Reflow paragraphs in comments.
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
diff --git a/lldb/source/Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.cpp b/lldb/source/Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.cpp
index a81a030..e02d692 100644
--- a/lldb/source/Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.cpp
+++ b/lldb/source/Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.cpp
@@ -45,10 +45,10 @@
using namespace lldb;
using namespace lldb_private;
-// Progressively greater amounts of scanning we will allow
-// For some targets very early in startup, we can't do any random reads of
-// memory or we can crash the device
-// so a setting is needed that can completely disable the KASLR scans.
+// Progressively greater amounts of scanning we will allow For some targets
+// very early in startup, we can't do any random reads of memory or we can
+// crash the device so a setting is needed that can completely disable the
+// KASLR scans.
enum KASLRScanType {
eKASLRScanNone = 0, // No reading into the inferior at all
@@ -122,15 +122,15 @@
}
//----------------------------------------------------------------------
-// Create an instance of this class. This function is filled into
-// the plugin info class that gets handed out by the plugin factory and
-// allows the lldb to instantiate an instance of this class.
+// Create an instance of this class. This function is filled into the plugin
+// info class that gets handed out by the plugin factory and allows the lldb to
+// instantiate an instance of this class.
//----------------------------------------------------------------------
DynamicLoader *DynamicLoaderDarwinKernel::CreateInstance(Process *process,
bool force) {
if (!force) {
- // If the user provided an executable binary and it is not a kernel,
- // this plugin should not create an instance.
+ // If the user provided an executable binary and it is not a kernel, this
+ // plugin should not create an instance.
Module *exe_module = process->GetTarget().GetExecutableModulePointer();
if (exe_module) {
ObjectFile *object_file = exe_module->GetObjectFile();
@@ -155,8 +155,8 @@
return NULL;
}
break;
- // If we have triple like armv7-unknown-unknown, we should try looking for a
- // Darwin kernel.
+ // If we have triple like armv7-unknown-unknown, we should try looking for
+ // a Darwin kernel.
case llvm::Triple::UnknownOS:
break;
default:
@@ -166,9 +166,8 @@
}
// At this point if there is an ExecutableModule, it is a kernel and the
- // Target is some variant of an Apple system.
- // If the Process hasn't provided the kernel load address, we need to look
- // around in memory to find it.
+ // Target is some variant of an Apple system. If the Process hasn't provided
+ // the kernel load address, we need to look around in memory to find it.
const addr_t kernel_load_address = SearchForDarwinKernel(process);
if (CheckForKernelImageAtAddress(kernel_load_address, process).IsValid()) {
@@ -197,10 +196,9 @@
}
//----------------------------------------------------------------------
-// Check if the kernel binary is loaded in memory without a slide.
-// First verify that the ExecutableModule is a kernel before we proceed.
-// Returns the address of the kernel if one was found, else
-// LLDB_INVALID_ADDRESS.
+// Check if the kernel binary is loaded in memory without a slide. First verify
+// that the ExecutableModule is a kernel before we proceed. Returns the address
+// of the kernel if one was found, else LLDB_INVALID_ADDRESS.
//----------------------------------------------------------------------
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelAtSameLoadAddr(Process *process) {
@@ -229,10 +227,8 @@
//----------------------------------------------------------------------
// If the debug flag is included in the boot-args nvram setting, the kernel's
-// load address
-// will be noted in the lowglo page at a fixed address
-// Returns the address of the kernel if one was found, else
-// LLDB_INVALID_ADDRESS.
+// load address will be noted in the lowglo page at a fixed address Returns the
+// address of the kernel if one was found, else LLDB_INVALID_ADDRESS.
//----------------------------------------------------------------------
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelWithDebugHints(Process *process) {
@@ -282,8 +278,8 @@
}
//----------------------------------------------------------------------
-// If the kernel is currently executing when lldb attaches, and we don't have
-// a better way of finding the kernel's load address, try searching backwards
+// If the kernel is currently executing when lldb attaches, and we don't have a
+// better way of finding the kernel's load address, try searching backwards
// from the current pc value looking for the kernel's Mach header in memory.
// Returns the address of the kernel if one was found, else
// LLDB_INVALID_ADDRESS.
@@ -304,9 +300,8 @@
return LLDB_INVALID_ADDRESS;
// The kernel will load at at one megabyte boundary (0x100000), or at that
- // boundary plus
- // an offset of one page (0x1000) or two, or four (0x4000), depending on the
- // device.
+ // boundary plus an offset of one page (0x1000) or two, or four (0x4000),
+ // depending on the device.
// Round the current pc down to the nearest one megabyte boundary - the place
// where we will start searching.
@@ -329,11 +324,10 @@
}
//----------------------------------------------------------------------
-// Scan through the valid address range for a kernel binary.
-// This is uselessly slow in 64-bit environments so we don't even try it.
-// This scan is not enabled by default even for 32-bit targets.
-// Returns the address of the kernel if one was found, else
-// LLDB_INVALID_ADDRESS.
+// Scan through the valid address range for a kernel binary. This is uselessly
+// slow in 64-bit environments so we don't even try it. This scan is not
+// enabled by default even for 32-bit targets. Returns the address of the
+// kernel if one was found, else LLDB_INVALID_ADDRESS.
//----------------------------------------------------------------------
lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelViaExhaustiveSearch(
Process *process) {
@@ -375,9 +369,8 @@
//----------------------------------------------------------------------
// Given an address in memory, look to see if there is a kernel image at that
-// address.
-// Returns a UUID; if a kernel was not found at that address, UUID.IsValid()
-// will be false.
+// address. Returns a UUID; if a kernel was not found at that address,
+// UUID.IsValid() will be false.
//----------------------------------------------------------------------
lldb_private::UUID
DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress(lldb::addr_t addr,
@@ -392,8 +385,8 @@
addr);
// First try a quick test -- read the first 4 bytes and see if there is a
- // valid Mach-O magic field there
- // (the first field of the mach_header/mach_header_64 struct).
+ // valid Mach-O magic field there (the first field of the
+ // mach_header/mach_header_64 struct).
Status read_error;
uint8_t magicbuf[4];
@@ -630,10 +623,8 @@
}
// Given the m_load_address from the kext summaries, and a UUID, try to create
-// an in-memory
-// Module at that address. Require that the MemoryModule have a matching UUID
-// and detect
-// if this MemoryModule is a kernel or a kext.
+// an in-memory Module at that address. Require that the MemoryModule have a
+// matching UUID and detect if this MemoryModule is a kernel or a kext.
//
// Returns true if m_memory_module_sp is now set to a valid Module.
@@ -668,10 +659,8 @@
}
// If this is a kext, and the kernel specified what UUID we should find at
- // this
- // load address, require that the memory module have a matching UUID or
- // something
- // has gone wrong and we should discard it.
+ // this load address, require that the memory module have a matching UUID or
+ // something has gone wrong and we should discard it.
if (m_uuid.IsValid()) {
if (m_uuid != memory_module_sp->GetUUID()) {
if (log) {
@@ -737,9 +726,8 @@
Target &target = process->GetTarget();
- // If we don't have / can't create a memory module for this kext, don't try to
- // load it - we won't
- // have the correct segment load addresses.
+ // If we don't have / can't create a memory module for this kext, don't try
+ // to load it - we won't have the correct segment load addresses.
if (!ReadMemoryModule(process)) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (log)
@@ -772,9 +760,8 @@
module_spec.GetUUID() = m_uuid;
module_spec.GetArchitecture() = target.GetArchitecture();
- // For the kernel, we really do need an on-disk file copy of the binary to
- // do anything useful.
- // This will force a clal to
+ // For the kernel, we really do need an on-disk file copy of the binary
+ // to do anything useful. This will force a clal to
if (IsKernel()) {
if (Symbols::DownloadObjectAndSymbolFile(module_spec, true)) {
if (module_spec.GetFileSpec().Exists()) {
@@ -791,10 +778,8 @@
}
// If the current platform is PlatformDarwinKernel, create a ModuleSpec
- // with the filename set
- // to be the bundle ID for this kext, e.g.
- // "com.apple.filesystems.msdosfs", and ask the platform
- // to find it.
+ // with the filename set to be the bundle ID for this kext, e.g.
+ // "com.apple.filesystems.msdosfs", and ask the platform to find it.
PlatformSP platform_sp(target.GetPlatform());
if (!m_module_sp && platform_sp) {
ConstString platform_name(platform_sp->GetPluginName());
@@ -828,8 +813,9 @@
}
}
- // If we managed to find a module, append it to the target's list of images.
- // If we also have a memory module, require that they have matching UUIDs
+ // If we managed to find a module, append it to the target's list of
+ // images. If we also have a memory module, require that they have matching
+ // UUIDs
if (m_module_sp) {
bool uuid_match_ok = true;
if (m_memory_module_sp) {
@@ -871,15 +857,15 @@
SectionList *memory_section_list = memory_object_file->GetSectionList();
if (memory_section_list && ondisk_section_list) {
const uint32_t num_ondisk_sections = ondisk_section_list->GetSize();
- // There may be CTF sections in the memory image so we can't
- // always just compare the number of sections (which are actually
- // segments in mach-o parlance)
+ // There may be CTF sections in the memory image so we can't always
+ // just compare the number of sections (which are actually segments
+ // in mach-o parlance)
uint32_t sect_idx = 0;
- // Use the memory_module's addresses for each section to set the
- // file module's load address as appropriate. We don't want to use
- // a single slide value for the entire kext - different segments may
- // be slid different amounts by the kext loader.
+ // Use the memory_module's addresses for each section to set the file
+ // module's load address as appropriate. We don't want to use a
+ // single slide value for the entire kext - different segments may be
+ // slid different amounts by the kext loader.
uint32_t num_sections_loaded = 0;
for (sect_idx = 0; sect_idx < num_ondisk_sections; ++sect_idx) {
@@ -969,10 +955,9 @@
}
//----------------------------------------------------------------------
-// Load the kernel module and initialize the "m_kernel" member. Return
-// true _only_ if the kernel is loaded the first time through (subsequent
-// calls to this function should return false after the kernel has been
-// already loaded).
+// Load the kernel module and initialize the "m_kernel" member. Return true
+// _only_ if the kernel is loaded the first time through (subsequent calls to
+// this function should return false after the kernel has been already loaded).
//----------------------------------------------------------------------
void DynamicLoaderDarwinKernel::LoadKernelModuleIfNeeded() {
if (!m_kext_summary_header_ptr_addr.IsValid()) {
@@ -996,9 +981,8 @@
m_kernel.SetLoadAddress(m_kernel_load_address);
if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS &&
m_kernel.GetModule()) {
- // We didn't get a hint from the process, so we will
- // try the kernel at the address that it exists at in
- // the file if we have one
+ // We didn't get a hint from the process, so we will try the kernel at
+ // the address that it exists at in the file if we have one
ObjectFile *kernel_object_file = m_kernel.GetModule()->GetObjectFile();
if (kernel_object_file) {
addr_t load_address =
@@ -1011,8 +995,7 @@
if (load_address != file_address) {
// Don't accidentally relocate the kernel to the File address --
// the Load address has already been set to its actual in-memory
- // address.
- // Mark it as IsLoaded.
+ // address. Mark it as IsLoaded.
m_kernel.SetProcessStopId(m_process->GetStopID());
}
} else {
@@ -1028,10 +1011,10 @@
}
}
- // The operating system plugin gets loaded and initialized in
- // LoadImageUsingMemoryModule when we discover the kernel dSYM. For a
- // core file in particular, that's the wrong place to do this, since
- // we haven't fixed up the section addresses yet. So let's redo it here.
+ // The operating system plugin gets loaded and initialized in
+ // LoadImageUsingMemoryModule when we discover the kernel dSYM. For a core
+ // file in particular, that's the wrong place to do this, since we haven't
+ // fixed up the section addresses yet. So let's redo it here.
LoadOperatingSystemPlugin(false);
if (m_kernel.IsLoaded() && m_kernel.GetModule()) {
@@ -1052,9 +1035,9 @@
//----------------------------------------------------------------------
// Static callback function that gets called when our DYLD notification
-// breakpoint gets hit. We update all of our image infos and then
-// let our super class DynamicLoader class decide if we should stop
-// or not (based on global preference).
+// breakpoint gets hit. We update all of our image infos and then let our super
+// class DynamicLoader class decide if we should stop or not (based on global
+// preference).
//----------------------------------------------------------------------
bool DynamicLoaderDarwinKernel::BreakpointHitCallback(
void *baton, StoppointCallbackContext *context, user_id_t break_id,
@@ -1087,8 +1070,8 @@
const uint32_t addr_size = m_kernel.GetAddressByteSize();
const ByteOrder byte_order = m_kernel.GetByteOrder();
Status error;
- // Read enough bytes for a "OSKextLoadedKextSummaryHeader" structure
- // which is currently 4 uint32_t and a pointer.
+ // Read enough bytes for a "OSKextLoadedKextSummaryHeader" structure which
+ // is currently 4 uint32_t and a pointer.
uint8_t buf[24];
DataExtractor data(buf, sizeof(buf), byte_order, addr_size);
const size_t count = 4 * sizeof(uint32_t) + addr_size;
@@ -1130,7 +1113,8 @@
return false;
}
} else {
- // Versions less than 2 didn't have an entry size, it was hard coded
+ // Versions less than 2 didn't have an entry size, it was hard
+ // coded
m_kext_summary_header.entry_size =
KERNEL_MODULE_ENTRY_SIZE_VERSION_1;
}
@@ -1156,13 +1140,10 @@
}
// We've either (a) just attached to a new kernel, or (b) the kexts-changed
-// breakpoint was hit
-// and we need to figure out what kexts have been added or removed.
-// Read the kext summaries from the inferior kernel memory, compare them against
-// the
-// m_known_kexts vector and update the m_known_kexts vector as needed to keep in
-// sync with the
-// inferior.
+// breakpoint was hit and we need to figure out what kexts have been added or
+// removed. Read the kext summaries from the inferior kernel memory, compare
+// them against the m_known_kexts vector and update the m_known_kexts vector as
+// needed to keep in sync with the inferior.
bool DynamicLoaderDarwinKernel::ParseKextSummaries(
const Address &kext_summary_addr, uint32_t count) {
@@ -1178,14 +1159,13 @@
return false;
// read the plugin.dynamic-loader.darwin-kernel.load-kexts setting -- if the
- // user requested no
- // kext loading, don't print any messages about kexts & don't try to read
- // them.
+ // user requested no kext loading, don't print any messages about kexts &
+ // don't try to read them.
const bool load_kexts = GetGlobalProperties()->GetLoadKexts();
// By default, all kexts we've loaded in the past are marked as "remove" and
- // all of the kexts
- // we just found out about from ReadKextSummaries are marked as "add".
+ // all of the kexts we just found out about from ReadKextSummaries are marked
+ // as "add".
std::vector<bool> to_be_removed(m_known_kexts.size(), true);
std::vector<bool> to_be_added(count, true);
@@ -1195,8 +1175,8 @@
const uint32_t new_kexts_size = kext_summaries.size();
const uint32_t old_kexts_size = m_known_kexts.size();
- // The m_known_kexts vector may have entries that have been Cleared,
- // or are a kernel.
+ // The m_known_kexts vector may have entries that have been Cleared, or are a
+ // kernel.
for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) {
bool ignore = false;
KextImageInfo &image_info = m_known_kexts[old_kext];
@@ -1229,10 +1209,9 @@
break;
}
}
- // If this "kext" entry is actually an alias for the kernel --
- // the kext was compiled into the kernel or something -- then
- // we don't want to load the kernel's text section at a different
- // address. Ignore this kext entry.
+ // If this "kext" entry is actually an alias for the kernel -- the kext was
+ // compiled into the kernel or something -- then we don't want to load the
+ // kernel's text section at a different address. Ignore this kext entry.
if (kext_summaries[new_kext].GetUUID().IsValid()
&& m_kernel.GetUUID().IsValid()
&& kext_summaries[new_kext].GetUUID() == m_kernel.GetUUID()) {
@@ -1322,9 +1301,8 @@
s->Printf(".");
image_info.Clear();
// should pull it out of the KextImageInfos vector but that would
- // mutate the list and invalidate
- // the to_be_removed bool vector; leaving it in place once Cleared()
- // is relatively harmless.
+ // mutate the list and invalidate the to_be_removed bool vector;
+ // leaving it in place once Cleared() is relatively harmless.
}
}
m_process->GetTarget().ModulesDidUnload(unloaded_module_list, false);
@@ -1433,8 +1411,8 @@
}
//----------------------------------------------------------------------
-// Dump the _dyld_all_image_infos members and all current image infos
-// that we have parsed to the file handle provided.
+// Dump the _dyld_all_image_infos members and all current image infos that we
+// have parsed to the file handle provided.
//----------------------------------------------------------------------
void DynamicLoaderDarwinKernel::PutToLog(Log *log) const {
if (log == NULL)