blob: 1234eb1359efb1423f6baceec11b8a3edfceb12d [file] [log] [blame]
Christopher Ferris53a3c9b2017-05-10 18:34:15 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdint.h>
18
Christopher Ferrisd226a512017-07-14 10:37:19 -070019#include <unwindstack/DwarfLocation.h>
20#include <unwindstack/DwarfMemory.h>
21#include <unwindstack/DwarfSection.h>
22#include <unwindstack/DwarfStructs.h>
23#include <unwindstack/Log.h>
24#include <unwindstack/Memory.h>
25#include <unwindstack/Regs.h>
26
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070027#include "DwarfCfa.h"
Christopher Ferrisd226a512017-07-14 10:37:19 -070028#include "DwarfEncoding.h"
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070029#include "DwarfError.h"
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070030#include "DwarfOp.h"
Christopher Ferrisd226a512017-07-14 10:37:19 -070031
32namespace unwindstack {
33
34DwarfSection::DwarfSection(Memory* memory) : memory_(memory), last_error_(DWARF_ERROR_NONE) {}
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070035
36const DwarfFde* DwarfSection::GetFdeFromPc(uint64_t pc) {
37 uint64_t fde_offset;
38 if (!GetFdeOffsetFromPc(pc, &fde_offset)) {
39 return nullptr;
40 }
41 const DwarfFde* fde = GetFdeFromOffset(fde_offset);
42 // Guaranteed pc >= pc_start, need to check pc in the fde range.
43 if (pc < fde->pc_end) {
44 return fde;
45 }
46 last_error_ = DWARF_ERROR_ILLEGAL_STATE;
47 return nullptr;
48}
49
50bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory) {
Christopher Ferrisd226a512017-07-14 10:37:19 -070051 last_error_ = DWARF_ERROR_NONE;
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070052 const DwarfFde* fde = GetFdeFromPc(pc);
53 if (fde == nullptr || fde->cie == nullptr) {
54 last_error_ = DWARF_ERROR_ILLEGAL_STATE;
55 return false;
56 }
57
58 // Now get the location information for this pc.
59 dwarf_loc_regs_t loc_regs;
60 if (!GetCfaLocationInfo(pc, fde, &loc_regs)) {
61 return false;
62 }
63
64 // Now eval the actual registers.
65 return Eval(fde->cie, process_memory, loc_regs, regs);
66}
67
68template <typename AddressType>
69bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, uint8_t version,
70 Memory* regular_memory, AddressType* value) {
71 DwarfOp<AddressType> op(&memory_, regular_memory);
72
73 // Need to evaluate the op data.
74 uint64_t start = loc.values[1];
75 uint64_t end = start + loc.values[0];
76 if (!op.Eval(start, end, version)) {
77 last_error_ = op.last_error();
78 return false;
79 }
80 if (op.StackSize() == 0) {
81 last_error_ = DWARF_ERROR_ILLEGAL_STATE;
82 return false;
83 }
84 // We don't support an expression that evaluates to a register number.
85 if (op.is_register()) {
86 last_error_ = DWARF_ERROR_NOT_IMPLEMENTED;
87 return false;
88 }
89 *value = op.StackAt(0);
90 return true;
91}
92
93template <typename AddressType>
94bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory,
95 const dwarf_loc_regs_t& loc_regs, Regs* regs) {
Christopher Ferris7b8e4672017-06-01 17:55:25 -070096 RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs);
Christopher Ferris53a3c9b2017-05-10 18:34:15 -070097 if (cie->return_address_register >= cur_regs->total_regs()) {
98 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
99 return false;
100 }
101
102 // Get the cfa value;
103 auto cfa_entry = loc_regs.find(CFA_REG);
104 if (cfa_entry == loc_regs.end()) {
105 last_error_ = DWARF_ERROR_CFA_NOT_DEFINED;
106 return false;
107 }
108
109 AddressType prev_pc = regs->pc();
110 AddressType prev_cfa = regs->sp();
111
112 AddressType cfa;
113 const DwarfLocation* loc = &cfa_entry->second;
114 // Only a few location types are valid for the cfa.
115 switch (loc->type) {
116 case DWARF_LOCATION_REGISTER:
117 if (loc->values[0] >= cur_regs->total_regs()) {
118 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
119 return false;
120 }
121 // If the stack pointer register is the CFA, and the stack
122 // pointer register does not have any associated location
123 // information, use the current cfa value.
124 if (regs->sp_reg() == loc->values[0] && loc_regs.count(regs->sp_reg()) == 0) {
125 cfa = prev_cfa;
126 } else {
127 cfa = (*cur_regs)[loc->values[0]];
128 }
129 cfa += loc->values[1];
130 break;
131 case DWARF_LOCATION_EXPRESSION:
132 case DWARF_LOCATION_VAL_EXPRESSION: {
133 AddressType value;
134 if (!EvalExpression(*loc, cie->version, regular_memory, &value)) {
135 return false;
136 }
137 if (loc->type == DWARF_LOCATION_EXPRESSION) {
138 if (!regular_memory->Read(value, &cfa, sizeof(AddressType))) {
139 last_error_ = DWARF_ERROR_MEMORY_INVALID;
140 return false;
141 }
142 } else {
143 cfa = value;
144 }
145 break;
146 }
147 default:
148 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
149 return false;
150 }
151
152 // This code is not guaranteed to work in cases where a register location
153 // is a double indirection to the actual value. For example, if r3 is set
154 // to r5 + 4, and r5 is set to CFA + 4, then this won't necessarily work
155 // because it does not guarantee that r5 is evaluated before r3.
156 // Check that this case does not exist, and error if it does.
157 bool return_address_undefined = false;
158 for (const auto& entry : loc_regs) {
159 uint16_t reg = entry.first;
160 // Already handled the CFA register.
161 if (reg == CFA_REG) continue;
162
163 if (reg >= cur_regs->total_regs()) {
164 // Skip this unknown register.
165 continue;
166 }
167
168 const DwarfLocation* loc = &entry.second;
169 switch (loc->type) {
170 case DWARF_LOCATION_OFFSET:
171 if (!regular_memory->Read(cfa + loc->values[0], &(*cur_regs)[reg], sizeof(AddressType))) {
172 last_error_ = DWARF_ERROR_MEMORY_INVALID;
173 return false;
174 }
175 break;
176 case DWARF_LOCATION_VAL_OFFSET:
177 (*cur_regs)[reg] = cfa + loc->values[0];
178 break;
179 case DWARF_LOCATION_REGISTER: {
180 uint16_t cur_reg = loc->values[0];
181 if (cur_reg >= cur_regs->total_regs()) {
182 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
183 return false;
184 }
185 if (loc_regs.find(cur_reg) != loc_regs.end()) {
186 // This is a double indirection, a register definition references
187 // another register which is also defined as something other
188 // than a register.
189 log(0,
190 "Invalid indirection: register %d references register %d which is "
191 "not a plain register.\n",
192 reg, cur_reg);
193 last_error_ = DWARF_ERROR_ILLEGAL_STATE;
194 return false;
195 }
196 (*cur_regs)[reg] = (*cur_regs)[cur_reg] + loc->values[1];
197 break;
198 }
199 case DWARF_LOCATION_EXPRESSION:
200 case DWARF_LOCATION_VAL_EXPRESSION: {
201 AddressType value;
202 if (!EvalExpression(*loc, cie->version, regular_memory, &value)) {
203 return false;
204 }
205 if (loc->type == DWARF_LOCATION_EXPRESSION) {
206 if (!regular_memory->Read(value, &(*cur_regs)[reg], sizeof(AddressType))) {
207 last_error_ = DWARF_ERROR_MEMORY_INVALID;
208 return false;
209 }
210 } else {
211 (*cur_regs)[reg] = value;
212 }
213 break;
214 }
215 case DWARF_LOCATION_UNDEFINED:
216 if (reg == cie->return_address_register) {
217 return_address_undefined = true;
218 }
219 default:
220 break;
221 }
222 }
223
224 // Find the return address location.
225 if (return_address_undefined) {
226 cur_regs->set_pc(0);
227 } else {
228 cur_regs->set_pc((*cur_regs)[cie->return_address_register]);
229 }
230 cur_regs->set_sp(cfa);
231 // Stop if the cfa and pc are the same.
232 return prev_cfa != cfa || prev_pc != cur_regs->pc();
233}
234
235template <typename AddressType>
236const DwarfCie* DwarfSectionImpl<AddressType>::GetCie(uint64_t offset) {
237 auto cie_entry = cie_entries_.find(offset);
238 if (cie_entry != cie_entries_.end()) {
239 return &cie_entry->second;
240 }
241 DwarfCie* cie = &cie_entries_[offset];
242 memory_.set_cur_offset(offset);
243 if (!FillInCie(cie)) {
244 // Erase the cached entry.
245 cie_entries_.erase(offset);
246 return nullptr;
247 }
248 return cie;
249}
250
251template <typename AddressType>
252bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) {
253 uint32_t length32;
254 if (!memory_.ReadBytes(&length32, sizeof(length32))) {
255 last_error_ = DWARF_ERROR_MEMORY_INVALID;
256 return false;
257 }
Christopher Ferrisd226a512017-07-14 10:37:19 -0700258 // Set the default for the lsda encoding.
259 cie->lsda_encoding = DW_EH_PE_omit;
260
Christopher Ferris53a3c9b2017-05-10 18:34:15 -0700261 if (length32 == static_cast<uint32_t>(-1)) {
262 // 64 bit Cie
263 uint64_t length64;
264 if (!memory_.ReadBytes(&length64, sizeof(length64))) {
265 last_error_ = DWARF_ERROR_MEMORY_INVALID;
266 return false;
267 }
268
269 cie->cfa_instructions_end = memory_.cur_offset() + length64;
270 cie->fde_address_encoding = DW_EH_PE_sdata8;
271
272 uint64_t cie_id;
273 if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
274 last_error_ = DWARF_ERROR_MEMORY_INVALID;
275 return false;
276 }
277 if (!IsCie64(cie_id)) {
278 // This is not a Cie, something has gone horribly wrong.
279 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
280 return false;
281 }
282 } else {
283 // 32 bit Cie
284 cie->cfa_instructions_end = memory_.cur_offset() + length32;
285 cie->fde_address_encoding = DW_EH_PE_sdata4;
286
287 uint32_t cie_id;
288 if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
289 last_error_ = DWARF_ERROR_MEMORY_INVALID;
290 return false;
291 }
292 if (!IsCie32(cie_id)) {
293 // This is not a Cie, something has gone horribly wrong.
294 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
295 return false;
296 }
297 }
298
299 if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) {
300 last_error_ = DWARF_ERROR_MEMORY_INVALID;
301 return false;
302 }
303
304 if (cie->version != 1 && cie->version != 3 && cie->version != 4) {
305 // Unrecognized version.
306 last_error_ = DWARF_ERROR_UNSUPPORTED_VERSION;
307 return false;
308 }
309
310 // Read the augmentation string.
311 char aug_value;
312 do {
313 if (!memory_.ReadBytes(&aug_value, 1)) {
314 last_error_ = DWARF_ERROR_MEMORY_INVALID;
315 return false;
316 }
317 cie->augmentation_string.push_back(aug_value);
318 } while (aug_value != '\0');
319
320 if (cie->version == 4) {
321 // Skip the Address Size field since we only use it for validation.
322 memory_.set_cur_offset(memory_.cur_offset() + 1);
323
324 // Segment Size
325 if (!memory_.ReadBytes(&cie->segment_size, 1)) {
326 last_error_ = DWARF_ERROR_MEMORY_INVALID;
327 return false;
328 }
329 }
330
331 // Code Alignment Factor
332 if (!memory_.ReadULEB128(&cie->code_alignment_factor)) {
333 last_error_ = DWARF_ERROR_MEMORY_INVALID;
334 return false;
335 }
336
337 // Data Alignment Factor
338 if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) {
339 last_error_ = DWARF_ERROR_MEMORY_INVALID;
340 return false;
341 }
342
343 if (cie->version == 1) {
344 // Return Address is a single byte.
345 uint8_t return_address_register;
346 if (!memory_.ReadBytes(&return_address_register, 1)) {
347 last_error_ = DWARF_ERROR_MEMORY_INVALID;
348 return false;
349 }
350 cie->return_address_register = return_address_register;
351 } else if (!memory_.ReadULEB128(&cie->return_address_register)) {
352 last_error_ = DWARF_ERROR_MEMORY_INVALID;
353 return false;
354 }
355
356 if (cie->augmentation_string[0] != 'z') {
357 cie->cfa_instructions_offset = memory_.cur_offset();
358 return true;
359 }
360
361 uint64_t aug_length;
362 if (!memory_.ReadULEB128(&aug_length)) {
363 last_error_ = DWARF_ERROR_MEMORY_INVALID;
364 return false;
365 }
366 cie->cfa_instructions_offset = memory_.cur_offset() + aug_length;
367
368 for (size_t i = 1; i < cie->augmentation_string.size(); i++) {
369 switch (cie->augmentation_string[i]) {
370 case 'L':
371 if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) {
372 last_error_ = DWARF_ERROR_MEMORY_INVALID;
373 return false;
374 }
375 break;
376 case 'P': {
377 uint8_t encoding;
378 if (!memory_.ReadBytes(&encoding, 1)) {
379 last_error_ = DWARF_ERROR_MEMORY_INVALID;
380 return false;
381 }
382 if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) {
383 last_error_ = DWARF_ERROR_MEMORY_INVALID;
384 return false;
385 }
386 } break;
387 case 'R':
388 if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) {
389 last_error_ = DWARF_ERROR_MEMORY_INVALID;
390 return false;
391 }
392 break;
393 }
394 }
395 return true;
396}
397
398template <typename AddressType>
399const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) {
400 auto fde_entry = fde_entries_.find(offset);
401 if (fde_entry != fde_entries_.end()) {
402 return &fde_entry->second;
403 }
404 DwarfFde* fde = &fde_entries_[offset];
405 memory_.set_cur_offset(offset);
406 if (!FillInFde(fde)) {
407 fde_entries_.erase(offset);
408 return nullptr;
409 }
410 return fde;
411}
412
413template <typename AddressType>
414bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) {
415 uint32_t length32;
416 if (!memory_.ReadBytes(&length32, sizeof(length32))) {
417 last_error_ = DWARF_ERROR_MEMORY_INVALID;
418 return false;
419 }
420
421 if (length32 == static_cast<uint32_t>(-1)) {
422 // 64 bit Fde.
423 uint64_t length64;
424 if (!memory_.ReadBytes(&length64, sizeof(length64))) {
425 last_error_ = DWARF_ERROR_MEMORY_INVALID;
426 return false;
427 }
428 fde->cfa_instructions_end = memory_.cur_offset() + length64;
429
430 uint64_t value64;
431 if (!memory_.ReadBytes(&value64, sizeof(value64))) {
432 last_error_ = DWARF_ERROR_MEMORY_INVALID;
433 return false;
434 }
435 if (IsCie64(value64)) {
436 // This is a Cie, this means something has gone wrong.
437 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
438 return false;
439 }
440
441 // Get the Cie pointer, which is necessary to properly read the rest of
442 // of the Fde information.
443 fde->cie_offset = GetCieOffsetFromFde64(value64);
444 } else {
445 // 32 bit Fde.
446 fde->cfa_instructions_end = memory_.cur_offset() + length32;
447
448 uint32_t value32;
449 if (!memory_.ReadBytes(&value32, sizeof(value32))) {
450 last_error_ = DWARF_ERROR_MEMORY_INVALID;
451 return false;
452 }
453 if (IsCie32(value32)) {
454 // This is a Cie, this means something has gone wrong.
455 last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
456 return false;
457 }
458
459 // Get the Cie pointer, which is necessary to properly read the rest of
460 // of the Fde information.
461 fde->cie_offset = GetCieOffsetFromFde32(value32);
462 }
463 uint64_t cur_offset = memory_.cur_offset();
464
465 const DwarfCie* cie = GetCie(fde->cie_offset);
466 if (cie == nullptr) {
467 return false;
468 }
469 fde->cie = cie;
470
471 if (cie->segment_size != 0) {
472 // Skip over the segment selector for now.
473 cur_offset += cie->segment_size;
474 }
475 memory_.set_cur_offset(cur_offset);
476
477 if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_start)) {
478 last_error_ = DWARF_ERROR_MEMORY_INVALID;
479 return false;
480 }
481 fde->pc_start = AdjustPcFromFde(fde->pc_start);
482
483 if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_end)) {
484 last_error_ = DWARF_ERROR_MEMORY_INVALID;
485 return false;
486 }
487 fde->pc_end += fde->pc_start;
488 if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') {
489 // Augmentation Size
490 uint64_t aug_length;
491 if (!memory_.ReadULEB128(&aug_length)) {
492 last_error_ = DWARF_ERROR_MEMORY_INVALID;
493 return false;
494 }
495 uint64_t cur_offset = memory_.cur_offset();
496
497 if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) {
498 last_error_ = DWARF_ERROR_MEMORY_INVALID;
499 return false;
500 }
501
502 // Set our position to after all of the augmentation data.
503 memory_.set_cur_offset(cur_offset + aug_length);
504 }
505 fde->cfa_instructions_offset = memory_.cur_offset();
506
507 return true;
508}
509
510template <typename AddressType>
511bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde,
512 dwarf_loc_regs_t* loc_regs) {
513 DwarfCfa<AddressType> cfa(&memory_, fde);
514
515 // Look for the cached copy of the cie data.
516 auto reg_entry = cie_loc_regs_.find(fde->cie_offset);
517 if (reg_entry == cie_loc_regs_.end()) {
518 if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end,
519 loc_regs)) {
520 last_error_ = cfa.last_error();
521 return false;
522 }
523 cie_loc_regs_[fde->cie_offset] = *loc_regs;
524 }
525 cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]);
526 if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) {
527 last_error_ = cfa.last_error();
528 return false;
529 }
530 return true;
531}
532
533template <typename AddressType>
534bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, uint64_t load_bias,
535 const DwarfFde* fde) {
536 DwarfCfa<AddressType> cfa(&memory_, fde);
537
538 // Always print the cie information.
539 const DwarfCie* cie = fde->cie;
540 if (!cfa.Log(indent, pc, load_bias, cie->cfa_instructions_offset, cie->cfa_instructions_end)) {
541 last_error_ = cfa.last_error();
542 return false;
543 }
544 if (!cfa.Log(indent, pc, load_bias, fde->cfa_instructions_offset, fde->cfa_instructions_end)) {
545 last_error_ = cfa.last_error();
546 return false;
547 }
548 return true;
549}
550
551// Explicitly instantiate DwarfSectionImpl
552template class DwarfSectionImpl<uint32_t>;
553template class DwarfSectionImpl<uint64_t>;
Christopher Ferrisd226a512017-07-14 10:37:19 -0700554
555} // namespace unwindstack