Refactor: make cryptfs.h smaller

Move most of it into cryptfs.cpp, and include cryptfs.h in fewer files.

Bug: 147814592
Test: Treehugger
Change-Id: Ia3592d73e7abc1f07a60538e0978a3033bdea7de
diff --git a/cryptfs.cpp b/cryptfs.cpp
index 403282e..64b72f0 100644
--- a/cryptfs.cpp
+++ b/cryptfs.cpp
@@ -14,12 +14,6 @@
  * limitations under the License.
  */
 
-/* TO DO:
- *   1.  Perhaps keep several copies of the encrypted key, in case something
- *       goes horribly wrong?
- *
- */
-
 #define LOG_TAG "Cryptfs"
 
 #include "cryptfs.h"
@@ -80,6 +74,186 @@
 using namespace android::dm;
 using namespace std::chrono_literals;
 
+/* The current cryptfs version */
+#define CURRENT_MAJOR_VERSION 1
+#define CURRENT_MINOR_VERSION 3
+
+#define CRYPT_FOOTER_TO_PERSIST_OFFSET 0x1000
+#define CRYPT_PERSIST_DATA_SIZE 0x1000
+
+#define MAX_CRYPTO_TYPE_NAME_LEN 64
+
+#define MAX_KEY_LEN 48
+#define SALT_LEN 16
+#define SCRYPT_LEN 32
+
+/* definitions of flags in the structure below */
+#define CRYPT_MNT_KEY_UNENCRYPTED 0x1 /* The key for the partition is not encrypted. */
+#define CRYPT_ENCRYPTION_IN_PROGRESS       \
+    0x2 /* Encryption partially completed, \
+           encrypted_upto valid*/
+#define CRYPT_INCONSISTENT_STATE                    \
+    0x4 /* Set when starting encryption, clear when \
+           exit cleanly, either through success or  \
+           correctly marked partial encryption */
+#define CRYPT_DATA_CORRUPT                      \
+    0x8 /* Set when encryption is fine, but the \
+           underlying volume is corrupt */
+#define CRYPT_FORCE_ENCRYPTION                        \
+    0x10 /* Set when it is time to encrypt this       \
+            volume on boot. Everything in this        \
+            structure is set up correctly as          \
+            though device is encrypted except         \
+            that the master key is encrypted with the \
+            default password. */
+#define CRYPT_FORCE_COMPLETE                           \
+    0x20 /* Set when the above encryption cycle is     \
+            complete. On next cryptkeeper entry, match \
+            the password. If it matches fix the master \
+            key and remove this flag. */
+
+/* Allowed values for type in the structure below */
+#define CRYPT_TYPE_PASSWORD                       \
+    0 /* master_key is encrypted with a password  \
+       * Must be zero to be compatible with pre-L \
+       * devices where type is always password.*/
+#define CRYPT_TYPE_DEFAULT                                            \
+    1                         /* master_key is encrypted with default \
+                               * password */
+#define CRYPT_TYPE_PATTERN 2  /* master_key is encrypted with a pattern */
+#define CRYPT_TYPE_PIN 3      /* master_key is encrypted with a pin */
+#define CRYPT_TYPE_MAX_TYPE 3 /* type cannot be larger than this value */
+
+#define CRYPT_MNT_MAGIC 0xD0B5B1C4
+#define PERSIST_DATA_MAGIC 0xE950CD44
+
+/* Key Derivation Function algorithms */
+#define KDF_PBKDF2 1
+#define KDF_SCRYPT 2
+/* Algorithms 3 & 4 deprecated before shipping outside of google, so removed */
+#define KDF_SCRYPT_KEYMASTER 5
+
+/* Maximum allowed keymaster blob size. */
+#define KEYMASTER_BLOB_SIZE 2048
+
+/* __le32 and __le16 defined in system/extras/ext4_utils/ext4_utils.h */
+#define __le8 unsigned char
+
+#if !defined(SHA256_DIGEST_LENGTH)
+#define SHA256_DIGEST_LENGTH 32
+#endif
+
+/* This structure starts 16,384 bytes before the end of a hardware
+ * partition that is encrypted, or in a separate partition.  It's location
+ * is specified by a property set in init.<device>.rc.
+ * The structure allocates 48 bytes for a key, but the real key size is
+ * specified in the struct.  Currently, the code is hardcoded to use 128
+ * bit keys.
+ * The fields after salt are only valid in rev 1.1 and later stuctures.
+ * Obviously, the filesystem does not include the last 16 kbytes
+ * of the partition if the crypt_mnt_ftr lives at the end of the
+ * partition.
+ */
+
+struct crypt_mnt_ftr {
+    __le32 magic; /* See above */
+    __le16 major_version;
+    __le16 minor_version;
+    __le32 ftr_size;             /* in bytes, not including key following */
+    __le32 flags;                /* See above */
+    __le32 keysize;              /* in bytes */
+    __le32 crypt_type;           /* how master_key is encrypted. Must be a
+                                  * CRYPT_TYPE_XXX value */
+    __le64 fs_size;              /* Size of the encrypted fs, in 512 byte sectors */
+    __le32 failed_decrypt_count; /* count of # of failed attempts to decrypt and
+                                    mount, set to 0 on successful mount */
+    unsigned char crypto_type_name[MAX_CRYPTO_TYPE_NAME_LEN]; /* The type of encryption
+                                                                 needed to decrypt this
+                                                                 partition, null terminated */
+    __le32 spare2;                                            /* ignored */
+    unsigned char master_key[MAX_KEY_LEN]; /* The encrypted key for decrypting the filesystem */
+    unsigned char salt[SALT_LEN];          /* The salt used for this encryption */
+    __le64 persist_data_offset[2];         /* Absolute offset to both copies of crypt_persist_data
+                                            * on device with that info, either the footer of the
+                                            * real_blkdevice or the metadata partition. */
+
+    __le32 persist_data_size; /* The number of bytes allocated to each copy of the
+                               * persistent data table*/
+
+    __le8 kdf_type; /* The key derivation function used. */
+
+    /* scrypt parameters. See www.tarsnap.com/scrypt/scrypt.pdf */
+    __le8 N_factor;        /* (1 << N) */
+    __le8 r_factor;        /* (1 << r) */
+    __le8 p_factor;        /* (1 << p) */
+    __le64 encrypted_upto; /* If we are in state CRYPT_ENCRYPTION_IN_PROGRESS and
+                              we have to stop (e.g. power low) this is the last
+                              encrypted 512 byte sector.*/
+    __le8 hash_first_block[SHA256_DIGEST_LENGTH]; /* When CRYPT_ENCRYPTION_IN_PROGRESS
+                                                     set, hash of first block, used
+                                                     to validate before continuing*/
+
+    /* key_master key, used to sign the derived key which is then used to generate
+     * the intermediate key
+     * This key should be used for no other purposes! We use this key to sign unpadded
+     * data, which is acceptable but only if the key is not reused elsewhere. */
+    __le8 keymaster_blob[KEYMASTER_BLOB_SIZE];
+    __le32 keymaster_blob_size;
+
+    /* Store scrypt of salted intermediate key. When decryption fails, we can
+       check if this matches, and if it does, we know that the problem is with the
+       drive, and there is no point in asking the user for more passwords.
+
+       Note that if any part of this structure is corrupt, this will not match and
+       we will continue to believe the user entered the wrong password. In that
+       case the only solution is for the user to enter a password enough times to
+       force a wipe.
+
+       Note also that there is no need to worry about migration. If this data is
+       wrong, we simply won't recognise a right password, and will continue to
+       prompt. On the first password change, this value will be populated and
+       then we will be OK.
+     */
+    unsigned char scrypted_intermediate_key[SCRYPT_LEN];
+
+    /* sha of this structure with this element set to zero
+       Used when encrypting on reboot to validate structure before doing something
+       fatal
+     */
+    unsigned char sha256[SHA256_DIGEST_LENGTH];
+};
+
+/* Persistant data that should be available before decryption.
+ * Things like airplane mode, locale and timezone are kept
+ * here and can be retrieved by the CryptKeeper UI to properly
+ * configure the phone before asking for the password
+ * This is only valid if the major and minor version above
+ * is set to 1.1 or higher.
+ *
+ * This is a 4K structure.  There are 2 copies, and the code alternates
+ * writing one and then clearing the previous one.  The reading
+ * code reads the first valid copy it finds, based on the magic number.
+ * The absolute offset to the first of the two copies is kept in rev 1.1
+ * and higher crypt_mnt_ftr structures.
+ */
+struct crypt_persist_entry {
+    char key[PROPERTY_KEY_MAX];
+    char val[PROPERTY_VALUE_MAX];
+};
+
+/* Should be exactly 4K in size */
+struct crypt_persist_data {
+    __le32 persist_magic;
+    __le32 persist_valid_entries;
+    __le32 persist_spare[30];
+    struct crypt_persist_entry persist_entry[0];
+};
+
+static int wait_and_unmount(const char* mountpoint, bool kill);
+
+typedef int (*kdf_func)(const char* passwd, const unsigned char* salt, unsigned char* ikey,
+                        void* params);
+
 #define UNUSED __attribute__((unused))
 
 #define HASH_COUNT 2000
@@ -1298,7 +1472,7 @@
     return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
 }
 
-int wait_and_unmount(const char* mountpoint, bool kill) {
+static int wait_and_unmount(const char* mountpoint, bool kill) {
     int i, err, rc;
 #define WAIT_UNMOUNT_COUNT 20