Fix grammar in documentation.

Patch by Ralph Campbell!

llvm-svn: 229884
diff --git a/llvm/docs/CodeGenerator.rst b/llvm/docs/CodeGenerator.rst
index 7e5b6eb..75d40db 100644
--- a/llvm/docs/CodeGenerator.rst
+++ b/llvm/docs/CodeGenerator.rst
@@ -1340,7 +1340,7 @@
 If the indirect strategy is used, after all the virtual registers have been
 mapped to physical registers or stack slots, it is necessary to use a spiller
 object to place load and store instructions in the code. Every virtual that has
-been mapped to a stack slot will be stored to memory after been defined and will
+been mapped to a stack slot will be stored to memory after being defined and will
 be loaded before being used. The implementation of the spiller tries to recycle
 load/store instructions, avoiding unnecessary instructions. For an example of
 how to invoke the spiller, see ``RegAllocLinearScan::runOnMachineFunction`` in
@@ -1353,7 +1353,7 @@
 instructions are three address instructions. That is, each instruction is
 expected to define at most one register, and to use at most two registers.
 However, some architectures use two address instructions. In this case, the
-defined register is also one of the used register. For instance, an instruction
+defined register is also one of the used registers. For instance, an instruction
 such as ``ADD %EAX, %EBX``, in X86 is actually equivalent to ``%EAX = %EAX +
 %EBX``.
 
@@ -1578,7 +1578,7 @@
    correspond to. The MCInsts that are generated by this are fed into the
    instruction printer or the encoder.
 
-Finally, at your choosing, you can also implement an subclass of MCCodeEmitter
+Finally, at your choosing, you can also implement a subclass of MCCodeEmitter
 which lowers MCInst's into machine code bytes and relocations.  This is
 important if you want to support direct .o file emission, or would like to
 implement an assembler for your target.