ComplexHashtable h;
+    add(h, ComplexKey(0), ComplexValue(0));
+    const void* oldBuckets = getBuckets(h);
+    ASSERT_NE((void*)NULL, oldBuckets);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1));
+
+    h.rehash(h.capacity(), h.loadFactor());
+
+    ASSERT_EQ(oldBuckets, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1));
+}
+
+TEST_F(BasicHashtableTest, Rehash_WhenEmptyAndHasNoBuckets_ButDoesNotAllocateBuckets) {
+    ComplexHashtable h;
+    ASSERT_EQ((void*)NULL, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+
+    h.rehash(9, 1.0f);
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(10U, h.capacity());
+    EXPECT_EQ(11U, h.bucketCount());
+    EXPECT_EQ(1.0f, h.loadFactor());
+    EXPECT_EQ((void*)NULL, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+}
+
+TEST_F(BasicHashtableTest, Rehash_WhenEmptyAndHasBuckets_ReleasesBucketsAndSetsCapacity) {
+    ComplexHashtable h(10);
+    add(h, ComplexKey(0), ComplexValue(0));
+    ASSERT_TRUE(remove(h, ComplexKey(0)));
+    ASSERT_NE((void*)NULL, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+
+    h.rehash(0, 0.75f);
+
+    EXPECT_EQ(0U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+    EXPECT_EQ((void*)NULL, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0));
+}
+
+TEST_F(BasicHashtableTest, Rehash_WhenLessThanCurrentCapacity_ShrinksBuckets) {
+    ComplexHashtable h(10);
+    add(h, ComplexKey(0), ComplexValue(0));
+    add(h, ComplexKey(1), ComplexValue(1));
+    const void* oldBuckets = getBuckets(h);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+
+    h.rehash(0, 0.75f);
+
+    EXPECT_EQ(2U, h.size());
+    EXPECT_EQ(3U, h.capacity());
+    EXPECT_EQ(5U, h.bucketCount());
+    EXPECT_EQ(0.75f, h.loadFactor());
+    EXPECT_NE(oldBuckets, getBuckets(h));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+}
+
+TEST_F(BasicHashtableTest, CopyOnWrite) {
+    ComplexHashtable h1;
+    add(h1, ComplexKey(0), ComplexValue(0));
+    add(h1, ComplexKey(1), ComplexValue(1));
+    const void* originalBuckets = getBuckets(h1);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ssize_t index0 = find(h1, -1, ComplexKey(0));
+    EXPECT_GE(index0, 0);
+
+    // copy constructor acquires shared reference
+    ComplexHashtable h2(h1);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ASSERT_EQ(originalBuckets, getBuckets(h2));
+    EXPECT_EQ(h1.size(), h2.size());
+    EXPECT_EQ(h1.capacity(), h2.capacity());
+    EXPECT_EQ(h1.bucketCount(), h2.bucketCount());
+    EXPECT_EQ(h1.loadFactor(), h2.loadFactor());
+    EXPECT_EQ(index0, find(h2, -1, ComplexKey(0)));
+
+    // operator= acquires shared reference
+    ComplexHashtable h3;
+    h3 = h2;
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ASSERT_EQ(originalBuckets, getBuckets(h3));
+    EXPECT_EQ(h1.size(), h3.size());
+    EXPECT_EQ(h1.capacity(), h3.capacity());
+    EXPECT_EQ(h1.bucketCount(), h3.bucketCount());
+    EXPECT_EQ(h1.loadFactor(), h3.loadFactor());
+    EXPECT_EQ(index0, find(h3, -1, ComplexKey(0)));
+
+    // editEntryAt copies shared contents
+    h1.editEntryAt(index0).value.v = 42;
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4));
+    ASSERT_NE(originalBuckets, getBuckets(h1));
+    EXPECT_EQ(42, h1.entryAt(index0).value.v);
+    EXPECT_EQ(0, h2.entryAt(index0).value.v);
+    EXPECT_EQ(0, h3.entryAt(index0).value.v);
+
+    // clear releases reference to shared contents
+    h2.clear();
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4));
+    EXPECT_EQ(0U, h2.size());
+    ASSERT_NE(originalBuckets, getBuckets(h2));
+
+    // operator= acquires shared reference, destroys unshared contents
+    h1 = h3;
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ASSERT_EQ(originalBuckets, getBuckets(h1));
+    EXPECT_EQ(h3.size(), h1.size());
+    EXPECT_EQ(h3.capacity(), h1.capacity());
+    EXPECT_EQ(h3.bucketCount(), h1.bucketCount());
+    EXPECT_EQ(h3.loadFactor(), h1.loadFactor());
+    EXPECT_EQ(index0, find(h1, -1, ComplexKey(0)));
+
+    // add copies shared contents
+    add(h1, ComplexKey(2), ComplexValue(2));
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(5, 5));
+    ASSERT_NE(originalBuckets, getBuckets(h1));
+    EXPECT_EQ(3U, h1.size());
+    EXPECT_EQ(0U, h2.size());
+    EXPECT_EQ(2U, h3.size());
+
+    // remove copies shared contents
+    h1 = h3;
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ASSERT_EQ(originalBuckets, getBuckets(h1));
+    h1.removeAt(index0);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(3, 3));
+    ASSERT_NE(originalBuckets, getBuckets(h1));
+    EXPECT_EQ(1U, h1.size());
+    EXPECT_EQ(0U, h2.size());
+    EXPECT_EQ(2U, h3.size());
+
+    // rehash copies shared contents
+    h1 = h3;
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2));
+    ASSERT_EQ(originalBuckets, getBuckets(h1));
+    h1.rehash(10, 1.0f);
+    ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4));
+    ASSERT_NE(originalBuckets, getBuckets(h1));
+    EXPECT_EQ(2U, h1.size());
+    EXPECT_EQ(0U, h2.size());
+    EXPECT_EQ(2U, h3.size());
+}
+
+} // namespace android