Minimal changes to bring the resolver into the C++ era

It took surprisingly few changes, considering the leap from C with some
K&R constructs to C++17; most of the diffs are adding explicit pointer
casts and renaming variables called 'class' or 'try'.

As a result of building as C++, some of the names are now mangled,
making clashes with bionic harder. However, some names remain C due to
the __BEGIN_DECLS / __END_DECLS macros, scheduled to be removed in a
later cleanup pass.

Test: atest netd_integration_test

Change-Id: I3aefb9078421ec42f98f97d917785b365545feba
diff --git a/resolv/res_cache.cpp b/resolv/res_cache.cpp
new file mode 100644
index 0000000..4d13126
--- /dev/null
+++ b/resolv/res_cache.cpp
@@ -0,0 +1,2092 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *  * Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *  * Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+ * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+ * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
+ * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <pthread.h>
+#include <resolv.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+
+#include <arpa/nameser.h>
+#include <errno.h>
+#include <linux/if.h>
+#include <net/if.h>
+#include <netdb.h>
+
+#include <arpa/inet.h>
+
+#include "res_private.h"
+#include "resolv_cache.h"
+#include "resolv_netid.h"
+#include "resolv_private.h"
+
+#include <async_safe/log.h>
+
+/* This code implements a small and *simple* DNS resolver cache.
+ *
+ * It is only used to cache DNS answers for a time defined by the smallest TTL
+ * among the answer records in order to reduce DNS traffic. It is not supposed
+ * to be a full DNS cache, since we plan to implement that in the future in a
+ * dedicated process running on the system.
+ *
+ * Note that its design is kept simple very intentionally, i.e.:
+ *
+ *  - it takes raw DNS query packet data as input, and returns raw DNS
+ *    answer packet data as output
+ *
+ *    (this means that two similar queries that encode the DNS name
+ *     differently will be treated distinctly).
+ *
+ *    the smallest TTL value among the answer records are used as the time
+ *    to keep an answer in the cache.
+ *
+ *    this is bad, but we absolutely want to avoid parsing the answer packets
+ *    (and should be solved by the later full DNS cache process).
+ *
+ *  - the implementation is just a (query-data) => (answer-data) hash table
+ *    with a trivial least-recently-used expiration policy.
+ *
+ * Doing this keeps the code simple and avoids to deal with a lot of things
+ * that a full DNS cache is expected to do.
+ *
+ * The API is also very simple:
+ *
+ *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
+ *     this will initialize the cache on first usage. the result can be NULL
+ *     if the cache is disabled.
+ *
+ *   - the client calls _resolv_cache_lookup() before performing a query
+ *
+ *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
+ *     has been copied into the client-provided answer buffer.
+ *
+ *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
+ *     a request normally, *then* call _resolv_cache_add() to add the received
+ *     answer to the cache.
+ *
+ *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
+ *     perform a request normally, and *not* call _resolv_cache_add()
+ *
+ *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
+ *     is too short to accomodate the cached result.
+ */
+
+/* default number of entries kept in the cache. This value has been
+ * determined by browsing through various sites and counting the number
+ * of corresponding requests. Keep in mind that our framework is currently
+ * performing two requests per name lookup (one for IPv4, the other for IPv6)
+ *
+ *    www.google.com      4
+ *    www.ysearch.com     6
+ *    www.amazon.com      8
+ *    www.nytimes.com     22
+ *    www.espn.com        28
+ *    www.msn.com         28
+ *    www.lemonde.fr      35
+ *
+ * (determined in 2009-2-17 from Paris, France, results may vary depending
+ *  on location)
+ *
+ * most high-level websites use lots of media/ad servers with different names
+ * but these are generally reused when browsing through the site.
+ *
+ * As such, a value of 64 should be relatively comfortable at the moment.
+ *
+ * ******************************************
+ * * NOTE - this has changed.
+ * * 1) we've added IPv6 support so each dns query results in 2 responses
+ * * 2) we've made this a system-wide cache, so the cost is less (it's not
+ * *    duplicated in each process) and the need is greater (more processes
+ * *    making different requests).
+ * * Upping by 2x for IPv6
+ * * Upping by another 5x for the centralized nature
+ * *****************************************
+ */
+#define CONFIG_MAX_ENTRIES 64 * 2 * 5
+
+/* set to 1 to debug cache operations */
+#define DEBUG 0
+
+/* set to 1 to debug query data */
+#define DEBUG_DATA 0
+
+#undef XLOG
+
+#define XLOG(...)                                                          \
+    ({                                                                     \
+        if (DEBUG) {                                                       \
+            async_safe_format_log(ANDROID_LOG_DEBUG, "libc", __VA_ARGS__); \
+        } else {                                                           \
+            ((void) 0);                                                    \
+        }                                                                  \
+    })
+
+/** BOUNDED BUFFER FORMATTING **/
+
+/* technical note:
+ *
+ *   the following debugging routines are used to append data to a bounded
+ *   buffer they take two parameters that are:
+ *
+ *   - p : a pointer to the current cursor position in the buffer
+ *         this value is initially set to the buffer's address.
+ *
+ *   - end : the address of the buffer's limit, i.e. of the first byte
+ *           after the buffer. this address should never be touched.
+ *
+ *           IMPORTANT: it is assumed that end > buffer_address, i.e.
+ *                      that the buffer is at least one byte.
+ *
+ *   the _bprint_() functions return the new value of 'p' after the data
+ *   has been appended, and also ensure the following:
+ *
+ *   - the returned value will never be strictly greater than 'end'
+ *
+ *   - a return value equal to 'end' means that truncation occured
+ *     (in which case, end[-1] will be set to 0)
+ *
+ *   - after returning from a _bprint_() function, the content of the buffer
+ *     is always 0-terminated, even in the event of truncation.
+ *
+ *  these conventions allow you to call _bprint_ functions multiple times and
+ *  only check for truncation at the end of the sequence, as in:
+ *
+ *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
+ *
+ *     p = _bprint_c(p, end, '"');
+ *     p = _bprint_s(p, end, my_string);
+ *     p = _bprint_c(p, end, '"');
+ *
+ *     if (p >= end) {
+ *        // buffer was too small
+ *     }
+ *
+ *     printf( "%s", buff );
+ */
+
+/* add a char to a bounded buffer */
+static char* _bprint_c(char* p, char* end, int c) {
+    if (p < end) {
+        if (p + 1 == end)
+            *p++ = 0;
+        else {
+            *p++ = (char) c;
+            *p = 0;
+        }
+    }
+    return p;
+}
+
+/* add a sequence of bytes to a bounded buffer */
+static char* _bprint_b(char* p, char* end, const char* buf, int len) {
+    int avail = end - p;
+
+    if (avail <= 0 || len <= 0) return p;
+
+    if (avail > len) avail = len;
+
+    memcpy(p, buf, avail);
+    p += avail;
+
+    if (p < end)
+        p[0] = 0;
+    else
+        end[-1] = 0;
+
+    return p;
+}
+
+/* add a string to a bounded buffer */
+static char* _bprint_s(char* p, char* end, const char* str) {
+    return _bprint_b(p, end, str, strlen(str));
+}
+
+/* add a formatted string to a bounded buffer */
+[[maybe_unused]] static char* _bprint(char* p, char* end, const char* format, ...) {
+    int avail, n;
+    va_list args;
+
+    avail = end - p;
+
+    if (avail <= 0) return p;
+
+    va_start(args, format);
+    n = vsnprintf(p, avail, format, args);
+    va_end(args);
+
+    /* certain C libraries return -1 in case of truncation */
+    if (n < 0 || n > avail) n = avail;
+
+    p += n;
+    /* certain C libraries do not zero-terminate in case of truncation */
+    if (p == end) p[-1] = 0;
+
+    return p;
+}
+
+/* add a hex value to a bounded buffer, up to 8 digits */
+static char* _bprint_hex(char* p, char* end, unsigned value, int numDigits) {
+    char text[sizeof(unsigned) * 2];
+    int nn = 0;
+
+    while (numDigits-- > 0) {
+        text[nn++] = "0123456789abcdef"[(value >> (numDigits * 4)) & 15];
+    }
+    return _bprint_b(p, end, text, nn);
+}
+
+/* add the hexadecimal dump of some memory area to a bounded buffer */
+static char* _bprint_hexdump(char* p, char* end, const uint8_t* data, int datalen) {
+    int lineSize = 16;
+
+    while (datalen > 0) {
+        int avail = datalen;
+        int nn;
+
+        if (avail > lineSize) avail = lineSize;
+
+        for (nn = 0; nn < avail; nn++) {
+            if (nn > 0) p = _bprint_c(p, end, ' ');
+            p = _bprint_hex(p, end, data[nn], 2);
+        }
+        for (; nn < lineSize; nn++) {
+            p = _bprint_s(p, end, "   ");
+        }
+        p = _bprint_s(p, end, "  ");
+
+        for (nn = 0; nn < avail; nn++) {
+            int c = data[nn];
+
+            if (c < 32 || c > 127) c = '.';
+
+            p = _bprint_c(p, end, c);
+        }
+        p = _bprint_c(p, end, '\n');
+
+        data += avail;
+        datalen -= avail;
+    }
+    return p;
+}
+
+/* dump the content of a query of packet to the log */
+[[maybe_unused]] static void XLOG_BYTES(const uint8_t* base, int len) {
+    if (DEBUG_DATA) {
+        char buff[1024];
+        char *p = buff, *end = p + sizeof(buff);
+
+        p = _bprint_hexdump(p, end, base, len);
+        XLOG("%s", buff);
+    }
+}
+
+static time_t _time_now(void) {
+    struct timeval tv;
+
+    gettimeofday(&tv, NULL);
+    return tv.tv_sec;
+}
+
+/* reminder: the general format of a DNS packet is the following:
+ *
+ *    HEADER  (12 bytes)
+ *    QUESTION  (variable)
+ *    ANSWER (variable)
+ *    AUTHORITY (variable)
+ *    ADDITIONNAL (variable)
+ *
+ * the HEADER is made of:
+ *
+ *   ID     : 16 : 16-bit unique query identification field
+ *
+ *   QR     :  1 : set to 0 for queries, and 1 for responses
+ *   Opcode :  4 : set to 0 for queries
+ *   AA     :  1 : set to 0 for queries
+ *   TC     :  1 : truncation flag, will be set to 0 in queries
+ *   RD     :  1 : recursion desired
+ *
+ *   RA     :  1 : recursion available (0 in queries)
+ *   Z      :  3 : three reserved zero bits
+ *   RCODE  :  4 : response code (always 0=NOERROR in queries)
+ *
+ *   QDCount: 16 : question count
+ *   ANCount: 16 : Answer count (0 in queries)
+ *   NSCount: 16: Authority Record count (0 in queries)
+ *   ARCount: 16: Additionnal Record count (0 in queries)
+ *
+ * the QUESTION is made of QDCount Question Record (QRs)
+ * the ANSWER is made of ANCount RRs
+ * the AUTHORITY is made of NSCount RRs
+ * the ADDITIONNAL is made of ARCount RRs
+ *
+ * Each Question Record (QR) is made of:
+ *
+ *   QNAME   : variable : Query DNS NAME
+ *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
+ *   CLASS   : 16       : class of query (IN=1)
+ *
+ * Each Resource Record (RR) is made of:
+ *
+ *   NAME    : variable : DNS NAME
+ *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
+ *   CLASS   : 16       : class of query (IN=1)
+ *   TTL     : 32       : seconds to cache this RR (0=none)
+ *   RDLENGTH: 16       : size of RDDATA in bytes
+ *   RDDATA  : variable : RR data (depends on TYPE)
+ *
+ * Each QNAME contains a domain name encoded as a sequence of 'labels'
+ * terminated by a zero. Each label has the following format:
+ *
+ *    LEN  : 8     : lenght of label (MUST be < 64)
+ *    NAME : 8*LEN : label length (must exclude dots)
+ *
+ * A value of 0 in the encoding is interpreted as the 'root' domain and
+ * terminates the encoding. So 'www.android.com' will be encoded as:
+ *
+ *   <3>www<7>android<3>com<0>
+ *
+ * Where <n> represents the byte with value 'n'
+ *
+ * Each NAME reflects the QNAME of the question, but has a slightly more
+ * complex encoding in order to provide message compression. This is achieved
+ * by using a 2-byte pointer, with format:
+ *
+ *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
+ *    OFFSET : 14 : offset to another part of the DNS packet
+ *
+ * The offset is relative to the start of the DNS packet and must point
+ * A pointer terminates the encoding.
+ *
+ * The NAME can be encoded in one of the following formats:
+ *
+ *   - a sequence of simple labels terminated by 0 (like QNAMEs)
+ *   - a single pointer
+ *   - a sequence of simple labels terminated by a pointer
+ *
+ * A pointer shall always point to either a pointer of a sequence of
+ * labels (which can themselves be terminated by either a 0 or a pointer)
+ *
+ * The expanded length of a given domain name should not exceed 255 bytes.
+ *
+ * NOTE: we don't parse the answer packets, so don't need to deal with NAME
+ *       records, only QNAMEs.
+ */
+
+#define DNS_HEADER_SIZE 12
+
+#define DNS_TYPE_A "\00\01"     /* big-endian decimal 1 */
+#define DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
+#define DNS_TYPE_MX "\00\017"   /* big-endian decimal 15 */
+#define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
+#define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
+
+#define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
+
+typedef struct {
+    const uint8_t* base;
+    const uint8_t* end;
+    const uint8_t* cursor;
+} DnsPacket;
+
+static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
+    packet->base = buff;
+    packet->end = buff + bufflen;
+    packet->cursor = buff;
+}
+
+static void _dnsPacket_rewind(DnsPacket* packet) {
+    packet->cursor = packet->base;
+}
+
+static void _dnsPacket_skip(DnsPacket* packet, int count) {
+    const uint8_t* p = packet->cursor + count;
+
+    if (p > packet->end) p = packet->end;
+
+    packet->cursor = p;
+}
+
+static int _dnsPacket_readInt16(DnsPacket* packet) {
+    const uint8_t* p = packet->cursor;
+
+    if (p + 2 > packet->end) return -1;
+
+    packet->cursor = p + 2;
+    return (p[0] << 8) | p[1];
+}
+
+/** QUERY CHECKING **/
+
+/* check bytes in a dns packet. returns 1 on success, 0 on failure.
+ * the cursor is only advanced in the case of success
+ */
+static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
+    const uint8_t* p = packet->cursor;
+
+    if (p + numBytes > packet->end) return 0;
+
+    if (memcmp(p, bytes, numBytes) != 0) return 0;
+
+    packet->cursor = p + numBytes;
+    return 1;
+}
+
+/* parse and skip a given QNAME stored in a query packet,
+ * from the current cursor position. returns 1 on success,
+ * or 0 for malformed data.
+ */
+static int _dnsPacket_checkQName(DnsPacket* packet) {
+    const uint8_t* p = packet->cursor;
+    const uint8_t* end = packet->end;
+
+    for (;;) {
+        int c;
+
+        if (p >= end) break;
+
+        c = *p++;
+
+        if (c == 0) {
+            packet->cursor = p;
+            return 1;
+        }
+
+        /* we don't expect label compression in QNAMEs */
+        if (c >= 64) break;
+
+        p += c;
+        /* we rely on the bound check at the start
+         * of the loop here */
+    }
+    /* malformed data */
+    XLOG("malformed QNAME");
+    return 0;
+}
+
+/* parse and skip a given QR stored in a packet.
+ * returns 1 on success, and 0 on failure
+ */
+static int _dnsPacket_checkQR(DnsPacket* packet) {
+    if (!_dnsPacket_checkQName(packet)) return 0;
+
+    /* TYPE must be one of the things we support */
+    if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
+        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
+        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
+        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
+        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
+        XLOG("unsupported TYPE");
+        return 0;
+    }
+    /* CLASS must be IN */
+    if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
+        XLOG("unsupported CLASS");
+        return 0;
+    }
+
+    return 1;
+}
+
+/* check the header of a DNS Query packet, return 1 if it is one
+ * type of query we can cache, or 0 otherwise
+ */
+static int _dnsPacket_checkQuery(DnsPacket* packet) {
+    const uint8_t* p = packet->base;
+    int qdCount, anCount, dnCount, arCount;
+
+    if (p + DNS_HEADER_SIZE > packet->end) {
+        XLOG("query packet too small");
+        return 0;
+    }
+
+    /* QR must be set to 0, opcode must be 0 and AA must be 0 */
+    /* RA, Z, and RCODE must be 0 */
+    if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
+        XLOG("query packet flags unsupported");
+        return 0;
+    }
+
+    /* Note that we ignore the TC, RD, CD, and AD bits here for the
+     * following reasons:
+     *
+     * - there is no point for a query packet sent to a server
+     *   to have the TC bit set, but the implementation might
+     *   set the bit in the query buffer for its own needs
+     *   between a _resolv_cache_lookup and a
+     *   _resolv_cache_add. We should not freak out if this
+     *   is the case.
+     *
+     * - we consider that the result from a query might depend on
+     *   the RD, AD, and CD bits, so these bits
+     *   should be used to differentiate cached result.
+     *
+     *   this implies that these bits are checked when hashing or
+     *   comparing query packets, but not TC
+     */
+
+    /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
+    qdCount = (p[4] << 8) | p[5];
+    anCount = (p[6] << 8) | p[7];
+    dnCount = (p[8] << 8) | p[9];
+    arCount = (p[10] << 8) | p[11];
+
+    if (anCount != 0 || dnCount != 0 || arCount > 1) {
+        XLOG("query packet contains non-query records");
+        return 0;
+    }
+
+    if (qdCount == 0) {
+        XLOG("query packet doesn't contain query record");
+        return 0;
+    }
+
+    /* Check QDCOUNT QRs */
+    packet->cursor = p + DNS_HEADER_SIZE;
+
+    for (; qdCount > 0; qdCount--)
+        if (!_dnsPacket_checkQR(packet)) return 0;
+
+    return 1;
+}
+
+/** QUERY DEBUGGING **/
+#if DEBUG
+static char* _dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend) {
+    const uint8_t* p = packet->cursor;
+    const uint8_t* end = packet->end;
+    int first = 1;
+
+    for (;;) {
+        int c;
+
+        if (p >= end) break;
+
+        c = *p++;
+
+        if (c == 0) {
+            packet->cursor = p;
+            return bp;
+        }
+
+        /* we don't expect label compression in QNAMEs */
+        if (c >= 64) break;
+
+        if (first)
+            first = 0;
+        else
+            bp = _bprint_c(bp, bend, '.');
+
+        bp = _bprint_b(bp, bend, (const char*) p, c);
+
+        p += c;
+        /* we rely on the bound check at the start
+         * of the loop here */
+    }
+    /* malformed data */
+    bp = _bprint_s(bp, bend, "<MALFORMED>");
+    return bp;
+}
+
+static char* _dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end) {
+#define QQ(x) \
+    { DNS_TYPE_##x, #x }
+    static const struct {
+        const char* typeBytes;
+        const char* typeString;
+    } qTypes[] = {QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL), {NULL, NULL}};
+    int nn;
+    const char* typeString = NULL;
+
+    /* dump QNAME */
+    p = _dnsPacket_bprintQName(packet, p, end);
+
+    /* dump TYPE */
+    p = _bprint_s(p, end, " (");
+
+    for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
+        if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
+            typeString = qTypes[nn].typeString;
+            break;
+        }
+    }
+
+    if (typeString != NULL)
+        p = _bprint_s(p, end, typeString);
+    else {
+        int typeCode = _dnsPacket_readInt16(packet);
+        p = _bprint(p, end, "UNKNOWN-%d", typeCode);
+    }
+
+    p = _bprint_c(p, end, ')');
+
+    /* skip CLASS */
+    _dnsPacket_skip(packet, 2);
+    return p;
+}
+
+/* this function assumes the packet has already been checked */
+static char* _dnsPacket_bprintQuery(DnsPacket* packet, char* p, char* end) {
+    int qdCount;
+
+    if (packet->base[2] & 0x1) {
+        p = _bprint_s(p, end, "RECURSIVE ");
+    }
+
+    _dnsPacket_skip(packet, 4);
+    qdCount = _dnsPacket_readInt16(packet);
+    _dnsPacket_skip(packet, 6);
+
+    for (; qdCount > 0; qdCount--) {
+        p = _dnsPacket_bprintQR(packet, p, end);
+    }
+    return p;
+}
+#endif
+
+/** QUERY HASHING SUPPORT
+ **
+ ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
+ ** BEEN SUCCESFULLY CHECKED.
+ **/
+
+/* use 32-bit FNV hash function */
+#define FNV_MULT 16777619U
+#define FNV_BASIS 2166136261U
+
+static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
+    const uint8_t* p = packet->cursor;
+    const uint8_t* end = packet->end;
+
+    while (numBytes > 0 && p < end) {
+        hash = hash * FNV_MULT ^ *p++;
+    }
+    packet->cursor = p;
+    return hash;
+}
+
+static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
+    const uint8_t* p = packet->cursor;
+    const uint8_t* end = packet->end;
+
+    for (;;) {
+        int c;
+
+        if (p >= end) { /* should not happen */
+            XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
+            break;
+        }
+
+        c = *p++;
+
+        if (c == 0) break;
+
+        if (c >= 64) {
+            XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
+            break;
+        }
+        if (p + c >= end) {
+            XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", __FUNCTION__);
+            break;
+        }
+        while (c > 0) {
+            hash = hash * FNV_MULT ^ *p++;
+            c -= 1;
+        }
+    }
+    packet->cursor = p;
+    return hash;
+}
+
+static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
+    hash = _dnsPacket_hashQName(packet, hash);
+    hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
+    return hash;
+}
+
+static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
+    int rdlength;
+    hash = _dnsPacket_hashQR(packet, hash);
+    hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
+    rdlength = _dnsPacket_readInt16(packet);
+    hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
+    return hash;
+}
+
+static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
+    unsigned hash = FNV_BASIS;
+    int count, arcount;
+    _dnsPacket_rewind(packet);
+
+    /* ignore the ID */
+    _dnsPacket_skip(packet, 2);
+
+    /* we ignore the TC bit for reasons explained in
+     * _dnsPacket_checkQuery().
+     *
+     * however we hash the RD bit to differentiate
+     * between answers for recursive and non-recursive
+     * queries.
+     */
+    hash = hash * FNV_MULT ^ (packet->base[2] & 1);
+
+    /* mark the first header byte as processed */
+    _dnsPacket_skip(packet, 1);
+
+    /* process the second header byte */
+    hash = _dnsPacket_hashBytes(packet, 1, hash);
+
+    /* read QDCOUNT */
+    count = _dnsPacket_readInt16(packet);
+
+    /* assume: ANcount and NScount are 0 */
+    _dnsPacket_skip(packet, 4);
+
+    /* read ARCOUNT */
+    arcount = _dnsPacket_readInt16(packet);
+
+    /* hash QDCOUNT QRs */
+    for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
+
+    /* hash ARCOUNT RRs */
+    for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
+
+    return hash;
+}
+
+/** QUERY COMPARISON
+ **
+ ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
+ ** BEEN SUCCESFULLY CHECKED.
+ **/
+
+static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
+    const uint8_t* p1 = pack1->cursor;
+    const uint8_t* end1 = pack1->end;
+    const uint8_t* p2 = pack2->cursor;
+    const uint8_t* end2 = pack2->end;
+
+    for (;;) {
+        int c1, c2;
+
+        if (p1 >= end1 || p2 >= end2) {
+            XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
+            break;
+        }
+        c1 = *p1++;
+        c2 = *p2++;
+        if (c1 != c2) break;
+
+        if (c1 == 0) {
+            pack1->cursor = p1;
+            pack2->cursor = p2;
+            return 1;
+        }
+        if (c1 >= 64) {
+            XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
+            break;
+        }
+        if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
+            XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n", __FUNCTION__);
+            break;
+        }
+        if (memcmp(p1, p2, c1) != 0) break;
+        p1 += c1;
+        p2 += c1;
+        /* we rely on the bound checks at the start of the loop */
+    }
+    /* not the same, or one is malformed */
+    XLOG("different DN");
+    return 0;
+}
+
+static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
+    const uint8_t* p1 = pack1->cursor;
+    const uint8_t* p2 = pack2->cursor;
+
+    if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
+
+    if (memcmp(p1, p2, numBytes) != 0) return 0;
+
+    pack1->cursor += numBytes;
+    pack2->cursor += numBytes;
+    return 1;
+}
+
+static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
+    /* compare domain name encoding + TYPE + CLASS */
+    if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
+        !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
+        return 0;
+
+    return 1;
+}
+
+static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
+    int rdlength1, rdlength2;
+    /* compare query + TTL */
+    if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
+
+    /* compare RDATA */
+    rdlength1 = _dnsPacket_readInt16(pack1);
+    rdlength2 = _dnsPacket_readInt16(pack2);
+    if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
+
+    return 1;
+}
+
+static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
+    int count1, count2, arcount1, arcount2;
+
+    /* compare the headers, ignore most fields */
+    _dnsPacket_rewind(pack1);
+    _dnsPacket_rewind(pack2);
+
+    /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
+    if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
+        XLOG("different RD");
+        return 0;
+    }
+
+    if (pack1->base[3] != pack2->base[3]) {
+        XLOG("different CD or AD");
+        return 0;
+    }
+
+    /* mark ID and header bytes as compared */
+    _dnsPacket_skip(pack1, 4);
+    _dnsPacket_skip(pack2, 4);
+
+    /* compare QDCOUNT */
+    count1 = _dnsPacket_readInt16(pack1);
+    count2 = _dnsPacket_readInt16(pack2);
+    if (count1 != count2 || count1 < 0) {
+        XLOG("different QDCOUNT");
+        return 0;
+    }
+
+    /* assume: ANcount and NScount are 0 */
+    _dnsPacket_skip(pack1, 4);
+    _dnsPacket_skip(pack2, 4);
+
+    /* compare ARCOUNT */
+    arcount1 = _dnsPacket_readInt16(pack1);
+    arcount2 = _dnsPacket_readInt16(pack2);
+    if (arcount1 != arcount2 || arcount1 < 0) {
+        XLOG("different ARCOUNT");
+        return 0;
+    }
+
+    /* compare the QDCOUNT QRs */
+    for (; count1 > 0; count1--) {
+        if (!_dnsPacket_isEqualQR(pack1, pack2)) {
+            XLOG("different QR");
+            return 0;
+        }
+    }
+
+    /* compare the ARCOUNT RRs */
+    for (; arcount1 > 0; arcount1--) {
+        if (!_dnsPacket_isEqualRR(pack1, pack2)) {
+            XLOG("different additional RR");
+            return 0;
+        }
+    }
+    return 1;
+}
+
+/* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
+ * structure though they are conceptually part of the hash table.
+ *
+ * similarly, mru_next and mru_prev are part of the global MRU list
+ */
+typedef struct Entry {
+    unsigned int hash;   /* hash value */
+    struct Entry* hlink; /* next in collision chain */
+    struct Entry* mru_prev;
+    struct Entry* mru_next;
+
+    const uint8_t* query;
+    int querylen;
+    const uint8_t* answer;
+    int answerlen;
+    time_t expires; /* time_t when the entry isn't valid any more */
+    int id;         /* for debugging purpose */
+} Entry;
+
+/*
+ * Find the TTL for a negative DNS result.  This is defined as the minimum
+ * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
+ *
+ * Return 0 if not found.
+ */
+static u_long answer_getNegativeTTL(ns_msg handle) {
+    int n, nscount;
+    u_long result = 0;
+    ns_rr rr;
+
+    nscount = ns_msg_count(handle, ns_s_ns);
+    for (n = 0; n < nscount; n++) {
+        if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
+            const u_char* rdata = ns_rr_rdata(rr);          // find the data
+            const u_char* edata = rdata + ns_rr_rdlen(rr);  // add the len to find the end
+            int len;
+            u_long ttl, rec_result = ns_rr_ttl(rr);
+
+            // find the MINIMUM-TTL field from the blob of binary data for this record
+            // skip the server name
+            len = dn_skipname(rdata, edata);
+            if (len == -1) continue;  // error skipping
+            rdata += len;
+
+            // skip the admin name
+            len = dn_skipname(rdata, edata);
+            if (len == -1) continue;  // error skipping
+            rdata += len;
+
+            if (edata - rdata != 5 * NS_INT32SZ) continue;
+            // skip: serial number + refresh interval + retry interval + expiry
+            rdata += NS_INT32SZ * 4;
+            // finally read the MINIMUM TTL
+            ttl = ns_get32(rdata);
+            if (ttl < rec_result) {
+                rec_result = ttl;
+            }
+            // Now that the record is read successfully, apply the new min TTL
+            if (n == 0 || rec_result < result) {
+                result = rec_result;
+            }
+        }
+    }
+    return result;
+}
+
+/*
+ * Parse the answer records and find the appropriate
+ * smallest TTL among the records.  This might be from
+ * the answer records if found or from the SOA record
+ * if it's a negative result.
+ *
+ * The returned TTL is the number of seconds to
+ * keep the answer in the cache.
+ *
+ * In case of parse error zero (0) is returned which
+ * indicates that the answer shall not be cached.
+ */
+static u_long answer_getTTL(const void* answer, int answerlen) {
+    ns_msg handle;
+    int ancount, n;
+    u_long result, ttl;
+    ns_rr rr;
+
+    result = 0;
+    if (ns_initparse((const uint8_t*) answer, answerlen, &handle) >= 0) {
+        // get number of answer records
+        ancount = ns_msg_count(handle, ns_s_an);
+
+        if (ancount == 0) {
+            // a response with no answers?  Cache this negative result.
+            result = answer_getNegativeTTL(handle);
+        } else {
+            for (n = 0; n < ancount; n++) {
+                if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
+                    ttl = ns_rr_ttl(rr);
+                    if (n == 0 || ttl < result) {
+                        result = ttl;
+                    }
+                } else {
+                    XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
+                }
+            }
+        }
+    } else {
+        XLOG("ns_parserr failed. %s\n", strerror(errno));
+    }
+
+    XLOG("TTL = %lu\n", result);
+
+    return result;
+}
+
+static void entry_free(Entry* e) {
+    /* everything is allocated in a single memory block */
+    if (e) {
+        free(e);
+    }
+}
+
+static __inline__ void entry_mru_remove(Entry* e) {
+    e->mru_prev->mru_next = e->mru_next;
+    e->mru_next->mru_prev = e->mru_prev;
+}
+
+static __inline__ void entry_mru_add(Entry* e, Entry* list) {
+    Entry* first = list->mru_next;
+
+    e->mru_next = first;
+    e->mru_prev = list;
+
+    list->mru_next = e;
+    first->mru_prev = e;
+}
+
+/* compute the hash of a given entry, this is a hash of most
+ * data in the query (key) */
+static unsigned entry_hash(const Entry* e) {
+    DnsPacket pack[1];
+
+    _dnsPacket_init(pack, e->query, e->querylen);
+    return _dnsPacket_hashQuery(pack);
+}
+
+/* initialize an Entry as a search key, this also checks the input query packet
+ * returns 1 on success, or 0 in case of unsupported/malformed data */
+static int entry_init_key(Entry* e, const void* query, int querylen) {
+    DnsPacket pack[1];
+
+    memset(e, 0, sizeof(*e));
+
+    e->query = (const uint8_t*) query;
+    e->querylen = querylen;
+    e->hash = entry_hash(e);
+
+    _dnsPacket_init(pack, e->query, e->querylen);
+
+    return _dnsPacket_checkQuery(pack);
+}
+
+/* allocate a new entry as a cache node */
+static Entry* entry_alloc(const Entry* init, const void* answer, int answerlen) {
+    Entry* e;
+    int size;
+
+    size = sizeof(*e) + init->querylen + answerlen;
+    e = (Entry*) calloc(size, 1);
+    if (e == NULL) return e;
+
+    e->hash = init->hash;
+    e->query = (const uint8_t*) (e + 1);
+    e->querylen = init->querylen;
+
+    memcpy((char*) e->query, init->query, e->querylen);
+
+    e->answer = e->query + e->querylen;
+    e->answerlen = answerlen;
+
+    memcpy((char*) e->answer, answer, e->answerlen);
+
+    return e;
+}
+
+static int entry_equals(const Entry* e1, const Entry* e2) {
+    DnsPacket pack1[1], pack2[1];
+
+    if (e1->querylen != e2->querylen) {
+        return 0;
+    }
+    _dnsPacket_init(pack1, e1->query, e1->querylen);
+    _dnsPacket_init(pack2, e2->query, e2->querylen);
+
+    return _dnsPacket_isEqualQuery(pack1, pack2);
+}
+
+/****************************************************************************/
+/****************************************************************************/
+/*****                                                                  *****/
+/*****                                                                  *****/
+/*****                                                                  *****/
+/****************************************************************************/
+/****************************************************************************/
+
+/* We use a simple hash table with external collision lists
+ * for simplicity, the hash-table fields 'hash' and 'hlink' are
+ * inlined in the Entry structure.
+ */
+
+/* Maximum time for a thread to wait for an pending request */
+#define PENDING_REQUEST_TIMEOUT 20;
+
+typedef struct pending_req_info {
+    unsigned int hash;
+    pthread_cond_t cond;
+    struct pending_req_info* next;
+} PendingReqInfo;
+
+typedef struct resolv_cache {
+    int max_entries;
+    int num_entries;
+    Entry mru_list;
+    int last_id;
+    Entry* entries;
+    PendingReqInfo pending_requests;
+} Cache;
+
+struct resolv_cache_info {
+    unsigned netid;
+    Cache* cache;
+    struct resolv_cache_info* next;
+    int nscount;
+    char* nameservers[MAXNS];
+    struct addrinfo* nsaddrinfo[MAXNS];
+    int revision_id;  // # times the nameservers have been replaced
+    struct __res_params params;
+    struct __res_stats nsstats[MAXNS];
+    char defdname[MAXDNSRCHPATH];
+    int dnsrch_offset[MAXDNSRCH + 1];  // offsets into defdname
+};
+
+#define HTABLE_VALID(x) ((x) != NULL && (x) != HTABLE_DELETED)
+
+static pthread_once_t _res_cache_once = PTHREAD_ONCE_INIT;
+static void _res_cache_init(void);
+
+// lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
+static pthread_mutex_t _res_cache_list_lock;
+
+/* gets cache associated with a network, or NULL if none exists */
+static struct resolv_cache* _find_named_cache_locked(unsigned netid);
+
+static void _cache_flush_pending_requests_locked(struct resolv_cache* cache) {
+    struct pending_req_info *ri, *tmp;
+    if (cache) {
+        ri = cache->pending_requests.next;
+
+        while (ri) {
+            tmp = ri;
+            ri = ri->next;
+            pthread_cond_broadcast(&tmp->cond);
+
+            pthread_cond_destroy(&tmp->cond);
+            free(tmp);
+        }
+
+        cache->pending_requests.next = NULL;
+    }
+}
+
+/* Return 0 if no pending request is found matching the key.
+ * If a matching request is found the calling thread will wait until
+ * the matching request completes, then update *cache and return 1. */
+static int _cache_check_pending_request_locked(struct resolv_cache** cache, Entry* key,
+                                               unsigned netid) {
+    struct pending_req_info *ri, *prev;
+    int exist = 0;
+
+    if (*cache && key) {
+        ri = (*cache)->pending_requests.next;
+        prev = &(*cache)->pending_requests;
+        while (ri) {
+            if (ri->hash == key->hash) {
+                exist = 1;
+                break;
+            }
+            prev = ri;
+            ri = ri->next;
+        }
+
+        if (!exist) {
+            ri = (struct pending_req_info*) calloc(1, sizeof(struct pending_req_info));
+            if (ri) {
+                ri->hash = key->hash;
+                pthread_cond_init(&ri->cond, NULL);
+                prev->next = ri;
+            }
+        } else {
+            struct timespec ts = {0, 0};
+            XLOG("Waiting for previous request");
+            ts.tv_sec = _time_now() + PENDING_REQUEST_TIMEOUT;
+            pthread_cond_timedwait(&ri->cond, &_res_cache_list_lock, &ts);
+            /* Must update *cache as it could have been deleted. */
+            *cache = _find_named_cache_locked(netid);
+        }
+    }
+
+    return exist;
+}
+
+/* notify any waiting thread that waiting on a request
+ * matching the key has been added to the cache */
+static void _cache_notify_waiting_tid_locked(struct resolv_cache* cache, Entry* key) {
+    struct pending_req_info *ri, *prev;
+
+    if (cache && key) {
+        ri = cache->pending_requests.next;
+        prev = &cache->pending_requests;
+        while (ri) {
+            if (ri->hash == key->hash) {
+                pthread_cond_broadcast(&ri->cond);
+                break;
+            }
+            prev = ri;
+            ri = ri->next;
+        }
+
+        // remove item from list and destroy
+        if (ri) {
+            prev->next = ri->next;
+            pthread_cond_destroy(&ri->cond);
+            free(ri);
+        }
+    }
+}
+
+/* notify the cache that the query failed */
+void _resolv_cache_query_failed(unsigned netid, const void* query, int querylen) {
+    Entry key[1];
+    Cache* cache;
+
+    if (!entry_init_key(key, query, querylen)) return;
+
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    cache = _find_named_cache_locked(netid);
+
+    if (cache) {
+        _cache_notify_waiting_tid_locked(cache, key);
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+static struct resolv_cache_info* _find_cache_info_locked(unsigned netid);
+
+static void _cache_flush_locked(Cache* cache) {
+    int nn;
+
+    for (nn = 0; nn < cache->max_entries; nn++) {
+        Entry** pnode = (Entry**) &cache->entries[nn];
+
+        while (*pnode != NULL) {
+            Entry* node = *pnode;
+            *pnode = node->hlink;
+            entry_free(node);
+        }
+    }
+
+    // flush pending request
+    _cache_flush_pending_requests_locked(cache);
+
+    cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
+    cache->num_entries = 0;
+    cache->last_id = 0;
+
+    XLOG("*************************\n"
+         "*** DNS CACHE FLUSHED ***\n"
+         "*************************");
+}
+
+static int _res_cache_get_max_entries(void) {
+    int cache_size = CONFIG_MAX_ENTRIES;
+
+    const char* cache_mode = getenv("ANDROID_DNS_MODE");
+    if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
+        // Don't use the cache in local mode. This is used by the proxy itself.
+        cache_size = 0;
+    }
+
+    XLOG("cache size: %d", cache_size);
+    return cache_size;
+}
+
+static struct resolv_cache* _resolv_cache_create(void) {
+    struct resolv_cache* cache;
+
+    cache = (struct resolv_cache*) calloc(sizeof(*cache), 1);
+    if (cache) {
+        cache->max_entries = _res_cache_get_max_entries();
+        cache->entries = (Entry*) calloc(sizeof(*cache->entries), cache->max_entries);
+        if (cache->entries) {
+            cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
+            XLOG("%s: cache created\n", __FUNCTION__);
+        } else {
+            free(cache);
+            cache = NULL;
+        }
+    }
+    return cache;
+}
+
+#if DEBUG
+static void _dump_query(const uint8_t* query, int querylen) {
+    char temp[256], *p = temp, *end = p + sizeof(temp);
+    DnsPacket pack[1];
+
+    _dnsPacket_init(pack, query, querylen);
+    p = _dnsPacket_bprintQuery(pack, p, end);
+    XLOG("QUERY: %s", temp);
+}
+
+static void _cache_dump_mru(Cache* cache) {
+    char temp[512], *p = temp, *end = p + sizeof(temp);
+    Entry* e;
+
+    p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
+    for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
+        p = _bprint(p, end, " %d", e->id);
+
+    XLOG("%s", temp);
+}
+
+static void _dump_answer(const void* answer, int answerlen) {
+    res_state statep;
+    FILE* fp;
+    char* buf;
+    int fileLen;
+
+    fp = fopen("/data/reslog.txt", "w+e");
+    if (fp != NULL) {
+        statep = __res_get_state();
+
+        res_pquery(statep, answer, answerlen, fp);
+
+        // Get file length
+        fseek(fp, 0, SEEK_END);
+        fileLen = ftell(fp);
+        fseek(fp, 0, SEEK_SET);
+        buf = (char*) malloc(fileLen + 1);
+        if (buf != NULL) {
+            // Read file contents into buffer
+            fread(buf, fileLen, 1, fp);
+            XLOG("%s\n", buf);
+            free(buf);
+        }
+        fclose(fp);
+        remove("/data/reslog.txt");
+    } else {
+        errno = 0;  // else debug is introducing error signals
+        XLOG("%s: can't open file\n", __FUNCTION__);
+    }
+}
+#endif
+
+#if DEBUG
+#define XLOG_QUERY(q, len) _dump_query((q), (len))
+#define XLOG_ANSWER(a, len) _dump_answer((a), (len))
+#else
+#define XLOG_QUERY(q, len) ((void) 0)
+#define XLOG_ANSWER(a, len) ((void) 0)
+#endif
+
+/* This function tries to find a key within the hash table
+ * In case of success, it will return a *pointer* to the hashed key.
+ * In case of failure, it will return a *pointer* to NULL
+ *
+ * So, the caller must check '*result' to check for success/failure.
+ *
+ * The main idea is that the result can later be used directly in
+ * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
+ * parameter. This makes the code simpler and avoids re-searching
+ * for the key position in the htable.
+ *
+ * The result of a lookup_p is only valid until you alter the hash
+ * table.
+ */
+static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
+    int index = key->hash % cache->max_entries;
+    Entry** pnode = (Entry**) &cache->entries[index];
+
+    while (*pnode != NULL) {
+        Entry* node = *pnode;
+
+        if (node == NULL) break;
+
+        if (node->hash == key->hash && entry_equals(node, key)) break;
+
+        pnode = &node->hlink;
+    }
+    return pnode;
+}
+
+/* Add a new entry to the hash table. 'lookup' must be the
+ * result of an immediate previous failed _lookup_p() call
+ * (i.e. with *lookup == NULL), and 'e' is the pointer to the
+ * newly created entry
+ */
+static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
+    *lookup = e;
+    e->id = ++cache->last_id;
+    entry_mru_add(e, &cache->mru_list);
+    cache->num_entries += 1;
+
+    XLOG("%s: entry %d added (count=%d)", __FUNCTION__, e->id, cache->num_entries);
+}
+
+/* Remove an existing entry from the hash table,
+ * 'lookup' must be the result of an immediate previous
+ * and succesful _lookup_p() call.
+ */
+static void _cache_remove_p(Cache* cache, Entry** lookup) {
+    Entry* e = *lookup;
+
+    XLOG("%s: entry %d removed (count=%d)", __FUNCTION__, e->id, cache->num_entries - 1);
+
+    entry_mru_remove(e);
+    *lookup = e->hlink;
+    entry_free(e);
+    cache->num_entries -= 1;
+}
+
+/* Remove the oldest entry from the hash table.
+ */
+static void _cache_remove_oldest(Cache* cache) {
+    Entry* oldest = cache->mru_list.mru_prev;
+    Entry** lookup = _cache_lookup_p(cache, oldest);
+
+    if (*lookup == NULL) { /* should not happen */
+        XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
+        return;
+    }
+    if (DEBUG) {
+        XLOG("Cache full - removing oldest");
+        XLOG_QUERY(oldest->query, oldest->querylen);
+    }
+    _cache_remove_p(cache, lookup);
+}
+
+/* Remove all expired entries from the hash table.
+ */
+static void _cache_remove_expired(Cache* cache) {
+    Entry* e;
+    time_t now = _time_now();
+
+    for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
+        // Entry is old, remove
+        if (now >= e->expires) {
+            Entry** lookup = _cache_lookup_p(cache, e);
+            if (*lookup == NULL) { /* should not happen */
+                XLOG("%s: ENTRY NOT IN HTABLE ?", __FUNCTION__);
+                return;
+            }
+            e = e->mru_next;
+            _cache_remove_p(cache, lookup);
+        } else {
+            e = e->mru_next;
+        }
+    }
+}
+
+ResolvCacheStatus _resolv_cache_lookup(unsigned netid, const void* query, int querylen,
+                                       void* answer, int answersize, int* answerlen) {
+    Entry key[1];
+    Entry** lookup;
+    Entry* e;
+    time_t now;
+    Cache* cache;
+
+    ResolvCacheStatus result = RESOLV_CACHE_NOTFOUND;
+
+    XLOG("%s: lookup", __FUNCTION__);
+    XLOG_QUERY(query, querylen);
+
+    /* we don't cache malformed queries */
+    if (!entry_init_key(key, query, querylen)) {
+        XLOG("%s: unsupported query", __FUNCTION__);
+        return RESOLV_CACHE_UNSUPPORTED;
+    }
+    /* lookup cache */
+    pthread_once(&_res_cache_once, _res_cache_init);
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    cache = _find_named_cache_locked(netid);
+    if (cache == NULL) {
+        result = RESOLV_CACHE_UNSUPPORTED;
+        goto Exit;
+    }
+
+    /* see the description of _lookup_p to understand this.
+     * the function always return a non-NULL pointer.
+     */
+    lookup = _cache_lookup_p(cache, key);
+    e = *lookup;
+
+    if (e == NULL) {
+        XLOG("NOT IN CACHE");
+        // calling thread will wait if an outstanding request is found
+        // that matching this query
+        if (!_cache_check_pending_request_locked(&cache, key, netid) || cache == NULL) {
+            goto Exit;
+        } else {
+            lookup = _cache_lookup_p(cache, key);
+            e = *lookup;
+            if (e == NULL) {
+                goto Exit;
+            }
+        }
+    }
+
+    now = _time_now();
+
+    /* remove stale entries here */
+    if (now >= e->expires) {
+        XLOG(" NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup);
+        XLOG_QUERY(e->query, e->querylen);
+        _cache_remove_p(cache, lookup);
+        goto Exit;
+    }
+
+    *answerlen = e->answerlen;
+    if (e->answerlen > answersize) {
+        /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
+        result = RESOLV_CACHE_UNSUPPORTED;
+        XLOG(" ANSWER TOO LONG");
+        goto Exit;
+    }
+
+    memcpy(answer, e->answer, e->answerlen);
+
+    /* bump up this entry to the top of the MRU list */
+    if (e != cache->mru_list.mru_next) {
+        entry_mru_remove(e);
+        entry_mru_add(e, &cache->mru_list);
+    }
+
+    XLOG("FOUND IN CACHE entry=%p", e);
+    result = RESOLV_CACHE_FOUND;
+
+Exit:
+    pthread_mutex_unlock(&_res_cache_list_lock);
+    return result;
+}
+
+void _resolv_cache_add(unsigned netid, const void* query, int querylen, const void* answer,
+                       int answerlen) {
+    Entry key[1];
+    Entry* e;
+    Entry** lookup;
+    u_long ttl;
+    Cache* cache = NULL;
+
+    /* don't assume that the query has already been cached
+     */
+    if (!entry_init_key(key, query, querylen)) {
+        XLOG("%s: passed invalid query ?", __FUNCTION__);
+        return;
+    }
+
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    cache = _find_named_cache_locked(netid);
+    if (cache == NULL) {
+        goto Exit;
+    }
+
+    XLOG("%s: query:", __FUNCTION__);
+    XLOG_QUERY(query, querylen);
+    XLOG_ANSWER(answer, answerlen);
+#if DEBUG_DATA
+    XLOG("answer:");
+    XLOG_BYTES(answer, answerlen);
+#endif
+
+    lookup = _cache_lookup_p(cache, key);
+    e = *lookup;
+
+    if (e != NULL) { /* should not happen */
+        XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", __FUNCTION__, e);
+        goto Exit;
+    }
+
+    if (cache->num_entries >= cache->max_entries) {
+        _cache_remove_expired(cache);
+        if (cache->num_entries >= cache->max_entries) {
+            _cache_remove_oldest(cache);
+        }
+        /* need to lookup again */
+        lookup = _cache_lookup_p(cache, key);
+        e = *lookup;
+        if (e != NULL) {
+            XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD", __FUNCTION__, e);
+            goto Exit;
+        }
+    }
+
+    ttl = answer_getTTL(answer, answerlen);
+    if (ttl > 0) {
+        e = entry_alloc(key, answer, answerlen);
+        if (e != NULL) {
+            e->expires = ttl + _time_now();
+            _cache_add_p(cache, lookup, e);
+        }
+    }
+#if DEBUG
+    _cache_dump_mru(cache);
+#endif
+Exit:
+    if (cache != NULL) {
+        _cache_notify_waiting_tid_locked(cache, key);
+    }
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+// Head of the list of caches.  Protected by _res_cache_list_lock.
+static struct resolv_cache_info _res_cache_list;
+
+/* insert resolv_cache_info into the list of resolv_cache_infos */
+static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
+/* creates a resolv_cache_info */
+static struct resolv_cache_info* _create_cache_info(void);
+/* gets a resolv_cache_info associated with a network, or NULL if not found */
+static struct resolv_cache_info* _find_cache_info_locked(unsigned netid);
+/* look up the named cache, and creates one if needed */
+static struct resolv_cache* _get_res_cache_for_net_locked(unsigned netid);
+/* empty the named cache */
+static void _flush_cache_for_net_locked(unsigned netid);
+/* empty the nameservers set for the named cache */
+static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
+/* return 1 if the provided list of name servers differs from the list of name servers
+ * currently attached to the provided cache_info */
+static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
+                                               const char** servers, int numservers);
+/* clears the stats samples contained withing the given cache_info */
+static void _res_cache_clear_stats_locked(struct resolv_cache_info* cache_info);
+
+static void _res_cache_init(void) {
+    memset(&_res_cache_list, 0, sizeof(_res_cache_list));
+    pthread_mutex_init(&_res_cache_list_lock, NULL);
+}
+
+static struct resolv_cache* _get_res_cache_for_net_locked(unsigned netid) {
+    struct resolv_cache* cache = _find_named_cache_locked(netid);
+    if (!cache) {
+        struct resolv_cache_info* cache_info = _create_cache_info();
+        if (cache_info) {
+            cache = _resolv_cache_create();
+            if (cache) {
+                cache_info->cache = cache;
+                cache_info->netid = netid;
+                _insert_cache_info_locked(cache_info);
+            } else {
+                free(cache_info);
+            }
+        }
+    }
+    return cache;
+}
+
+void _resolv_flush_cache_for_net(unsigned netid) {
+    pthread_once(&_res_cache_once, _res_cache_init);
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    _flush_cache_for_net_locked(netid);
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+static void _flush_cache_for_net_locked(unsigned netid) {
+    struct resolv_cache* cache = _find_named_cache_locked(netid);
+    if (cache) {
+        _cache_flush_locked(cache);
+    }
+
+    // Also clear the NS statistics.
+    struct resolv_cache_info* cache_info = _find_cache_info_locked(netid);
+    _res_cache_clear_stats_locked(cache_info);
+}
+
+void _resolv_delete_cache_for_net(unsigned netid) {
+    pthread_once(&_res_cache_once, _res_cache_init);
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    struct resolv_cache_info* prev_cache_info = &_res_cache_list;
+
+    while (prev_cache_info->next) {
+        struct resolv_cache_info* cache_info = prev_cache_info->next;
+
+        if (cache_info->netid == netid) {
+            prev_cache_info->next = cache_info->next;
+            _cache_flush_locked(cache_info->cache);
+            free(cache_info->cache->entries);
+            free(cache_info->cache);
+            _free_nameservers_locked(cache_info);
+            free(cache_info);
+            break;
+        }
+
+        prev_cache_info = prev_cache_info->next;
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+static struct resolv_cache_info* _create_cache_info(void) {
+    return (struct resolv_cache_info*) calloc(sizeof(struct resolv_cache_info), 1);
+}
+
+static void _insert_cache_info_locked(struct resolv_cache_info* cache_info) {
+    struct resolv_cache_info* last;
+    for (last = &_res_cache_list; last->next; last = last->next) {}
+    last->next = cache_info;
+}
+
+static struct resolv_cache* _find_named_cache_locked(unsigned netid) {
+    struct resolv_cache_info* info = _find_cache_info_locked(netid);
+    if (info != NULL) return info->cache;
+    return NULL;
+}
+
+static struct resolv_cache_info* _find_cache_info_locked(unsigned netid) {
+    struct resolv_cache_info* cache_info = _res_cache_list.next;
+
+    while (cache_info) {
+        if (cache_info->netid == netid) {
+            break;
+        }
+
+        cache_info = cache_info->next;
+    }
+    return cache_info;
+}
+
+void _resolv_set_default_params(struct __res_params* params) {
+    params->sample_validity = NSSAMPLE_VALIDITY;
+    params->success_threshold = SUCCESS_THRESHOLD;
+    params->min_samples = 0;
+    params->max_samples = 0;
+    params->base_timeout_msec = 0;  // 0 = legacy algorithm
+}
+
+int _resolv_set_nameservers_for_net(unsigned netid, const char** servers, unsigned numservers,
+                                    const char* domains, const struct __res_params* params) {
+    char sbuf[NI_MAXSERV];
+    char* cp;
+    int* offset;
+    struct addrinfo* nsaddrinfo[MAXNS];
+
+    if (numservers > MAXNS) {
+        XLOG("%s: numservers=%u, MAXNS=%u", __FUNCTION__, numservers, MAXNS);
+        return E2BIG;
+    }
+
+    // Parse the addresses before actually locking or changing any state, in case there is an error.
+    // As a side effect this also reduces the time the lock is kept.
+    struct addrinfo hints = {
+            .ai_family = AF_UNSPEC, .ai_socktype = SOCK_DGRAM, .ai_flags = AI_NUMERICHOST};
+    snprintf(sbuf, sizeof(sbuf), "%u", NAMESERVER_PORT);
+    for (unsigned i = 0; i < numservers; i++) {
+        // The addrinfo structures allocated here are freed in _free_nameservers_locked().
+        int rt = getaddrinfo(servers[i], sbuf, &hints, &nsaddrinfo[i]);
+        if (rt != 0) {
+            for (unsigned j = 0; j < i; j++) {
+                freeaddrinfo(nsaddrinfo[j]);
+                nsaddrinfo[j] = NULL;
+            }
+            XLOG("%s: getaddrinfo(%s)=%s", __FUNCTION__, servers[i], gai_strerror(rt));
+            return EINVAL;
+        }
+    }
+
+    pthread_once(&_res_cache_once, _res_cache_init);
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    // creates the cache if not created
+    _get_res_cache_for_net_locked(netid);
+
+    struct resolv_cache_info* cache_info = _find_cache_info_locked(netid);
+
+    if (cache_info != NULL) {
+        uint8_t old_max_samples = cache_info->params.max_samples;
+        if (params != NULL) {
+            cache_info->params = *params;
+        } else {
+            _resolv_set_default_params(&cache_info->params);
+        }
+
+        if (!_resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) {
+            // free current before adding new
+            _free_nameservers_locked(cache_info);
+            unsigned i;
+            for (i = 0; i < numservers; i++) {
+                cache_info->nsaddrinfo[i] = nsaddrinfo[i];
+                cache_info->nameservers[i] = strdup(servers[i]);
+                XLOG("%s: netid = %u, addr = %s\n", __FUNCTION__, netid, servers[i]);
+            }
+            cache_info->nscount = numservers;
+
+            // Clear the NS statistics because the mapping to nameservers might have changed.
+            _res_cache_clear_stats_locked(cache_info);
+
+            // increment the revision id to ensure that sample state is not written back if the
+            // servers change; in theory it would suffice to do so only if the servers or
+            // max_samples actually change, in practice the overhead of checking is higher than the
+            // cost, and overflows are unlikely
+            ++cache_info->revision_id;
+        } else if (cache_info->params.max_samples != old_max_samples) {
+            // If the maximum number of samples changes, the overhead of keeping the most recent
+            // samples around is not considered worth the effort, so they are cleared instead. All
+            // other parameters do not affect shared state: Changing these parameters does not
+            // invalidate the samples, as they only affect aggregation and the conditions under
+            // which servers are considered usable.
+            _res_cache_clear_stats_locked(cache_info);
+            ++cache_info->revision_id;
+        }
+
+        // Always update the search paths, since determining whether they actually changed is
+        // complex due to the zero-padding, and probably not worth the effort. Cache-flushing
+        // however is not // necessary, since the stored cache entries do contain the domain, not
+        // just the host name.
+        // code moved from res_init.c, load_domain_search_list
+        strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname));
+        if ((cp = strchr(cache_info->defdname, '\n')) != NULL) *cp = '\0';
+
+        cp = cache_info->defdname;
+        offset = cache_info->dnsrch_offset;
+        while (offset < cache_info->dnsrch_offset + MAXDNSRCH) {
+            while (*cp == ' ' || *cp == '\t') /* skip leading white space */
+                cp++;
+            if (*cp == '\0') /* stop if nothing more to do */
+                break;
+            *offset++ = cp - cache_info->defdname; /* record this search domain */
+            while (*cp) {                          /* zero-terminate it */
+                if (*cp == ' ' || *cp == '\t') {
+                    *cp++ = '\0';
+                    break;
+                }
+                cp++;
+            }
+        }
+        *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+    return 0;
+}
+
+static int _resolv_is_nameservers_equal_locked(struct resolv_cache_info* cache_info,
+                                               const char** servers, int numservers) {
+    if (cache_info->nscount != numservers) {
+        return 0;
+    }
+
+    // Compare each name server against current name servers.
+    // TODO: this is incorrect if the list of current or previous nameservers
+    // contains duplicates. This does not really matter because the framework
+    // filters out duplicates, but we should probably fix it. It's also
+    // insensitive to the order of the nameservers; we should probably fix that
+    // too.
+    for (int i = 0; i < numservers; i++) {
+        for (int j = 0;; j++) {
+            if (j >= numservers) {
+                return 0;
+            }
+            if (strcmp(cache_info->nameservers[i], servers[j]) == 0) {
+                break;
+            }
+        }
+    }
+
+    return 1;
+}
+
+static void _free_nameservers_locked(struct resolv_cache_info* cache_info) {
+    int i;
+    for (i = 0; i < cache_info->nscount; i++) {
+        free(cache_info->nameservers[i]);
+        cache_info->nameservers[i] = NULL;
+        if (cache_info->nsaddrinfo[i] != NULL) {
+            freeaddrinfo(cache_info->nsaddrinfo[i]);
+            cache_info->nsaddrinfo[i] = NULL;
+        }
+        cache_info->nsstats[i].sample_count = cache_info->nsstats[i].sample_next = 0;
+    }
+    cache_info->nscount = 0;
+    _res_cache_clear_stats_locked(cache_info);
+    ++cache_info->revision_id;
+}
+
+void _resolv_populate_res_for_net(res_state statp) {
+    if (statp == NULL) {
+        return;
+    }
+
+    pthread_once(&_res_cache_once, _res_cache_init);
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    struct resolv_cache_info* info = _find_cache_info_locked(statp->netid);
+    if (info != NULL) {
+        int nserv;
+        struct addrinfo* ai;
+        XLOG("%s: %u\n", __FUNCTION__, statp->netid);
+        for (nserv = 0; nserv < MAXNS; nserv++) {
+            ai = info->nsaddrinfo[nserv];
+            if (ai == NULL) {
+                break;
+            }
+
+            if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) {
+                if (statp->_u._ext.ext != NULL) {
+                    memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen);
+                    statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
+                } else {
+                    if ((size_t) ai->ai_addrlen <= sizeof(statp->nsaddr_list[0])) {
+                        memcpy(&statp->nsaddr_list[nserv], ai->ai_addr, ai->ai_addrlen);
+                    } else {
+                        statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
+                    }
+                }
+            } else {
+                XLOG("%s: found too long addrlen", __FUNCTION__);
+            }
+        }
+        statp->nscount = nserv;
+        // now do search domains.  Note that we cache the offsets as this code runs alot
+        // but the setting/offset-computer only runs when set/changed
+        // WARNING: Don't use str*cpy() here, this string contains zeroes.
+        memcpy(statp->defdname, info->defdname, sizeof(statp->defdname));
+        char** pp = statp->dnsrch;
+        int* p = info->dnsrch_offset;
+        while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) {
+            *pp++ = &statp->defdname[0] + *p++;
+        }
+    }
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}
+
+/* Resolver reachability statistics. */
+
+static void _res_cache_add_stats_sample_locked(struct __res_stats* stats,
+                                               const struct __res_sample* sample, int max_samples) {
+    // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
+    // allocated but supposedly unused memory for samples[0] will happen
+    XLOG("%s: adding sample to stats, next = %d, count = %d", __FUNCTION__, stats->sample_next,
+         stats->sample_count);
+    stats->samples[stats->sample_next] = *sample;
+    if (stats->sample_count < max_samples) {
+        ++stats->sample_count;
+    }
+    if (++stats->sample_next >= max_samples) {
+        stats->sample_next = 0;
+    }
+}
+
+static void _res_cache_clear_stats_locked(struct resolv_cache_info* cache_info) {
+    if (cache_info) {
+        for (int i = 0; i < MAXNS; ++i) {
+            cache_info->nsstats->sample_count = cache_info->nsstats->sample_next = 0;
+        }
+    }
+}
+
+int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
+                                           struct sockaddr_storage servers[MAXNS], int* dcount,
+                                           char domains[MAXDNSRCH][MAXDNSRCHPATH],
+                                           struct __res_params* params,
+                                           struct __res_stats stats[MAXNS]) {
+    int revision_id = -1;
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    struct resolv_cache_info* info = _find_cache_info_locked(netid);
+    if (info) {
+        if (info->nscount > MAXNS) {
+            pthread_mutex_unlock(&_res_cache_list_lock);
+            XLOG("%s: nscount %d > MAXNS %d", __FUNCTION__, info->nscount, MAXNS);
+            errno = EFAULT;
+            return -1;
+        }
+        int i;
+        for (i = 0; i < info->nscount; i++) {
+            // Verify that the following assumptions are held, failure indicates corruption:
+            //  - getaddrinfo() may never return a sockaddr > sockaddr_storage
+            //  - all addresses are valid
+            //  - there is only one address per addrinfo thanks to numeric resolution
+            int addrlen = info->nsaddrinfo[i]->ai_addrlen;
+            if (addrlen < (int) sizeof(struct sockaddr) || addrlen > (int) sizeof(servers[0])) {
+                pthread_mutex_unlock(&_res_cache_list_lock);
+                XLOG("%s: nsaddrinfo[%d].ai_addrlen == %d", __FUNCTION__, i, addrlen);
+                errno = EMSGSIZE;
+                return -1;
+            }
+            if (info->nsaddrinfo[i]->ai_addr == NULL) {
+                pthread_mutex_unlock(&_res_cache_list_lock);
+                XLOG("%s: nsaddrinfo[%d].ai_addr == NULL", __FUNCTION__, i);
+                errno = ENOENT;
+                return -1;
+            }
+            if (info->nsaddrinfo[i]->ai_next != NULL) {
+                pthread_mutex_unlock(&_res_cache_list_lock);
+                XLOG("%s: nsaddrinfo[%d].ai_next != NULL", __FUNCTION__, i);
+                errno = ENOTUNIQ;
+                return -1;
+            }
+        }
+        *nscount = info->nscount;
+        for (i = 0; i < info->nscount; i++) {
+            memcpy(&servers[i], info->nsaddrinfo[i]->ai_addr, info->nsaddrinfo[i]->ai_addrlen);
+            stats[i] = info->nsstats[i];
+        }
+        for (i = 0; i < MAXDNSRCH; i++) {
+            const char* cur_domain = info->defdname + info->dnsrch_offset[i];
+            // dnsrch_offset[i] can either be -1 or point to an empty string to indicate the end
+            // of the search offsets. Checking for < 0 is not strictly necessary, but safer.
+            // TODO: Pass in a search domain array instead of a string to
+            // _resolv_set_nameservers_for_net() and make this double check unnecessary.
+            if (info->dnsrch_offset[i] < 0 ||
+                ((size_t) info->dnsrch_offset[i]) >= sizeof(info->defdname) || !cur_domain[0]) {
+                break;
+            }
+            strlcpy(domains[i], cur_domain, MAXDNSRCHPATH);
+        }
+        *dcount = i;
+        *params = info->params;
+        revision_id = info->revision_id;
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+    return revision_id;
+}
+
+int _resolv_cache_get_resolver_stats(unsigned netid, struct __res_params* params,
+                                     struct __res_stats stats[MAXNS]) {
+    int revision_id = -1;
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    struct resolv_cache_info* info = _find_cache_info_locked(netid);
+    if (info) {
+        memcpy(stats, info->nsstats, sizeof(info->nsstats));
+        *params = info->params;
+        revision_id = info->revision_id;
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+    return revision_id;
+}
+
+void _resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id, int ns,
+                                             const struct __res_sample* sample, int max_samples) {
+    if (max_samples <= 0) return;
+
+    pthread_mutex_lock(&_res_cache_list_lock);
+
+    struct resolv_cache_info* info = _find_cache_info_locked(netid);
+
+    if (info && info->revision_id == revision_id) {
+        _res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
+    }
+
+    pthread_mutex_unlock(&_res_cache_list_lock);
+}