[llvm-mca] Introduce the llvm-mca library and organize the directory accordingly. NFC.
Summary:
This patch introduces llvm-mca as a library. The driver (llvm-mca.cpp), views, and stats, are not part of the library.
Those are separate components that are not required for the functioning of llvm-mca.
The directory has been organized as follows:
All library source files now reside in:
- `lib/HardwareUnits/` - All subclasses of HardwareUnit (these represent the simulated hardware components of a backend).
(LSUnit does not inherit from HardwareUnit, but Scheduler does which uses LSUnit).
- `lib/Stages/` - All subclasses of the pipeline stages.
- `lib/` - This is the root of the library and contains library code that does not fit into the Stages or HardwareUnit subdirs.
All library header files now reside in the `include` directory and mimic the same layout as the `lib` directory mentioned above.
In the (near) future we would like to move the library (include and lib) contents from tools and into the core of llvm somewhere.
That change would allow various analysis and optimization passes to make use of MCA functionality for things like cost modeling.
I left all of the non-library code just where it has always been, in the root of the llvm-mca directory.
The include directives for the non-library source file have been updated to refer to the llvm-mca library headers.
I updated the llvm-mca/CMakeLists.txt file to include the library headers, but I made the non-library code
explicitly reference the library's 'include' directory. Once we eventually (hopefully) migrate the MCA library
components into llvm the include directives used by the non-library source files will be updated to point to the
proper location in llvm.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: mgorny, javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D50929
llvm-svn: 340755
diff --git a/llvm/tools/llvm-mca/lib/HardwareUnits/RetireControlUnit.cpp b/llvm/tools/llvm-mca/lib/HardwareUnits/RetireControlUnit.cpp
new file mode 100644
index 0000000..205fe84
--- /dev/null
+++ b/llvm/tools/llvm-mca/lib/HardwareUnits/RetireControlUnit.cpp
@@ -0,0 +1,87 @@
+//===---------------------- RetireControlUnit.cpp ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file simulates the hardware responsible for retiring instructions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "HardwareUnits/RetireControlUnit.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "llvm-mca"
+
+namespace mca {
+
+RetireControlUnit::RetireControlUnit(const llvm::MCSchedModel &SM)
+ : NextAvailableSlotIdx(0), CurrentInstructionSlotIdx(0),
+ AvailableSlots(SM.MicroOpBufferSize), MaxRetirePerCycle(0) {
+ // Check if the scheduling model provides extra information about the machine
+ // processor. If so, then use that information to set the reorder buffer size
+ // and the maximum number of instructions retired per cycle.
+ if (SM.hasExtraProcessorInfo()) {
+ const MCExtraProcessorInfo &EPI = SM.getExtraProcessorInfo();
+ if (EPI.ReorderBufferSize)
+ AvailableSlots = EPI.ReorderBufferSize;
+ MaxRetirePerCycle = EPI.MaxRetirePerCycle;
+ }
+
+ assert(AvailableSlots && "Invalid reorder buffer size!");
+ Queue.resize(AvailableSlots);
+}
+
+// Reserves a number of slots, and returns a new token.
+unsigned RetireControlUnit::reserveSlot(const InstRef &IR,
+ unsigned NumMicroOps) {
+ assert(isAvailable(NumMicroOps));
+ unsigned NormalizedQuantity =
+ std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
+ // Zero latency instructions may have zero mOps. Artificially bump this
+ // value to 1. Although zero latency instructions don't consume scheduler
+ // resources, they still consume one slot in the retire queue.
+ NormalizedQuantity = std::max(NormalizedQuantity, 1U);
+ unsigned TokenID = NextAvailableSlotIdx;
+ Queue[NextAvailableSlotIdx] = {IR, NormalizedQuantity, false};
+ NextAvailableSlotIdx += NormalizedQuantity;
+ NextAvailableSlotIdx %= Queue.size();
+ AvailableSlots -= NormalizedQuantity;
+ return TokenID;
+}
+
+const RetireControlUnit::RUToken &RetireControlUnit::peekCurrentToken() const {
+ return Queue[CurrentInstructionSlotIdx];
+}
+
+void RetireControlUnit::consumeCurrentToken() {
+ const RetireControlUnit::RUToken &Current = peekCurrentToken();
+ assert(Current.NumSlots && "Reserved zero slots?");
+ assert(Current.IR.isValid() && "Invalid RUToken in the RCU queue.");
+
+ // Update the slot index to be the next item in the circular queue.
+ CurrentInstructionSlotIdx += Current.NumSlots;
+ CurrentInstructionSlotIdx %= Queue.size();
+ AvailableSlots += Current.NumSlots;
+}
+
+void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
+ assert(Queue.size() > TokenID);
+ assert(Queue[TokenID].Executed == false && Queue[TokenID].IR.isValid());
+ Queue[TokenID].Executed = true;
+}
+
+#ifndef NDEBUG
+void RetireControlUnit::dump() const {
+ dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
+ << ", Available Slots=" << AvailableSlots << " }\n";
+}
+#endif
+
+} // namespace mca