re-land [ExpandMemCmp] Split ExpandMemCmp from CodeGen into its own pass."

Fix undefined references: ExpandMemCmp belongs to CodeGen/, not Scalar/.

llvm-svn: 317318
diff --git a/llvm/lib/CodeGen/CMakeLists.txt b/llvm/lib/CodeGen/CMakeLists.txt
index 2e364cd..df04cf8 100644
--- a/llvm/lib/CodeGen/CMakeLists.txt
+++ b/llvm/lib/CodeGen/CMakeLists.txt
@@ -21,6 +21,7 @@
   EdgeBundles.cpp
   ExecutionDepsFix.cpp
   ExpandISelPseudos.cpp
+  ExpandMemCmp.cpp
   ExpandPostRAPseudos.cpp
   ExpandReductions.cpp
   FaultMaps.cpp
diff --git a/llvm/lib/CodeGen/CodeGen.cpp b/llvm/lib/CodeGen/CodeGen.cpp
index bfab865..2f11955 100644
--- a/llvm/lib/CodeGen/CodeGen.cpp
+++ b/llvm/lib/CodeGen/CodeGen.cpp
@@ -30,6 +30,7 @@
   initializeDwarfEHPreparePass(Registry);
   initializeEarlyIfConverterPass(Registry);
   initializeExpandISelPseudosPass(Registry);
+  initializeExpandMemCmpPassPass(Registry);
   initializeExpandPostRAPass(Registry);
   initializeFEntryInserterPass(Registry);
   initializeFinalizeMachineBundlesPass(Registry);
diff --git a/llvm/lib/CodeGen/CodeGenPrepare.cpp b/llvm/lib/CodeGen/CodeGenPrepare.cpp
index 51f2a32..973ddeb 100644
--- a/llvm/lib/CodeGen/CodeGenPrepare.cpp
+++ b/llvm/lib/CodeGen/CodeGenPrepare.cpp
@@ -123,12 +123,6 @@
 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
 
-STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
-STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
-STATISTIC(NumMemCmpGreaterThanMax,
-          "Number of memcmp calls with size greater than max size");
-STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
-
 static cl::opt<bool> DisableBranchOpts(
   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
   cl::desc("Disable branch optimizations in CodeGenPrepare"));
@@ -189,11 +183,6 @@
     cl::desc("Enable merging of redundant sexts when one is dominating"
     " the other."), cl::init(true));
 
-static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
-    "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
-    cl::desc("The number of loads per basic block for inline expansion of "
-             "memcmp that is only being compared against zero."));
-
 namespace {
 
 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
@@ -1697,699 +1686,6 @@
   return true;
 }
 
-namespace {
-
-// This class provides helper functions to expand a memcmp library call into an
-// inline expansion.
-class MemCmpExpansion {
-  struct ResultBlock {
-    BasicBlock *BB = nullptr;
-    PHINode *PhiSrc1 = nullptr;
-    PHINode *PhiSrc2 = nullptr;
-
-    ResultBlock() = default;
-  };
-
-  CallInst *const CI;
-  ResultBlock ResBlock;
-  const uint64_t Size;
-  unsigned MaxLoadSize;
-  uint64_t NumLoadsNonOneByte;
-  const uint64_t NumLoadsPerBlock;
-  std::vector<BasicBlock *> LoadCmpBlocks;
-  BasicBlock *EndBlock;
-  PHINode *PhiRes;
-  const bool IsUsedForZeroCmp;
-  const DataLayout &DL;
-  IRBuilder<> Builder;
-  // Represents the decomposition in blocks of the expansion. For example,
-  // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
-  // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
-  // TODO(courbet): Involve the target more in this computation. On X86, 7
-  // bytes can be done more efficiently with two overlaping 4-byte loads than
-  // covering the interval with [{4, 0},{2, 4},{1, 6}}.
-  struct LoadEntry {
-    LoadEntry(unsigned LoadSize, uint64_t Offset)
-        : LoadSize(LoadSize), Offset(Offset) {
-      assert(Offset % LoadSize == 0 && "invalid load entry");
-    }
-
-    uint64_t getGEPIndex() const { return Offset / LoadSize; }
-
-    // The size of the load for this block, in bytes.
-    const unsigned LoadSize;
-    // The offset of this load WRT the base pointer, in bytes.
-    const uint64_t Offset;
-  };
-  SmallVector<LoadEntry, 8> LoadSequence;
-
-  void createLoadCmpBlocks();
-  void createResultBlock();
-  void setupResultBlockPHINodes();
-  void setupEndBlockPHINodes();
-  Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
-  void emitLoadCompareBlock(unsigned BlockIndex);
-  void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
-                                         unsigned &LoadIndex);
-  void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
-  void emitMemCmpResultBlock();
-  Value *getMemCmpExpansionZeroCase();
-  Value *getMemCmpEqZeroOneBlock();
-  Value *getMemCmpOneBlock();
-
- public:
-  MemCmpExpansion(CallInst *CI, uint64_t Size,
-                  const TargetTransformInfo::MemCmpExpansionOptions &Options,
-                  unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
-                  unsigned NumLoadsPerBlock, const DataLayout &DL);
-
-  unsigned getNumBlocks();
-  uint64_t getNumLoads() const { return LoadSequence.size(); }
-
-  Value *getMemCmpExpansion();
-};
-
-} // end anonymous namespace
-
-// Initialize the basic block structure required for expansion of memcmp call
-// with given maximum load size and memcmp size parameter.
-// This structure includes:
-// 1. A list of load compare blocks - LoadCmpBlocks.
-// 2. An EndBlock, split from original instruction point, which is the block to
-// return from.
-// 3. ResultBlock, block to branch to for early exit when a
-// LoadCmpBlock finds a difference.
-MemCmpExpansion::MemCmpExpansion(
-    CallInst *const CI, uint64_t Size,
-    const TargetTransformInfo::MemCmpExpansionOptions &Options,
-    const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
-    const unsigned NumLoadsPerBlock, const DataLayout &TheDataLayout)
-    : CI(CI),
-      Size(Size),
-      MaxLoadSize(0),
-      NumLoadsNonOneByte(0),
-      NumLoadsPerBlock(NumLoadsPerBlock),
-      IsUsedForZeroCmp(IsUsedForZeroCmp),
-      DL(TheDataLayout),
-      Builder(CI) {
-  assert(Size > 0 && "zero blocks");
-  // Scale the max size down if the target can load more bytes than we need.
-  size_t LoadSizeIndex = 0;
-  while (LoadSizeIndex < Options.LoadSizes.size() &&
-         Options.LoadSizes[LoadSizeIndex] > Size) {
-    ++LoadSizeIndex;
-  }
-  this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
-  // Compute the decomposition.
-  uint64_t CurSize = Size;
-  uint64_t Offset = 0;
-  while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
-    const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
-    assert(LoadSize > 0 && "zero load size");
-    const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
-    if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
-      // Do not expand if the total number of loads is larger than what the
-      // target allows. Note that it's important that we exit before completing
-      // the expansion to avoid using a ton of memory to store the expansion for
-      // large sizes.
-      LoadSequence.clear();
-      return;
-    }
-    if (NumLoadsForThisSize > 0) {
-      for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
-        LoadSequence.push_back({LoadSize, Offset});
-        Offset += LoadSize;
-      }
-      if (LoadSize > 1) {
-        ++NumLoadsNonOneByte;
-      }
-      CurSize = CurSize % LoadSize;
-    }
-    ++LoadSizeIndex;
-  }
-  assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
-}
-
-unsigned MemCmpExpansion::getNumBlocks() {
-  if (IsUsedForZeroCmp)
-    return getNumLoads() / NumLoadsPerBlock +
-           (getNumLoads() % NumLoadsPerBlock != 0 ? 1 : 0);
-  return getNumLoads();
-}
-
-void MemCmpExpansion::createLoadCmpBlocks() {
-  for (unsigned i = 0; i < getNumBlocks(); i++) {
-    BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
-                                        EndBlock->getParent(), EndBlock);
-    LoadCmpBlocks.push_back(BB);
-  }
-}
-
-void MemCmpExpansion::createResultBlock() {
-  ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
-                                   EndBlock->getParent(), EndBlock);
-}
-
-// This function creates the IR instructions for loading and comparing 1 byte.
-// It loads 1 byte from each source of the memcmp parameters with the given
-// GEPIndex. It then subtracts the two loaded values and adds this result to the
-// final phi node for selecting the memcmp result.
-void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
-                                               unsigned GEPIndex) {
-  Value *Source1 = CI->getArgOperand(0);
-  Value *Source2 = CI->getArgOperand(1);
-
-  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
-  Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
-  // Cast source to LoadSizeType*.
-  if (Source1->getType() != LoadSizeType)
-    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
-  if (Source2->getType() != LoadSizeType)
-    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
-
-  // Get the base address using the GEPIndex.
-  if (GEPIndex != 0) {
-    Source1 = Builder.CreateGEP(LoadSizeType, Source1,
-                                ConstantInt::get(LoadSizeType, GEPIndex));
-    Source2 = Builder.CreateGEP(LoadSizeType, Source2,
-                                ConstantInt::get(LoadSizeType, GEPIndex));
-  }
-
-  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
-  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
-
-  LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
-  LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
-  Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
-
-  PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
-
-  if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
-    // Early exit branch if difference found to EndBlock. Otherwise, continue to
-    // next LoadCmpBlock,
-    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
-                                    ConstantInt::get(Diff->getType(), 0));
-    BranchInst *CmpBr =
-        BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
-    Builder.Insert(CmpBr);
-  } else {
-    // The last block has an unconditional branch to EndBlock.
-    BranchInst *CmpBr = BranchInst::Create(EndBlock);
-    Builder.Insert(CmpBr);
-  }
-}
-
-/// Generate an equality comparison for one or more pairs of loaded values.
-/// This is used in the case where the memcmp() call is compared equal or not
-/// equal to zero.
-Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
-                                            unsigned &LoadIndex) {
-  assert(LoadIndex < getNumLoads() &&
-         "getCompareLoadPairs() called with no remaining loads");
-  std::vector<Value *> XorList, OrList;
-  Value *Diff;
-
-  const unsigned NumLoads =
-      std::min(getNumLoads() - LoadIndex, NumLoadsPerBlock);
-
-  // For a single-block expansion, start inserting before the memcmp call.
-  if (LoadCmpBlocks.empty())
-    Builder.SetInsertPoint(CI);
-  else
-    Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
-
-  Value *Cmp = nullptr;
-  // If we have multiple loads per block, we need to generate a composite
-  // comparison using xor+or. The type for the combinations is the largest load
-  // type.
-  IntegerType *const MaxLoadType =
-      NumLoads == 1 ? nullptr
-                    : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
-  for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
-    const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
-
-    IntegerType *LoadSizeType =
-        IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
-
-    Value *Source1 = CI->getArgOperand(0);
-    Value *Source2 = CI->getArgOperand(1);
-
-    // Cast source to LoadSizeType*.
-    if (Source1->getType() != LoadSizeType)
-      Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
-    if (Source2->getType() != LoadSizeType)
-      Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
-
-    // Get the base address using a GEP.
-    if (CurLoadEntry.Offset != 0) {
-      Source1 = Builder.CreateGEP(
-          LoadSizeType, Source1,
-          ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
-      Source2 = Builder.CreateGEP(
-          LoadSizeType, Source2,
-          ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
-    }
-
-    // Get a constant or load a value for each source address.
-    Value *LoadSrc1 = nullptr;
-    if (auto *Source1C = dyn_cast<Constant>(Source1))
-      LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
-    if (!LoadSrc1)
-      LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
-
-    Value *LoadSrc2 = nullptr;
-    if (auto *Source2C = dyn_cast<Constant>(Source2))
-      LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
-    if (!LoadSrc2)
-      LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
-
-    if (NumLoads != 1) {
-      if (LoadSizeType != MaxLoadType) {
-        LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
-        LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
-      }
-      // If we have multiple loads per block, we need to generate a composite
-      // comparison using xor+or.
-      Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
-      Diff = Builder.CreateZExt(Diff, MaxLoadType);
-      XorList.push_back(Diff);
-    } else {
-      // If there's only one load per block, we just compare the loaded values.
-      Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
-    }
-  }
-
-  auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
-    std::vector<Value *> OutList;
-    for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
-      Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
-      OutList.push_back(Or);
-    }
-    if (InList.size() % 2 != 0)
-      OutList.push_back(InList.back());
-    return OutList;
-  };
-
-  if (!Cmp) {
-    // Pairwise OR the XOR results.
-    OrList = pairWiseOr(XorList);
-
-    // Pairwise OR the OR results until one result left.
-    while (OrList.size() != 1) {
-      OrList = pairWiseOr(OrList);
-    }
-    Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
-  }
-
-  return Cmp;
-}
-
-void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
-                                                        unsigned &LoadIndex) {
-  Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
-
-  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
-                           ? EndBlock
-                           : LoadCmpBlocks[BlockIndex + 1];
-  // Early exit branch if difference found to ResultBlock. Otherwise,
-  // continue to next LoadCmpBlock or EndBlock.
-  BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
-  Builder.Insert(CmpBr);
-
-  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
-  // since early exit to ResultBlock was not taken (no difference was found in
-  // any of the bytes).
-  if (BlockIndex == LoadCmpBlocks.size() - 1) {
-    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
-    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
-  }
-}
-
-// This function creates the IR intructions for loading and comparing using the
-// given LoadSize. It loads the number of bytes specified by LoadSize from each
-// source of the memcmp parameters. It then does a subtract to see if there was
-// a difference in the loaded values. If a difference is found, it branches
-// with an early exit to the ResultBlock for calculating which source was
-// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
-// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
-// a special case through emitLoadCompareByteBlock. The special handling can
-// simply subtract the loaded values and add it to the result phi node.
-void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
-  // There is one load per block in this case, BlockIndex == LoadIndex.
-  const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
-
-  if (CurLoadEntry.LoadSize == 1) {
-    MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
-                                              CurLoadEntry.getGEPIndex());
-    return;
-  }
-
-  Type *LoadSizeType =
-      IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
-  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
-  assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
-
-  Value *Source1 = CI->getArgOperand(0);
-  Value *Source2 = CI->getArgOperand(1);
-
-  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
-  // Cast source to LoadSizeType*.
-  if (Source1->getType() != LoadSizeType)
-    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
-  if (Source2->getType() != LoadSizeType)
-    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
-
-  // Get the base address using a GEP.
-  if (CurLoadEntry.Offset != 0) {
-    Source1 = Builder.CreateGEP(
-        LoadSizeType, Source1,
-        ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
-    Source2 = Builder.CreateGEP(
-        LoadSizeType, Source2,
-        ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
-  }
-
-  // Load LoadSizeType from the base address.
-  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
-  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
-
-  if (DL.isLittleEndian()) {
-    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
-                                                Intrinsic::bswap, LoadSizeType);
-    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
-    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
-  }
-
-  if (LoadSizeType != MaxLoadType) {
-    LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
-    LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
-  }
-
-  // Add the loaded values to the phi nodes for calculating memcmp result only
-  // if result is not used in a zero equality.
-  if (!IsUsedForZeroCmp) {
-    ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
-    ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
-  }
-
-  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
-  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
-                           ? EndBlock
-                           : LoadCmpBlocks[BlockIndex + 1];
-  // Early exit branch if difference found to ResultBlock. Otherwise, continue
-  // to next LoadCmpBlock or EndBlock.
-  BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
-  Builder.Insert(CmpBr);
-
-  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
-  // since early exit to ResultBlock was not taken (no difference was found in
-  // any of the bytes).
-  if (BlockIndex == LoadCmpBlocks.size() - 1) {
-    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
-    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
-  }
-}
-
-// This function populates the ResultBlock with a sequence to calculate the
-// memcmp result. It compares the two loaded source values and returns -1 if
-// src1 < src2 and 1 if src1 > src2.
-void MemCmpExpansion::emitMemCmpResultBlock() {
-  // Special case: if memcmp result is used in a zero equality, result does not
-  // need to be calculated and can simply return 1.
-  if (IsUsedForZeroCmp) {
-    BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
-    Builder.SetInsertPoint(ResBlock.BB, InsertPt);
-    Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
-    PhiRes->addIncoming(Res, ResBlock.BB);
-    BranchInst *NewBr = BranchInst::Create(EndBlock);
-    Builder.Insert(NewBr);
-    return;
-  }
-  BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
-  Builder.SetInsertPoint(ResBlock.BB, InsertPt);
-
-  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
-                                  ResBlock.PhiSrc2);
-
-  Value *Res =
-      Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
-                           ConstantInt::get(Builder.getInt32Ty(), 1));
-
-  BranchInst *NewBr = BranchInst::Create(EndBlock);
-  Builder.Insert(NewBr);
-  PhiRes->addIncoming(Res, ResBlock.BB);
-}
-
-void MemCmpExpansion::setupResultBlockPHINodes() {
-  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
-  Builder.SetInsertPoint(ResBlock.BB);
-  // Note: this assumes one load per block.
-  ResBlock.PhiSrc1 =
-      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
-  ResBlock.PhiSrc2 =
-      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
-}
-
-void MemCmpExpansion::setupEndBlockPHINodes() {
-  Builder.SetInsertPoint(&EndBlock->front());
-  PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
-}
-
-Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
-  unsigned LoadIndex = 0;
-  // This loop populates each of the LoadCmpBlocks with the IR sequence to
-  // handle multiple loads per block.
-  for (unsigned I = 0; I < getNumBlocks(); ++I) {
-    emitLoadCompareBlockMultipleLoads(I, LoadIndex);
-  }
-
-  emitMemCmpResultBlock();
-  return PhiRes;
-}
-
-/// A memcmp expansion that compares equality with 0 and only has one block of
-/// load and compare can bypass the compare, branch, and phi IR that is required
-/// in the general case.
-Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
-  unsigned LoadIndex = 0;
-  Value *Cmp = getCompareLoadPairs(0, LoadIndex);
-  assert(LoadIndex == getNumLoads() && "some entries were not consumed");
-  return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
-}
-
-/// A memcmp expansion that only has one block of load and compare can bypass
-/// the compare, branch, and phi IR that is required in the general case.
-Value *MemCmpExpansion::getMemCmpOneBlock() {
-  assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
-
-  Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
-  Value *Source1 = CI->getArgOperand(0);
-  Value *Source2 = CI->getArgOperand(1);
-
-  // Cast source to LoadSizeType*.
-  if (Source1->getType() != LoadSizeType)
-    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
-  if (Source2->getType() != LoadSizeType)
-    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
-
-  // Load LoadSizeType from the base address.
-  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
-  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
-
-  if (DL.isLittleEndian() && Size != 1) {
-    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
-                                                Intrinsic::bswap, LoadSizeType);
-    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
-    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
-  }
-
-  if (Size < 4) {
-    // The i8 and i16 cases don't need compares. We zext the loaded values and
-    // subtract them to get the suitable negative, zero, or positive i32 result.
-    LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
-    LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
-    return Builder.CreateSub(LoadSrc1, LoadSrc2);
-  }
-
-  // The result of memcmp is negative, zero, or positive, so produce that by
-  // subtracting 2 extended compare bits: sub (ugt, ult).
-  // If a target prefers to use selects to get -1/0/1, they should be able
-  // to transform this later. The inverse transform (going from selects to math)
-  // may not be possible in the DAG because the selects got converted into
-  // branches before we got there.
-  Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
-  Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
-  Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
-  Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
-  return Builder.CreateSub(ZextUGT, ZextULT);
-}
-
-// This function expands the memcmp call into an inline expansion and returns
-// the memcmp result.
-Value *MemCmpExpansion::getMemCmpExpansion() {
-  // A memcmp with zero-comparison with only one block of load and compare does
-  // not need to set up any extra blocks. This case could be handled in the DAG,
-  // but since we have all of the machinery to flexibly expand any memcpy here,
-  // we choose to handle this case too to avoid fragmented lowering.
-  if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || getNumBlocks() != 1) {
-    BasicBlock *StartBlock = CI->getParent();
-    EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
-    setupEndBlockPHINodes();
-    createResultBlock();
-
-    // If return value of memcmp is not used in a zero equality, we need to
-    // calculate which source was larger. The calculation requires the
-    // two loaded source values of each load compare block.
-    // These will be saved in the phi nodes created by setupResultBlockPHINodes.
-    if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
-
-    // Create the number of required load compare basic blocks.
-    createLoadCmpBlocks();
-
-    // Update the terminator added by splitBasicBlock to branch to the first
-    // LoadCmpBlock.
-    StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
-  }
-
-  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
-
-  if (IsUsedForZeroCmp)
-    return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
-                               : getMemCmpExpansionZeroCase();
-
-  // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
-  if (getNumBlocks() == 1 && NumLoadsPerBlock == 1) return getMemCmpOneBlock();
-
-  for (unsigned I = 0; I < getNumBlocks(); ++I) {
-    emitLoadCompareBlock(I);
-  }
-
-  emitMemCmpResultBlock();
-  return PhiRes;
-}
-
-// This function checks to see if an expansion of memcmp can be generated.
-// It checks for constant compare size that is less than the max inline size.
-// If an expansion cannot occur, returns false to leave as a library call.
-// Otherwise, the library call is replaced with a new IR instruction sequence.
-/// We want to transform:
-/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
-/// To:
-/// loadbb:
-///  %0 = bitcast i32* %buffer2 to i8*
-///  %1 = bitcast i32* %buffer1 to i8*
-///  %2 = bitcast i8* %1 to i64*
-///  %3 = bitcast i8* %0 to i64*
-///  %4 = load i64, i64* %2
-///  %5 = load i64, i64* %3
-///  %6 = call i64 @llvm.bswap.i64(i64 %4)
-///  %7 = call i64 @llvm.bswap.i64(i64 %5)
-///  %8 = sub i64 %6, %7
-///  %9 = icmp ne i64 %8, 0
-///  br i1 %9, label %res_block, label %loadbb1
-/// res_block:                                        ; preds = %loadbb2,
-/// %loadbb1, %loadbb
-///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
-///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
-///  %10 = icmp ult i64 %phi.src1, %phi.src2
-///  %11 = select i1 %10, i32 -1, i32 1
-///  br label %endblock
-/// loadbb1:                                          ; preds = %loadbb
-///  %12 = bitcast i32* %buffer2 to i8*
-///  %13 = bitcast i32* %buffer1 to i8*
-///  %14 = bitcast i8* %13 to i32*
-///  %15 = bitcast i8* %12 to i32*
-///  %16 = getelementptr i32, i32* %14, i32 2
-///  %17 = getelementptr i32, i32* %15, i32 2
-///  %18 = load i32, i32* %16
-///  %19 = load i32, i32* %17
-///  %20 = call i32 @llvm.bswap.i32(i32 %18)
-///  %21 = call i32 @llvm.bswap.i32(i32 %19)
-///  %22 = zext i32 %20 to i64
-///  %23 = zext i32 %21 to i64
-///  %24 = sub i64 %22, %23
-///  %25 = icmp ne i64 %24, 0
-///  br i1 %25, label %res_block, label %loadbb2
-/// loadbb2:                                          ; preds = %loadbb1
-///  %26 = bitcast i32* %buffer2 to i8*
-///  %27 = bitcast i32* %buffer1 to i8*
-///  %28 = bitcast i8* %27 to i16*
-///  %29 = bitcast i8* %26 to i16*
-///  %30 = getelementptr i16, i16* %28, i16 6
-///  %31 = getelementptr i16, i16* %29, i16 6
-///  %32 = load i16, i16* %30
-///  %33 = load i16, i16* %31
-///  %34 = call i16 @llvm.bswap.i16(i16 %32)
-///  %35 = call i16 @llvm.bswap.i16(i16 %33)
-///  %36 = zext i16 %34 to i64
-///  %37 = zext i16 %35 to i64
-///  %38 = sub i64 %36, %37
-///  %39 = icmp ne i64 %38, 0
-///  br i1 %39, label %res_block, label %loadbb3
-/// loadbb3:                                          ; preds = %loadbb2
-///  %40 = bitcast i32* %buffer2 to i8*
-///  %41 = bitcast i32* %buffer1 to i8*
-///  %42 = getelementptr i8, i8* %41, i8 14
-///  %43 = getelementptr i8, i8* %40, i8 14
-///  %44 = load i8, i8* %42
-///  %45 = load i8, i8* %43
-///  %46 = zext i8 %44 to i32
-///  %47 = zext i8 %45 to i32
-///  %48 = sub i32 %46, %47
-///  br label %endblock
-/// endblock:                                         ; preds = %res_block,
-/// %loadbb3
-///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
-///  ret i32 %phi.res
-static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
-                         const TargetLowering *TLI, const DataLayout *DL) {
-  NumMemCmpCalls++;
-
-  // Early exit from expansion if -Oz.
-  if (CI->getFunction()->optForMinSize())
-    return false;
-
-  // Early exit from expansion if size is not a constant.
-  ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
-  if (!SizeCast) {
-    NumMemCmpNotConstant++;
-    return false;
-  }
-  const uint64_t SizeVal = SizeCast->getZExtValue();
-
-  if (SizeVal == 0) {
-    return false;
-  }
-
-  // TTI call to check if target would like to expand memcmp. Also, get the
-  // available load sizes.
-  const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
-  const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
-  if (!Options) return false;
-
-  const unsigned MaxNumLoads =
-      TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
-
-  MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
-                            IsUsedForZeroCmp, MemCmpNumLoadsPerBlock, *DL);
-
-  // Don't expand if this will require more loads than desired by the target.
-  if (Expansion.getNumLoads() == 0) {
-    NumMemCmpGreaterThanMax++;
-    return false;
-  }
-
-  NumMemCmpInlined++;
-
-  Value *Res = Expansion.getMemCmpExpansion();
-
-  // Replace call with result of expansion and erase call.
-  CI->replaceAllUsesWith(Res);
-  CI->eraseFromParent();
-
-  return true;
-}
-
 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
   BasicBlock *BB = CI->getParent();
 
@@ -2542,12 +1838,6 @@
     return true;
   }
 
-  LibFunc Func;
-  if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
-      Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
-    ModifiedDT = true;
-    return true;
-  }
   return false;
 }
 
diff --git a/llvm/lib/CodeGen/ExpandMemCmp.cpp b/llvm/lib/CodeGen/ExpandMemCmp.cpp
new file mode 100644
index 0000000..c5910c1
--- /dev/null
+++ b/llvm/lib/CodeGen/ExpandMemCmp.cpp
@@ -0,0 +1,828 @@
+//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass tries to partially inline the fast path of well-known library
+// functions, such as using square-root instructions for cases where sqrt()
+// does not need to set errno.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "expandmemcmp"
+
+STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
+STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
+STATISTIC(NumMemCmpGreaterThanMax,
+          "Number of memcmp calls with size greater than max size");
+STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
+
+static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
+    "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
+    cl::desc("The number of loads per basic block for inline expansion of "
+             "memcmp that is only being compared against zero."));
+
+namespace {
+
+
+// This class provides helper functions to expand a memcmp library call into an
+// inline expansion.
+class MemCmpExpansion {
+  struct ResultBlock {
+    BasicBlock *BB = nullptr;
+    PHINode *PhiSrc1 = nullptr;
+    PHINode *PhiSrc2 = nullptr;
+
+    ResultBlock() = default;
+  };
+
+  CallInst *const CI;
+  ResultBlock ResBlock;
+  const uint64_t Size;
+  unsigned MaxLoadSize;
+  uint64_t NumLoadsNonOneByte;
+  const uint64_t NumLoadsPerBlock;
+  std::vector<BasicBlock *> LoadCmpBlocks;
+  BasicBlock *EndBlock;
+  PHINode *PhiRes;
+  const bool IsUsedForZeroCmp;
+  const DataLayout &DL;
+  IRBuilder<> Builder;
+  // Represents the decomposition in blocks of the expansion. For example,
+  // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
+  // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
+  // TODO(courbet): Involve the target more in this computation. On X86, 7
+  // bytes can be done more efficiently with two overlaping 4-byte loads than
+  // covering the interval with [{4, 0},{2, 4},{1, 6}}.
+  struct LoadEntry {
+    LoadEntry(unsigned LoadSize, uint64_t Offset)
+        : LoadSize(LoadSize), Offset(Offset) {
+      assert(Offset % LoadSize == 0 && "invalid load entry");
+    }
+
+    uint64_t getGEPIndex() const { return Offset / LoadSize; }
+
+    // The size of the load for this block, in bytes.
+    const unsigned LoadSize;
+    // The offset of this load WRT the base pointer, in bytes.
+    const uint64_t Offset;
+  };
+  SmallVector<LoadEntry, 8> LoadSequence;
+
+  void createLoadCmpBlocks();
+  void createResultBlock();
+  void setupResultBlockPHINodes();
+  void setupEndBlockPHINodes();
+  Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
+  void emitLoadCompareBlock(unsigned BlockIndex);
+  void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
+                                         unsigned &LoadIndex);
+  void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
+  void emitMemCmpResultBlock();
+  Value *getMemCmpExpansionZeroCase();
+  Value *getMemCmpEqZeroOneBlock();
+  Value *getMemCmpOneBlock();
+
+ public:
+  MemCmpExpansion(CallInst *CI, uint64_t Size,
+                  const TargetTransformInfo::MemCmpExpansionOptions &Options,
+                  unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
+                  unsigned NumLoadsPerBlock, const DataLayout &DL);
+
+  unsigned getNumBlocks();
+  uint64_t getNumLoads() const { return LoadSequence.size(); }
+
+  Value *getMemCmpExpansion();
+};
+
+// Initialize the basic block structure required for expansion of memcmp call
+// with given maximum load size and memcmp size parameter.
+// This structure includes:
+// 1. A list of load compare blocks - LoadCmpBlocks.
+// 2. An EndBlock, split from original instruction point, which is the block to
+// return from.
+// 3. ResultBlock, block to branch to for early exit when a
+// LoadCmpBlock finds a difference.
+MemCmpExpansion::MemCmpExpansion(
+    CallInst *const CI, uint64_t Size,
+    const TargetTransformInfo::MemCmpExpansionOptions &Options,
+    const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
+    const unsigned NumLoadsPerBlock, const DataLayout &TheDataLayout)
+    : CI(CI),
+      Size(Size),
+      MaxLoadSize(0),
+      NumLoadsNonOneByte(0),
+      NumLoadsPerBlock(NumLoadsPerBlock),
+      IsUsedForZeroCmp(IsUsedForZeroCmp),
+      DL(TheDataLayout),
+      Builder(CI) {
+  assert(Size > 0 && "zero blocks");
+  // Scale the max size down if the target can load more bytes than we need.
+  size_t LoadSizeIndex = 0;
+  while (LoadSizeIndex < Options.LoadSizes.size() &&
+         Options.LoadSizes[LoadSizeIndex] > Size) {
+    ++LoadSizeIndex;
+  }
+  this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
+  // Compute the decomposition.
+  uint64_t CurSize = Size;
+  uint64_t Offset = 0;
+  while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
+    const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
+    assert(LoadSize > 0 && "zero load size");
+    const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
+    if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
+      // Do not expand if the total number of loads is larger than what the
+      // target allows. Note that it's important that we exit before completing
+      // the expansion to avoid using a ton of memory to store the expansion for
+      // large sizes.
+      LoadSequence.clear();
+      return;
+    }
+    if (NumLoadsForThisSize > 0) {
+      for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
+        LoadSequence.push_back({LoadSize, Offset});
+        Offset += LoadSize;
+      }
+      if (LoadSize > 1) {
+        ++NumLoadsNonOneByte;
+      }
+      CurSize = CurSize % LoadSize;
+    }
+    ++LoadSizeIndex;
+  }
+  assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
+}
+
+unsigned MemCmpExpansion::getNumBlocks() {
+  if (IsUsedForZeroCmp)
+    return getNumLoads() / NumLoadsPerBlock +
+           (getNumLoads() % NumLoadsPerBlock != 0 ? 1 : 0);
+  return getNumLoads();
+}
+
+void MemCmpExpansion::createLoadCmpBlocks() {
+  for (unsigned i = 0; i < getNumBlocks(); i++) {
+    BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
+                                        EndBlock->getParent(), EndBlock);
+    LoadCmpBlocks.push_back(BB);
+  }
+}
+
+void MemCmpExpansion::createResultBlock() {
+  ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
+                                   EndBlock->getParent(), EndBlock);
+}
+
+// This function creates the IR instructions for loading and comparing 1 byte.
+// It loads 1 byte from each source of the memcmp parameters with the given
+// GEPIndex. It then subtracts the two loaded values and adds this result to the
+// final phi node for selecting the memcmp result.
+void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
+                                               unsigned GEPIndex) {
+  Value *Source1 = CI->getArgOperand(0);
+  Value *Source2 = CI->getArgOperand(1);
+
+  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+  Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
+  // Cast source to LoadSizeType*.
+  if (Source1->getType() != LoadSizeType)
+    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+  if (Source2->getType() != LoadSizeType)
+    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+  // Get the base address using the GEPIndex.
+  if (GEPIndex != 0) {
+    Source1 = Builder.CreateGEP(LoadSizeType, Source1,
+                                ConstantInt::get(LoadSizeType, GEPIndex));
+    Source2 = Builder.CreateGEP(LoadSizeType, Source2,
+                                ConstantInt::get(LoadSizeType, GEPIndex));
+  }
+
+  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+  LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
+  LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
+  Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
+
+  PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
+
+  if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
+    // Early exit branch if difference found to EndBlock. Otherwise, continue to
+    // next LoadCmpBlock,
+    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
+                                    ConstantInt::get(Diff->getType(), 0));
+    BranchInst *CmpBr =
+        BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
+    Builder.Insert(CmpBr);
+  } else {
+    // The last block has an unconditional branch to EndBlock.
+    BranchInst *CmpBr = BranchInst::Create(EndBlock);
+    Builder.Insert(CmpBr);
+  }
+}
+
+/// Generate an equality comparison for one or more pairs of loaded values.
+/// This is used in the case where the memcmp() call is compared equal or not
+/// equal to zero.
+Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
+                                            unsigned &LoadIndex) {
+  assert(LoadIndex < getNumLoads() &&
+         "getCompareLoadPairs() called with no remaining loads");
+  std::vector<Value *> XorList, OrList;
+  Value *Diff;
+
+  const unsigned NumLoads =
+      std::min(getNumLoads() - LoadIndex, NumLoadsPerBlock);
+
+  // For a single-block expansion, start inserting before the memcmp call.
+  if (LoadCmpBlocks.empty())
+    Builder.SetInsertPoint(CI);
+  else
+    Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+
+  Value *Cmp = nullptr;
+  // If we have multiple loads per block, we need to generate a composite
+  // comparison using xor+or. The type for the combinations is the largest load
+  // type.
+  IntegerType *const MaxLoadType =
+      NumLoads == 1 ? nullptr
+                    : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+  for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
+    const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
+
+    IntegerType *LoadSizeType =
+        IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
+
+    Value *Source1 = CI->getArgOperand(0);
+    Value *Source2 = CI->getArgOperand(1);
+
+    // Cast source to LoadSizeType*.
+    if (Source1->getType() != LoadSizeType)
+      Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+    if (Source2->getType() != LoadSizeType)
+      Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+    // Get the base address using a GEP.
+    if (CurLoadEntry.Offset != 0) {
+      Source1 = Builder.CreateGEP(
+          LoadSizeType, Source1,
+          ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+      Source2 = Builder.CreateGEP(
+          LoadSizeType, Source2,
+          ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+    }
+
+    // Get a constant or load a value for each source address.
+    Value *LoadSrc1 = nullptr;
+    if (auto *Source1C = dyn_cast<Constant>(Source1))
+      LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
+    if (!LoadSrc1)
+      LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+
+    Value *LoadSrc2 = nullptr;
+    if (auto *Source2C = dyn_cast<Constant>(Source2))
+      LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
+    if (!LoadSrc2)
+      LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+    if (NumLoads != 1) {
+      if (LoadSizeType != MaxLoadType) {
+        LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
+        LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
+      }
+      // If we have multiple loads per block, we need to generate a composite
+      // comparison using xor+or.
+      Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
+      Diff = Builder.CreateZExt(Diff, MaxLoadType);
+      XorList.push_back(Diff);
+    } else {
+      // If there's only one load per block, we just compare the loaded values.
+      Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
+    }
+  }
+
+  auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
+    std::vector<Value *> OutList;
+    for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
+      Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
+      OutList.push_back(Or);
+    }
+    if (InList.size() % 2 != 0)
+      OutList.push_back(InList.back());
+    return OutList;
+  };
+
+  if (!Cmp) {
+    // Pairwise OR the XOR results.
+    OrList = pairWiseOr(XorList);
+
+    // Pairwise OR the OR results until one result left.
+    while (OrList.size() != 1) {
+      OrList = pairWiseOr(OrList);
+    }
+    Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
+  }
+
+  return Cmp;
+}
+
+void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
+                                                        unsigned &LoadIndex) {
+  Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
+
+  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
+                           ? EndBlock
+                           : LoadCmpBlocks[BlockIndex + 1];
+  // Early exit branch if difference found to ResultBlock. Otherwise,
+  // continue to next LoadCmpBlock or EndBlock.
+  BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
+  Builder.Insert(CmpBr);
+
+  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
+  // since early exit to ResultBlock was not taken (no difference was found in
+  // any of the bytes).
+  if (BlockIndex == LoadCmpBlocks.size() - 1) {
+    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
+    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
+  }
+}
+
+// This function creates the IR intructions for loading and comparing using the
+// given LoadSize. It loads the number of bytes specified by LoadSize from each
+// source of the memcmp parameters. It then does a subtract to see if there was
+// a difference in the loaded values. If a difference is found, it branches
+// with an early exit to the ResultBlock for calculating which source was
+// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
+// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
+// a special case through emitLoadCompareByteBlock. The special handling can
+// simply subtract the loaded values and add it to the result phi node.
+void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
+  // There is one load per block in this case, BlockIndex == LoadIndex.
+  const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
+
+  if (CurLoadEntry.LoadSize == 1) {
+    MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
+                                              CurLoadEntry.getGEPIndex());
+    return;
+  }
+
+  Type *LoadSizeType =
+      IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
+  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+  assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
+
+  Value *Source1 = CI->getArgOperand(0);
+  Value *Source2 = CI->getArgOperand(1);
+
+  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
+  // Cast source to LoadSizeType*.
+  if (Source1->getType() != LoadSizeType)
+    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+  if (Source2->getType() != LoadSizeType)
+    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+  // Get the base address using a GEP.
+  if (CurLoadEntry.Offset != 0) {
+    Source1 = Builder.CreateGEP(
+        LoadSizeType, Source1,
+        ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+    Source2 = Builder.CreateGEP(
+        LoadSizeType, Source2,
+        ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
+  }
+
+  // Load LoadSizeType from the base address.
+  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+  if (DL.isLittleEndian()) {
+    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
+                                                Intrinsic::bswap, LoadSizeType);
+    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
+    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
+  }
+
+  if (LoadSizeType != MaxLoadType) {
+    LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
+    LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
+  }
+
+  // Add the loaded values to the phi nodes for calculating memcmp result only
+  // if result is not used in a zero equality.
+  if (!IsUsedForZeroCmp) {
+    ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
+    ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
+  }
+
+  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
+  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
+                           ? EndBlock
+                           : LoadCmpBlocks[BlockIndex + 1];
+  // Early exit branch if difference found to ResultBlock. Otherwise, continue
+  // to next LoadCmpBlock or EndBlock.
+  BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
+  Builder.Insert(CmpBr);
+
+  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
+  // since early exit to ResultBlock was not taken (no difference was found in
+  // any of the bytes).
+  if (BlockIndex == LoadCmpBlocks.size() - 1) {
+    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
+    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
+  }
+}
+
+// This function populates the ResultBlock with a sequence to calculate the
+// memcmp result. It compares the two loaded source values and returns -1 if
+// src1 < src2 and 1 if src1 > src2.
+void MemCmpExpansion::emitMemCmpResultBlock() {
+  // Special case: if memcmp result is used in a zero equality, result does not
+  // need to be calculated and can simply return 1.
+  if (IsUsedForZeroCmp) {
+    BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
+    Builder.SetInsertPoint(ResBlock.BB, InsertPt);
+    Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
+    PhiRes->addIncoming(Res, ResBlock.BB);
+    BranchInst *NewBr = BranchInst::Create(EndBlock);
+    Builder.Insert(NewBr);
+    return;
+  }
+  BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
+  Builder.SetInsertPoint(ResBlock.BB, InsertPt);
+
+  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
+                                  ResBlock.PhiSrc2);
+
+  Value *Res =
+      Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
+                           ConstantInt::get(Builder.getInt32Ty(), 1));
+
+  BranchInst *NewBr = BranchInst::Create(EndBlock);
+  Builder.Insert(NewBr);
+  PhiRes->addIncoming(Res, ResBlock.BB);
+}
+
+void MemCmpExpansion::setupResultBlockPHINodes() {
+  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
+  Builder.SetInsertPoint(ResBlock.BB);
+  // Note: this assumes one load per block.
+  ResBlock.PhiSrc1 =
+      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
+  ResBlock.PhiSrc2 =
+      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
+}
+
+void MemCmpExpansion::setupEndBlockPHINodes() {
+  Builder.SetInsertPoint(&EndBlock->front());
+  PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
+}
+
+Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
+  unsigned LoadIndex = 0;
+  // This loop populates each of the LoadCmpBlocks with the IR sequence to
+  // handle multiple loads per block.
+  for (unsigned I = 0; I < getNumBlocks(); ++I) {
+    emitLoadCompareBlockMultipleLoads(I, LoadIndex);
+  }
+
+  emitMemCmpResultBlock();
+  return PhiRes;
+}
+
+/// A memcmp expansion that compares equality with 0 and only has one block of
+/// load and compare can bypass the compare, branch, and phi IR that is required
+/// in the general case.
+Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
+  unsigned LoadIndex = 0;
+  Value *Cmp = getCompareLoadPairs(0, LoadIndex);
+  assert(LoadIndex == getNumLoads() && "some entries were not consumed");
+  return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
+}
+
+/// A memcmp expansion that only has one block of load and compare can bypass
+/// the compare, branch, and phi IR that is required in the general case.
+Value *MemCmpExpansion::getMemCmpOneBlock() {
+  assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
+
+  Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
+  Value *Source1 = CI->getArgOperand(0);
+  Value *Source2 = CI->getArgOperand(1);
+
+  // Cast source to LoadSizeType*.
+  if (Source1->getType() != LoadSizeType)
+    Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
+  if (Source2->getType() != LoadSizeType)
+    Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
+
+  // Load LoadSizeType from the base address.
+  Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
+  Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
+
+  if (DL.isLittleEndian() && Size != 1) {
+    Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
+                                                Intrinsic::bswap, LoadSizeType);
+    LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
+    LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
+  }
+
+  if (Size < 4) {
+    // The i8 and i16 cases don't need compares. We zext the loaded values and
+    // subtract them to get the suitable negative, zero, or positive i32 result.
+    LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
+    LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
+    return Builder.CreateSub(LoadSrc1, LoadSrc2);
+  }
+
+  // The result of memcmp is negative, zero, or positive, so produce that by
+  // subtracting 2 extended compare bits: sub (ugt, ult).
+  // If a target prefers to use selects to get -1/0/1, they should be able
+  // to transform this later. The inverse transform (going from selects to math)
+  // may not be possible in the DAG because the selects got converted into
+  // branches before we got there.
+  Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
+  Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
+  Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
+  Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
+  return Builder.CreateSub(ZextUGT, ZextULT);
+}
+
+// This function expands the memcmp call into an inline expansion and returns
+// the memcmp result.
+Value *MemCmpExpansion::getMemCmpExpansion() {
+  // A memcmp with zero-comparison with only one block of load and compare does
+  // not need to set up any extra blocks. This case could be handled in the DAG,
+  // but since we have all of the machinery to flexibly expand any memcpy here,
+  // we choose to handle this case too to avoid fragmented lowering.
+  if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || getNumBlocks() != 1) {
+    BasicBlock *StartBlock = CI->getParent();
+    EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
+    setupEndBlockPHINodes();
+    createResultBlock();
+
+    // If return value of memcmp is not used in a zero equality, we need to
+    // calculate which source was larger. The calculation requires the
+    // two loaded source values of each load compare block.
+    // These will be saved in the phi nodes created by setupResultBlockPHINodes.
+    if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
+
+    // Create the number of required load compare basic blocks.
+    createLoadCmpBlocks();
+
+    // Update the terminator added by splitBasicBlock to branch to the first
+    // LoadCmpBlock.
+    StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
+  }
+
+  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
+
+  if (IsUsedForZeroCmp)
+    return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
+                               : getMemCmpExpansionZeroCase();
+
+  // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
+  if (getNumBlocks() == 1 && NumLoadsPerBlock == 1) return getMemCmpOneBlock();
+
+  for (unsigned I = 0; I < getNumBlocks(); ++I) {
+    emitLoadCompareBlock(I);
+  }
+
+  emitMemCmpResultBlock();
+  return PhiRes;
+}
+
+// This function checks to see if an expansion of memcmp can be generated.
+// It checks for constant compare size that is less than the max inline size.
+// If an expansion cannot occur, returns false to leave as a library call.
+// Otherwise, the library call is replaced with a new IR instruction sequence.
+/// We want to transform:
+/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
+/// To:
+/// loadbb:
+///  %0 = bitcast i32* %buffer2 to i8*
+///  %1 = bitcast i32* %buffer1 to i8*
+///  %2 = bitcast i8* %1 to i64*
+///  %3 = bitcast i8* %0 to i64*
+///  %4 = load i64, i64* %2
+///  %5 = load i64, i64* %3
+///  %6 = call i64 @llvm.bswap.i64(i64 %4)
+///  %7 = call i64 @llvm.bswap.i64(i64 %5)
+///  %8 = sub i64 %6, %7
+///  %9 = icmp ne i64 %8, 0
+///  br i1 %9, label %res_block, label %loadbb1
+/// res_block:                                        ; preds = %loadbb2,
+/// %loadbb1, %loadbb
+///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
+///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
+///  %10 = icmp ult i64 %phi.src1, %phi.src2
+///  %11 = select i1 %10, i32 -1, i32 1
+///  br label %endblock
+/// loadbb1:                                          ; preds = %loadbb
+///  %12 = bitcast i32* %buffer2 to i8*
+///  %13 = bitcast i32* %buffer1 to i8*
+///  %14 = bitcast i8* %13 to i32*
+///  %15 = bitcast i8* %12 to i32*
+///  %16 = getelementptr i32, i32* %14, i32 2
+///  %17 = getelementptr i32, i32* %15, i32 2
+///  %18 = load i32, i32* %16
+///  %19 = load i32, i32* %17
+///  %20 = call i32 @llvm.bswap.i32(i32 %18)
+///  %21 = call i32 @llvm.bswap.i32(i32 %19)
+///  %22 = zext i32 %20 to i64
+///  %23 = zext i32 %21 to i64
+///  %24 = sub i64 %22, %23
+///  %25 = icmp ne i64 %24, 0
+///  br i1 %25, label %res_block, label %loadbb2
+/// loadbb2:                                          ; preds = %loadbb1
+///  %26 = bitcast i32* %buffer2 to i8*
+///  %27 = bitcast i32* %buffer1 to i8*
+///  %28 = bitcast i8* %27 to i16*
+///  %29 = bitcast i8* %26 to i16*
+///  %30 = getelementptr i16, i16* %28, i16 6
+///  %31 = getelementptr i16, i16* %29, i16 6
+///  %32 = load i16, i16* %30
+///  %33 = load i16, i16* %31
+///  %34 = call i16 @llvm.bswap.i16(i16 %32)
+///  %35 = call i16 @llvm.bswap.i16(i16 %33)
+///  %36 = zext i16 %34 to i64
+///  %37 = zext i16 %35 to i64
+///  %38 = sub i64 %36, %37
+///  %39 = icmp ne i64 %38, 0
+///  br i1 %39, label %res_block, label %loadbb3
+/// loadbb3:                                          ; preds = %loadbb2
+///  %40 = bitcast i32* %buffer2 to i8*
+///  %41 = bitcast i32* %buffer1 to i8*
+///  %42 = getelementptr i8, i8* %41, i8 14
+///  %43 = getelementptr i8, i8* %40, i8 14
+///  %44 = load i8, i8* %42
+///  %45 = load i8, i8* %43
+///  %46 = zext i8 %44 to i32
+///  %47 = zext i8 %45 to i32
+///  %48 = sub i32 %46, %47
+///  br label %endblock
+/// endblock:                                         ; preds = %res_block,
+/// %loadbb3
+///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
+///  ret i32 %phi.res
+static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
+                         const TargetLowering *TLI, const DataLayout *DL) {
+  NumMemCmpCalls++;
+
+  // Early exit from expansion if -Oz.
+  if (CI->getFunction()->optForMinSize())
+    return false;
+
+  // Early exit from expansion if size is not a constant.
+  ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+  if (!SizeCast) {
+    NumMemCmpNotConstant++;
+    return false;
+  }
+  const uint64_t SizeVal = SizeCast->getZExtValue();
+
+  if (SizeVal == 0) {
+    return false;
+  }
+
+  // TTI call to check if target would like to expand memcmp. Also, get the
+  // available load sizes.
+  const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
+  const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
+  if (!Options) return false;
+
+  const unsigned MaxNumLoads =
+      TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
+
+  MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
+                            IsUsedForZeroCmp, MemCmpNumLoadsPerBlock, *DL);
+
+  // Don't expand if this will require more loads than desired by the target.
+  if (Expansion.getNumLoads() == 0) {
+    NumMemCmpGreaterThanMax++;
+    return false;
+  }
+
+  NumMemCmpInlined++;
+
+  Value *Res = Expansion.getMemCmpExpansion();
+
+  // Replace call with result of expansion and erase call.
+  CI->replaceAllUsesWith(Res);
+  CI->eraseFromParent();
+
+  return true;
+}
+
+
+
+class ExpandMemCmpPass : public FunctionPass {
+public:
+  static char ID;
+
+  ExpandMemCmpPass() : FunctionPass(ID) {
+    initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
+  }
+
+  bool runOnFunction(Function &F) override {
+    if (skipFunction(F)) return false;
+
+    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+    if (!TPC) {
+      return false;
+    }
+    const TargetLowering* TL =
+        TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
+
+    const TargetLibraryInfo *TLI =
+        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+    const TargetTransformInfo *TTI =
+        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+    auto PA = runImpl(F, TLI, TTI, TL);
+    return !PA.areAllPreserved();
+  }
+
+private:
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<TargetLibraryInfoWrapperPass>();
+    AU.addRequired<TargetTransformInfoWrapperPass>();
+    FunctionPass::getAnalysisUsage(AU);
+  }
+
+  PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
+                            const TargetTransformInfo *TTI,
+                            const TargetLowering* TL);
+  // Returns true if a change was made.
+  bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
+                  const TargetTransformInfo *TTI, const TargetLowering* TL,
+                  const DataLayout& DL);
+};
+
+bool ExpandMemCmpPass::runOnBlock(
+    BasicBlock &BB, const TargetLibraryInfo *TLI,
+    const TargetTransformInfo *TTI, const TargetLowering* TL,
+    const DataLayout& DL) {
+  for (Instruction& I : BB) {
+    CallInst *CI = dyn_cast<CallInst>(&I);
+    if (!CI) {
+      continue;
+    }
+    LibFunc Func;
+    if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
+        Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) {
+      return true;
+    }
+  }
+  return false;
+}
+
+
+PreservedAnalyses ExpandMemCmpPass::runImpl(
+    Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
+    const TargetLowering* TL) {
+  const DataLayout& DL = F.getParent()->getDataLayout();
+  bool MadeChanges = false;
+  for (auto BBIt = F.begin(); BBIt != F.end();) {
+    if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
+      MadeChanges = true;
+      // If changes were made, restart the function from the beginning, since
+      // the structure of the function was changed.
+      BBIt = F.begin();
+    } else {
+      ++BBIt;
+    }
+  }
+  return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
+}
+
+} // namespace
+
+char ExpandMemCmpPass::ID = 0;
+INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
+                      "Expand memcmp() to load/stores", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
+                    "Expand memcmp() to load/stores", false, false)
+
+FunctionPass *llvm::createExpandMemCmpPass() {
+  return new ExpandMemCmpPass();
+}
diff --git a/llvm/lib/CodeGen/TargetPassConfig.cpp b/llvm/lib/CodeGen/TargetPassConfig.cpp
index c5101b1..59e88ba 100644
--- a/llvm/lib/CodeGen/TargetPassConfig.cpp
+++ b/llvm/lib/CodeGen/TargetPassConfig.cpp
@@ -600,8 +600,14 @@
       addPass(createPrintFunctionPass(dbgs(), "\n\n*** Code after LSR ***\n"));
   }
 
-  if (getOptLevel() != CodeGenOpt::None && EnableMergeICmps) {
-    addPass(createMergeICmpsPass());
+  if (getOptLevel() != CodeGenOpt::None) {
+    // The MergeICmpsPass tries to create memcmp calls by grouping sequences of
+    // loads and compares. ExpandMemCmpPass then tries to expand those calls
+    // into optimally-sized loads and compares. The transforms are enabled by a
+    // target lowering hook.
+    if (EnableMergeICmps)
+      addPass(createMergeICmpsPass());
+    addPass(createExpandMemCmpPass());
   }
 
   // Run GC lowering passes for builtin collectors