Merge "Fix failure in scoring test caused by timeout"
diff --git a/tools/tensor_utils.py b/tools/tensor_utils.py
index a29fd3c..7d96541 100644
--- a/tools/tensor_utils.py
+++ b/tools/tensor_utils.py
@@ -11,24 +11,49 @@
import tensorflow as tf
import matplotlib.pyplot as plt
import json
+import seaborn as sns
from matplotlib.pylab import *
import matplotlib.animation as animation
# Enable tensor.numpy()
tf.compat.v1.enable_eager_execution()
-################################ ModelMetaDataManager ################################
+
+############################ Helper Functions ############################
+def reshape_to_matrix(array):
+ """Reshape an array to a square matrix padded with np.nan at the end."""
+ array = array.astype(float)
+ width = math.ceil(len(array)**0.5)
+ height = math.ceil(len(array)/ width)
+ padded = np.pad(array=array,
+ pad_width=(0, width * height - len(array)),
+ mode='constant',
+ constant_values=np.nan)
+ padded = padded.reshape(width, -1)
+ return padded
+
+def save_ani_to_video(ani, save_video_path, video_fps=5):
+ Writer = animation.writers['ffmpeg']
+ writer = Writer(fps=video_fps)
+ #Save the movie
+ ani.save(save_video_path, writer=writer, dpi=250)
+
+def save_ani_to_html(ani, save_html_path):
+ with open(save_html_path, 'w') as f:
+ f.write(ani.to_jshtml())
+
+############################ ModelMetaDataManager ############################
class ModelMetaDataManager(object):
"""Maps model name in nnapi to its graph architecture with lazy initialization.
# Arguments
- android_build_top: the root directory of android source tree
- dump_dir: directory containing intermediate tensors pulled from device
+ android_build_top: the root directory of android source tree dump_dir:
+ directory containing intermediate tensors pulled from device
tflite_model_json_path: directory containing intermediate json output of
- model visualization tool (third_party/tensorflow/lite/tools:visualize)
- The json output path from the tool is always /tmp.
+ model visualization tool (third_party/tensorflow/lite/tools:visualize) The
+ json output path from the tool is always /tmp.
"""
-
+ ############################ ModelMetaData ############################
class ModelMetaData(object):
"""Store graph information of a model."""
@@ -61,10 +86,10 @@
self.DUMP_DIR = dump_dir
self.nnapi_to_tflite_name = dict()
self.tflite_to_nnapi_name = dict()
- self.__load_mobilenet_topk_aosp__()
+ self.__load_mobilenet_topk_aosp()
self.model_names = sorted(os.listdir(dump_dir))
- def __load_mobilenet_topk_aosp__(self):
+ def __load_mobilenet_topk_aosp(self):
"""Load information about tflite and nnapi model names."""
json_path = '{}/{}'.format(
self.ANDROID_BUILD_TOP,
@@ -75,14 +100,15 @@
self.nnapi_to_tflite_name[model['name']] = model['modelFile']
self.tflite_to_nnapi_name[model['modelFile']] = model['name']
- def __get_model_json_path__(self, tflite_model_name):
+ def __get_model_json_path(self, tflite_model_name):
"""Return tflite model jason path."""
- json_path = '{}/{}.json'.format(self.TFLITE_MODEL_JSON_DIR, tflite_model_name)
+ json_path = '{}/{}.json'.format(self.TFLITE_MODEL_JSON_DIR,
+ tflite_model_name)
return json_path
- def __load_model__(self, tflite_model_name):
+ def __load_model(self, tflite_model_name):
"""Initialize a ModelMetaData for this model."""
- model = self.ModelMetaData(self.__get_model_json_path__(tflite_model_name))
+ model = self.ModelMetaData(self.__get_model_json_path(tflite_model_name))
nnapi_model_name = self.model_name_tflite_to_nnapi(tflite_model_name)
self.models[nnapi_model_name] = model
@@ -96,10 +122,11 @@
"""Retrieve the ModelMetaData with lazy initialization."""
tflite_model_name = self.model_name_nnapi_to_tflite(nnapi_model_name)
if nnapi_model_name not in self.models:
- self.__load_model__(tflite_model_name)
+ self.__load_model(tflite_model_name)
return self.models[nnapi_model_name]
- def generate_animation_html(self, output_file_path, model_names=None):
+ def generate_animation_html(self, output_file_path, model_names=None, heatmap=True):
+ """Generate a html file containing the hist and heatmap animation of all models"""
model_names = self.model_names if model_names is None else model_names
html_data = ''
for model_name in model_names:
@@ -108,11 +135,14 @@
model_data = ModelData(nnapi_model_name=model_name, manager=self)
ani = model_data.gen_error_hist_animation()
html_data += ani.to_jshtml()
+ if heatmap:
+ ani = model_data.gen_heatmap_animation()
+ html_data += ani.to_jshtml()
with open(output_file_path, 'w') as f:
f.write(html_data)
-################################ TensorDict ################################
+############################ TensorDict ############################
class TensorDict(dict):
"""A class to store cpu and nnapi tensors.
@@ -131,6 +161,7 @@
self.calc_range()
def bytes_to_numpy_tensor(self, file_path):
+ """Load bytes outputed from DumpIntermediateTensor into numpy tensor."""
tensor_type = tf.int8 if 'quant' in file_path else tf.float32
with open(file_path, mode='rb') as f:
tensor_bytes = f.read()
@@ -148,9 +179,7 @@
def tensor_sanity_check(self):
# Make sure the cpu tensors and nnapi tensors have the same outputs
- assert(len(self['cpu']) == len(self['nnapi']))
- key_diff = set(self['cpu'].keys()) - set(self['nnapi'].keys())
- assert(len(key_diff) == 0)
+ assert(set(self['cpu'].keys()) == set(self['nnapi'].keys()))
print('Tensor sanity check passed')
def calc_range(self):
@@ -171,11 +200,10 @@
return diff
diff = diff.astype(float)
cpu_tensor = cpu_tensor.astype(float)
+ # Divide by max so the relative error range is conveniently [-1, 1]
max_cpu_nnapi_tensor = np.maximum(np.abs(cpu_tensor), np.abs(nnapi_tensor))
- relative_diff = np.divide(diff, max_cpu_nnapi_tensor, out=np.zeros_like(diff),\
+ relative_diff = np.divide(diff, max_cpu_nnapi_tensor, out=np.zeros_like(diff),
where=max_cpu_nnapi_tensor>0)
- relative_diff[relative_diff>1] = 1.0
- relative_diff[relative_diff<-1] = -1.0
return relative_diff
def gen_tensor_diff_stats(self, relative_error=True, return_df=True, plot_diff=False):
@@ -201,8 +229,7 @@
plt.plot()
-################################ Model Data ################################
-
+############################ Model Data ############################
class ModelData(object):
"""A class to store all relevant inormation of a model.
@@ -213,62 +240,226 @@
def __init__(self, nnapi_model_name, manager):
self.nnapi_model_name = nnapi_model_name
self.manager = manager
- self.model_dir = self.get_target_model_dir(manager.DUMP_DIR, nnapi_model_name)
+ self.model_dir = self.get_target_model_dir(manager.DUMP_DIR,
+ nnapi_model_name)
self.tensor_dict = TensorDict(self.model_dir)
self.mmd = manager.get_model_meta_data(nnapi_model_name)
self.stats = self.tensor_dict.gen_tensor_diff_stats(relative_error=True,
return_df=True)
self.layers = sorted(self.tensor_dict['cpu'].keys())
+ self.cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True)
def get_target_model_dir(self, dump_dir, target_model_name):
+ # Get the model directory path
target_model_dir = dump_dir + target_model_name + "/"
return target_model_dir
- def updateData(self, i, fig, ax1, ax2, bins=50):
+ def __sns_distplot(self, layer, bins, ax, range, relative_error):
+ sns.distplot(self.tensor_dict.calc_diff(layer, relative_error=relative_error), bins=bins,
+ hist_kws={"range":range, "log":True}, ax=ax, kde=False)
+
+ def __plt_hist(self, layer, bins, ax, range, relative_error):
+ ax.hist(self.tensor_dict.calc_diff(layer, relative_error=relative_error), bins=bins,
+ range=range, log=True)
+
+ def update_hist_data(self, i, fig, ax1, ax2, bins=50, plot_library='sns'):
+ # Use % because there may be multiple testing samples
operation = self.mmd.output_meta_data[i % len(self.mmd.output_meta_data)]['operator_code']
layer = self.layers[i]
subtitle = fig.suptitle('{} | {}\n{}'
.format(self.nnapi_model_name, layer, operation),
fontsize='x-large')
for ax in (ax1, ax2):
- ax.clear()
+ ax.clear()
ax1.set_title('Relative Error')
ax2.set_title('Absolute Error')
- ax1.hist(self.tensor_dict.calc_diff(layer, relative_error=True), bins=bins,
- range=(-1, 1), log=True)
absolute_range = self.tensor_dict.absolute_range
- ax2.hist(self.tensor_dict.calc_diff(layer, relative_error=False), bins=bins,
- range=(-absolute_range, absolute_range), log=True)
- def gen_error_hist_animation(self):
- # For fast testing, add [:10] to the end of next line
+ # Determine underlying plotting library
+ hist_func = self.__plt_hist if plot_library == 'matplotlib' else self.__sns_distplot
+ hist_func(layer=layer, bins=bins, ax=ax1,
+ range=(-1, 1), relative_error=True)
+ hist_func(layer=layer, bins=bins, ax=ax2,
+ range=(-absolute_range, absolute_range), relative_error=False)
+
+ def gen_error_hist_animation(self, save_video_path=None, video_fps=10):
layers = self.layers
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12,9))
- ani = animation.FuncAnimation(fig, self.updateData, len(layers),
+ ani = animation.FuncAnimation(fig, self.update_hist_data, len(layers),
fargs=(fig, ax1, ax2),
interval=200, repeat=False)
# close before return to avoid dangling plot
+ if save_video_path:
+ save_ani_to_video(ani, save_video_path, video_fps)
+ plt.close()
+ return ani
+
+ def __sns_heatmap(self, data, ax, cbar_ax, **kwargs):
+ return sns.heatmap(data, cmap=self.cmap, cbar=True, ax=ax, cbar_ax=cbar_ax,
+ cbar_kws={"orientation": "horizontal"}, center=0, **kwargs)
+
+ def update_heatmap_data(self, i, fig, axs):
+ # Use % because there may be multiple testing samples
+ operation = self.mmd.output_meta_data[i % len(self.mmd.output_meta_data)]['operator_code']
+ layer = self.layers[i]
+ subtitle = fig.suptitle('{} | {}\n{}\n'
+ .format(self.nnapi_model_name, layer, operation),
+ fontsize='x-large')
+ # Clear all the axs and redraw
+ # It's important to clear the colorbars as well to avoid duplicate colorbars
+ for ax_tuple in axs:
+ for ax in ax_tuple:
+ ax.clear()
+ axs[0][0].set_title('Diff')
+ axs[0][1].set_title('CPU Tensor')
+ axs[0][2].set_title('NNAPI Tensor')
+
+ reshaped_diff = reshape_to_matrix(self.tensor_dict.calc_diff(layer, relative_error=False))
+ reshaped_cpu = reshape_to_matrix(self.tensor_dict['cpu'][layer])
+ reshaped_nnapi = reshape_to_matrix(self.tensor_dict['nnapi'][layer])
+ absolute_range = self.tensor_dict.absolute_range
+ g1 = self.__sns_heatmap(data=reshaped_diff, ax=axs[0][0], cbar_ax=axs[1][0],
+ vmin=-absolute_range, vmax=absolute_range)
+ g2 = self.__sns_heatmap(data=reshaped_cpu, ax=axs[0][1], cbar_ax=axs[1][1])
+ g3 = self.__sns_heatmap(data=reshaped_nnapi, ax=axs[0][2], cbar_ax=axs[1][2])
+
+ def gen_heatmap_animation(self, save_video_path=None, video_fps=10, figsize=(13,6)):
+ layers = self.layers
+ fig = plt.figure(constrained_layout=True, figsize=figsize)
+ widths = [1, 1, 1]
+ heights = [7, 1]
+ spec = fig.add_gridspec(ncols=3, nrows=2, width_ratios=widths,
+ height_ratios=heights)
+ axs = []
+ for row in range(2):
+ axs.append([])
+ for col in range(3):
+ axs[-1].append(fig.add_subplot(spec[row, col]))
+
+ ani = animation.FuncAnimation(fig, self.update_heatmap_data, len(layers),
+ fargs=(fig, axs),
+ interval=200, repeat=False)
+ if save_video_path:
+ save_ani_to_video(ani, save_video_path, video_fps)
+ # close before return to avoid dangling plot
plt.close()
return ani
- def plot_error_heatmap(self, target_layer, length=1):
+ def plot_error_heatmap(self, target_layer, vmin=None, vmax=None):
+ # Plot the diff heatmap for a given layer
target_diff = self.tensor_dict['cpu'][target_layer] - \
self.tensor_dict['nnapi'][target_layer]
- width = int(len(target_diff)/ length)
- reshaped_target_diff = target_diff[:length * width].reshape(length, width)
- fig, ax = subplots(figsize=(18, 5))
+ reshaped_target_diff = reshape_to_matrix(target_diff)
+ fig, ax = subplots(figsize=(9, 9))
plt.title('Heat Map of Error between CPU and NNAPI')
- plt.imshow(reshaped_target_diff, cmap='hot', interpolation='nearest')
- plt.colorbar()
+ sns.heatmap(reshaped_target_diff,
+ cmap=self.cmap,
+ mask=np.isnan(reshaped_target_diff),
+ center=0)
plt.show()
-################################NumpyEncoder ################################
+############################ ModelDataComparison ############################
+class ModelDataComparison:
+ """A class to store and compare multiple ModelData.
+ # Arguments
+ model_data_list: a list of ModelData to be compared. Can be modified through
+ the class variable.
+ """
+ def __init__(self, dump_dir_list, android_build_top, tflite_model_json_dir, model_name):
+ self.dump_dir_list = dump_dir_list
+ self.android_build_top = android_build_top
+ self.tflite_model_json_dir = tflite_model_json_dir
+ self.set_model_name(model_name)
+
+ def set_model_name(self, model_name):
+ # Set model to be compared and load/ reload all model data
+ self.model_name = model_name
+ self.__load_data()
+
+ def __load_data(self):
+ # Load all model data
+ self.manager_list = []
+ self.model_data_list = []
+ for i, dump_dir in enumerate(self.dump_dir_list):
+ manager = ModelMetaDataManager(self.android_build_top,
+ dump_dir,
+ tflite_model_json_dir=self.tflite_model_json_dir)
+ model_data = ModelData(nnapi_model_name=self.model_name, manager=manager)
+ self.manager_list.append(manager)
+ self.model_data_list.append(model_data)
+ self.sanity_check()
+
+ def sanity_check(self):
+ # Check
+ # 1) if there are more than one model to be compared
+ # 2) The data has the same intermediate layers
+ assert(len(self.model_data_list) >= 1)
+ sample_model_data = self.model_data_list[0]
+ for i in range(1, len(self.model_data_list)):
+ assert(set(sample_model_data.tensor_dict['cpu'].keys()) ==
+ set(self.model_data_list[i].tensor_dict['nnapi'].keys()))
+ print('Sanity Check Passed')
+ self.layers = sample_model_data.layers
+ self.mmd = sample_model_data.mmd
+
+ def update_hist_comparison_data(self, i, fig, axs, bins=50):
+ # Use % because there may be multiple testing samples
+ sample_model_data = self.model_data_list[0]
+ operation = self.mmd.output_meta_data[i % len(self.mmd.output_meta_data)]['operator_code']
+ layer = self.layers[i]
+ subtitle = fig.suptitle('{} | {}\n{}'
+ .format(sample_model_data.nnapi_model_name, layer, operation),
+ fontsize='x-large')
+ for row in axs:
+ for ax in row:
+ ax.clear()
+
+ hist_ax = axs[0][0]
+ hist_ax.set_title('Diff Histogram')
+ labels = [dump_dir.split('/')[-2] for dump_dir in self.dump_dir_list]
+ cmap = sns.diverging_palette(220, 20, sep=20, as_cmap=True)
+ for i, ax in enumerate(axs[1]):
+ model_data = self.model_data_list[i]
+ axs[1][i].set_title(labels[i])
+ reshaped_diff = reshape_to_matrix(
+ self.model_data_list[i].tensor_dict.calc_diff(layer, relative_error=False))
+ sns.heatmap(reshaped_diff, cmap=cmap, cbar=True, ax=axs[1][i], cbar_ax=axs[2][i],
+ cbar_kws={"orientation": "horizontal"}, center=0)
+ sns.distplot(model_data.tensor_dict.calc_diff(layer, relative_error=False), bins=bins,
+ hist_kws={"log":True}, ax=hist_ax, kde=False)
+ hist_ax.legend(labels)
+
+ def gen_error_hist_comparison_animation(self, save_video_path=None, video_fps=10):
+ layers = self.layers
+ N = len(self.model_data_list)
+ widths = [1] * N
+ heights = [N * 0.7, 1, 0.2]
+ fig = plt.figure(figsize=(5 * N, 4 * N))
+ gs = fig.add_gridspec(3, N, width_ratios=widths, height_ratios=heights)
+ axs = [[], [], []]
+ axs[0].append(fig.add_subplot(gs[0, :]))
+ for i in range(N):
+ # heatmap
+ axs[1].append(fig.add_subplot(gs[1, i]))
+ # colorbar
+ axs[2].append(fig.add_subplot(gs[2, i]))
+ ani = animation.FuncAnimation(fig, self.update_hist_comparison_data, len(layers),
+ fargs=(fig, axs),
+ interval=200, repeat=False)
+ if save_video_path:
+ save_ani_to_video(ani, save_video_path, video_fps)
+ # close before return to avoid dangling plot
+ plt.close()
+ return ani
+
+
+############################ NumpyEncoder ############################
class NumpyEncoder(json.JSONEncoder):
"""Enable numpy array serilization in a dictionary.
- # Usage:
+ Usage:
a = np.array([[1, 2, 3], [4, 5, 6]])
json.dumps({'a': a, 'aa': [2, (2, 3, 4), a], 'bb': [2]}, cls=NumpyEncoder)
"""
@@ -277,20 +468,28 @@
return obj.tolist()
return json.JSONEncoder.default(self, obj)
-def main(android_build_top, dump_dir, model_name):
+def main(android_build_top, dump_dir, model_name, output_file_path=None):
+ if output_file_path is None:
+ output_file_path = '/tmp/intermediate.html'
manager = ModelMetaDataManager(
android_build_top,
dump_dir,
tflite_model_json_dir='/tmp')
- model_data = ModelData(nnapi_model_name=model_name, manager=manager)
- print(model_data.tensor_dict)
+ if model_name:
+ model_data = ModelData(nnapi_model_name=model_name, manager=manager)
+ print(model_data.tensor_dict)
+ manager.generate_animation_html(output_file_path=output_file_path, model_names=[model_name])
+ else:
+ manager.generate_animation_html(output_file_path=output_file_path)
+
if __name__ == '__main__':
# Example usage
# python tensor_utils.py ~/android/master/ ~/android/master/intermediate/ tts_float
parser = argparse.ArgumentParser(description='Utilities for parsing intermediate tensors.')
- parser.add_argument('android_build_top', help='Your Android build top path')
- parser.add_argument('dump_dir', help='The dump dir pulled from the device')
- parser.add_argument('model_name', help='NNAPI model name')
+ parser.add_argument('android_build_top', help='Your Android build top path.')
+ parser.add_argument('dump_dir', help='The dump dir pulled from the device.')
+ parser.add_argument('--model_name', help='NNAPI model name. Run all models if not specified.')
+ parser.add_argument('--output_file_path', help='Animation HTML path.')
args = parser.parse_args()
- main(args.android_build_top, args.dump_dir, args.model_name)
\ No newline at end of file
+ main(args.android_build_top, args.dump_dir, args.model_name, args.output_file_path)
\ No newline at end of file