[analyzer] Checker for uninitialized C++ objects

This checker analyzes C++ constructor calls, and reports uninitialized fields.

Due to the nature of this problem (uninitialized fields after an object
construction), this checker doesn't search for bugs, but rather is a tool to
enforce a specific programming model where every field needs to be initialized.

This checker lands in alpha for now, and a number of followup patches will be
made to reduce false negatives and to make it easier for the user to understand
what rules the checker relies on, eg. whether a derived class' constructor is
responsible for initializing inherited data members or whether it should be
handled in the base class' constructor.

Differential Revision: https://reviews.llvm.org/D45532

llvm-svn: 334935
diff --git a/clang/lib/StaticAnalyzer/Checkers/UninitializedObjectChecker.cpp b/clang/lib/StaticAnalyzer/Checkers/UninitializedObjectChecker.cpp
new file mode 100644
index 0000000..63e4b81
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Checkers/UninitializedObjectChecker.cpp
@@ -0,0 +1,669 @@
+//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a checker that reports uninitialized fields in objects
+// created after a constructor call.
+//
+// This checker has an option "Pedantic" (boolean). If its not set or is set to
+// false, the checker won't emit warnings for objects that don't have at least
+// one initialized field. This may be set with
+// `-analyzer-config alpha.cplusplus.UninitializedObject:Pedantic=true`.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include <algorithm>
+
+using namespace clang;
+using namespace clang::ento;
+
+namespace {
+
+class UninitializedObjectChecker : public Checker<check::EndFunction> {
+  std::unique_ptr<BuiltinBug> BT_uninitField;
+
+public:
+  bool IsPedantic; // Will be initialized when registering the checker.
+
+  UninitializedObjectChecker()
+      : BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}
+  void checkEndFunction(CheckerContext &C) const;
+};
+
+llvm::ImmutableListFactory<const FieldRegion *> Factory;
+
+/// Represents a field chain. A field chain is a vector of fields where the
+/// first element of the chain is the object under checking (not stored), and
+/// every other element is a field, and the element that precedes it is the
+/// object that contains it.
+///
+/// Note that this class is immutable, and new fields may only be added through
+/// constructor calls.
+class FieldChainInfo {
+  using FieldChain = llvm::ImmutableList<const FieldRegion *>;
+
+  FieldChain Chain;
+
+  const bool IsDereferenced = false;
+
+public:
+  FieldChainInfo() = default;
+
+  FieldChainInfo(const FieldChainInfo &Other, const bool IsDereferenced)
+      : Chain(Other.Chain), IsDereferenced(IsDereferenced) {}
+
+  FieldChainInfo(const FieldChainInfo &Other, const FieldRegion *FR,
+                 const bool IsDereferenced = false);
+
+  bool contains(const FieldRegion *FR) const { return Chain.contains(FR); }
+  bool isPointer() const;
+
+  /// If this is a fieldchain whose last element is an uninitialized region of a
+  /// pointer type, `IsDereferenced` will store whether the pointer itself or
+  /// the pointee is uninitialized.
+  bool isDereferenced() const;
+  const FieldDecl *getEndOfChain() const;
+  void print(llvm::raw_ostream &Out) const;
+
+private:
+  /// Prints every element except the last to `Out`. Since ImmutableLists store
+  /// elements in reverse order, and have no reverse iterators, we use a
+  /// recursive function to print the fieldchain correctly. The last element in
+  /// the chain is to be printed by `print`.
+  static void printTail(llvm::raw_ostream &Out,
+                        const llvm::ImmutableListImpl<const FieldRegion *> *L);
+  friend struct FieldChainInfoComparator;
+};
+
+struct FieldChainInfoComparator {
+  bool operator()(const FieldChainInfo &lhs, const FieldChainInfo &rhs) {
+    assert(!lhs.Chain.isEmpty() && !rhs.Chain.isEmpty() &&
+           "Attempted to store an empty fieldchain!");
+    return *lhs.Chain.begin() < *rhs.Chain.begin();
+  }
+};
+
+using UninitFieldSet = std::set<FieldChainInfo, FieldChainInfoComparator>;
+
+/// Searches for and stores uninitialized fields in a non-union object.
+class FindUninitializedFields {
+  ProgramStateRef State;
+  const TypedValueRegion *const ObjectR;
+
+  const bool IsPedantic;
+  bool IsAnyFieldInitialized = false;
+
+  UninitFieldSet UninitFields;
+
+public:
+  FindUninitializedFields(ProgramStateRef State,
+                          const TypedValueRegion *const R, bool IsPedantic);
+  const UninitFieldSet &getUninitFields();
+
+private:
+  /// Adds a FieldChainInfo object to UninitFields. Return true if an insertion
+  /// took place.
+  bool addFieldToUninits(FieldChainInfo LocalChain);
+
+  // For the purposes of this checker, we'll regard the object under checking as
+  // a directed tree, where
+  //   * the root is the object under checking
+  //   * every node is an object that is
+  //     - a union
+  //     - a non-union record
+  //     - a pointer/reference
+  //     - an array
+  //     - of a member pointer type
+  //     - of a primitive type, which we'll define as either a BuiltinType or
+  //       EnumeralType.
+  //   * the parent of each node is the object that contains it
+  //   * every leaf is an array, a primitive object, a member pointer, a nullptr
+  //     or an undefined pointer.
+  //
+  // Example:
+  //
+  //   struct A {
+  //      struct B {
+  //        int x, y = 0;
+  //      };
+  //      B b;
+  //      int *iptr = new int;
+  //      B* bptr;
+  //
+  //      A() {}
+  //   };
+  //
+  // The directed tree:
+  //
+  //           ->x
+  //          /
+  //      ->b--->y
+  //     /
+  //    A-->iptr->(int value)
+  //     \
+  //      ->bptr
+  //
+  // From this we'll construct a vector of fieldchains, where each fieldchain
+  // represents an uninitialized field. An uninitialized field may be a
+  // primitive object, a member pointer, a pointer, a pointee or a union without
+  // a single initialized field.
+  // In the above example, for the default constructor call we'll end up with
+  // these fieldchains:
+  //
+  //   this->b.x
+  //   this->iptr (pointee uninit)
+  //   this->bptr (pointer uninit)
+  //
+  // We'll traverse each node of the above graph with the appropiate one of
+  // these methods:
+
+  /// This method checks a region of a union object, and returns true if no
+  /// field is initialized within the region.
+  bool isUnionUninit(const TypedValueRegion *R);
+
+  /// This method checks a region of a non-union object, and returns true if
+  /// an uninitialized field is found within the region.
+  bool isNonUnionUninit(const TypedValueRegion *R, FieldChainInfo LocalChain);
+
+  /// This method checks a region of a pointer or reference object, and returns
+  /// true if the ptr/ref object itself or any field within the pointee's region
+  /// is uninitialized.
+  bool isPointerOrReferenceUninit(const FieldRegion *FR,
+                                  FieldChainInfo LocalChain);
+
+  /// This method checks a region of MemberPointerType, and returns true if the
+  /// the pointer is uninitialized.
+  bool isMemberPointerUninit(const FieldRegion *FR, FieldChainInfo LocalChain);
+
+  /// This method returns true if the value of a primitive object is
+  /// uninitialized.
+  bool isPrimitiveUninit(const SVal &V);
+
+  // Note that we don't have a method for arrays -- the elements of an array are
+  // often left uninitialized intentionally even when it is of a C++ record
+  // type, so we'll assume that an array is always initialized.
+  // TODO: Add a support for nonloc::LocAsInteger.
+};
+
+// Utility function declarations.
+
+/// Returns the object that was constructed by CtorDecl, or None if that isn't
+/// possible.
+Optional<nonloc::LazyCompoundVal>
+getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context);
+
+/// Checks whether the constructor under checking is called by another
+/// constructor.
+bool isCalledByConstructor(const CheckerContext &Context);
+
+/// Returns whether FD can be (transitively) dereferenced to a void pointer type
+/// (void*, void**, ...). The type of the region behind a void pointer isn't
+/// known, and thus FD can not be analyzed.
+bool isVoidPointer(const FieldDecl *FD);
+
+/// Returns true if T is a primitive type. We'll call a type primitive if it's
+/// either a BuiltinType or an EnumeralType.
+bool isPrimitiveType(const QualType &T) {
+  return T->isBuiltinType() || T->isEnumeralType();
+}
+
+} // end of anonymous namespace
+
+//===----------------------------------------------------------------------===//
+//                  Methods for UninitializedObjectChecker.
+//===----------------------------------------------------------------------===//
+
+void UninitializedObjectChecker::checkEndFunction(
+    CheckerContext &Context) const {
+
+  const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
+      Context.getLocationContext()->getDecl());
+  if (!CtorDecl)
+    return;
+
+  if (!CtorDecl->isUserProvided())
+    return;
+
+  if (CtorDecl->getParent()->isUnion())
+    return;
+
+  // This avoids essentially the same error being reported multiple times.
+  if (isCalledByConstructor(Context))
+    return;
+
+  Optional<nonloc::LazyCompoundVal> Object = getObjectVal(CtorDecl, Context);
+  if (!Object)
+    return;
+
+  FindUninitializedFields F(Context.getState(), Object->getRegion(),
+                            IsPedantic);
+
+  const UninitFieldSet &UninitFields = F.getUninitFields();
+
+  if (UninitFields.empty())
+    return;
+
+  // There are uninitialized fields in the record.
+
+  ExplodedNode *Node = Context.generateNonFatalErrorNode(Context.getState());
+  if (!Node)
+    return;
+
+  PathDiagnosticLocation LocUsedForUniqueing;
+  const Stmt *CallSite = Context.getStackFrame()->getCallSite();
+  if (CallSite)
+    LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
+        CallSite, Context.getSourceManager(), Node->getLocationContext());
+
+  SmallString<100> WarningBuf;
+  llvm::raw_svector_ostream WarningOS(WarningBuf);
+  WarningOS << UninitFields.size() << " uninitialized field"
+            << (UninitFields.size() == 1 ? "" : "s")
+            << " at the end of the constructor call";
+
+  auto Report = llvm::make_unique<BugReport>(
+      *BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
+      Node->getLocationContext()->getDecl());
+
+  // TODO: As of now, one warning is emitted per constructor call, and the
+  // uninitialized fields are listed in notes. Until there's a better support
+  // for notes avaible, a note-less version of this checker should be
+  // implemented.
+  for (const auto &FieldChain : UninitFields) {
+    SmallString<200> NoteBuf;
+    llvm::raw_svector_ostream NoteOS(NoteBuf);
+
+    if (FieldChain.isPointer()) {
+      if (FieldChain.isDereferenced())
+        NoteOS << "uninitialized pointee 'this->";
+      else
+        NoteOS << "uninitialized pointer 'this->";
+    } else
+      NoteOS << "uninitialized field 'this->";
+    FieldChain.print(NoteOS);
+    NoteOS << "'";
+
+    Report->addNote(NoteOS.str(),
+                    PathDiagnosticLocation::create(FieldChain.getEndOfChain(),
+                                                   Context.getSourceManager()));
+  }
+
+  Context.emitReport(std::move(Report));
+}
+
+//===----------------------------------------------------------------------===//
+//                   Methods for FindUninitializedFields.
+//===----------------------------------------------------------------------===//
+
+FindUninitializedFields::FindUninitializedFields(
+    ProgramStateRef State, const TypedValueRegion *const R, bool IsPedantic)
+    : State(State), ObjectR(R), IsPedantic(IsPedantic) {}
+
+const UninitFieldSet &FindUninitializedFields::getUninitFields() {
+  isNonUnionUninit(ObjectR, FieldChainInfo());
+
+  if (!IsPedantic && !IsAnyFieldInitialized)
+    UninitFields.clear();
+
+  return UninitFields;
+}
+
+bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain) {
+  if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
+          Chain.getEndOfChain()->getLocation()))
+    return false;
+
+  return UninitFields.insert(Chain).second;
+}
+
+bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
+                                               FieldChainInfo LocalChain) {
+  assert(R->getValueType()->isRecordType() &&
+         !R->getValueType()->isUnionType() &&
+         "This method only checks non-union record objects!");
+
+  const RecordDecl *RD =
+      R->getValueType()->getAs<RecordType>()->getDecl()->getDefinition();
+  assert(RD && "Referred record has no definition");
+
+  bool ContainsUninitField = false;
+
+  // Are all of this non-union's fields initialized?
+  for (const FieldDecl *I : RD->fields()) {
+
+    const auto FieldVal =
+        State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
+    const auto *FR = FieldVal.getRegionAs<FieldRegion>();
+    QualType T = I->getType();
+
+    // If LocalChain already contains FR, then we encountered a cyclic
+    // reference. In this case, region FR is already under checking at an
+    // earlier node in the directed tree.
+    if (LocalChain.contains(FR))
+      return false;
+
+    if (T->isStructureOrClassType()) {
+      if (isNonUnionUninit(FR, {LocalChain, FR}))
+        ContainsUninitField = true;
+      continue;
+    }
+
+    if (T->isUnionType()) {
+      if (isUnionUninit(FR)) {
+        if (addFieldToUninits({LocalChain, FR}))
+          ContainsUninitField = true;
+      } else
+        IsAnyFieldInitialized = true;
+      continue;
+    }
+
+    if (T->isArrayType()) {
+      IsAnyFieldInitialized = true;
+      continue;
+    }
+
+    if (T->isMemberPointerType()) {
+      if (isMemberPointerUninit(FR, LocalChain))
+        ContainsUninitField = true;
+      continue;
+    }
+
+    // If this is a pointer or reference type.
+    if (T->isPointerType() || T->isReferenceType()) {
+      if (isPointerOrReferenceUninit(FR, LocalChain))
+        ContainsUninitField = true;
+      continue;
+    }
+
+    assert(isPrimitiveType(T) && "Non-primitive type! "
+                                 "At this point FR must be primitive!");
+
+    SVal V = State->getSVal(FieldVal);
+
+    if (isPrimitiveUninit(V)) {
+      if (addFieldToUninits({LocalChain, FR}))
+        ContainsUninitField = true;
+    }
+  }
+
+  // Checking bases.
+  // FIXME: As of now, because of `isCalledByConstructor`, objects whose type
+  // is a descendant of another type will emit warnings for uninitalized
+  // inherited members.
+  // This is not the only way to analyze bases of an object -- if we didn't
+  // filter them out, and didn't analyze the bases, this checker would run for
+  // each base of the object in order of base initailization and in theory would
+  // find every uninitalized field. This approach could also make handling
+  // diamond inheritances more easily.
+  //
+  // This rule (that a descendant type's cunstructor is responsible for
+  // initializing inherited data members) is not obvious, and should it should
+  // be.
+  const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+  if (!CXXRD)
+    return ContainsUninitField;
+
+  for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
+    const auto *BaseRegion = State->getLValue(BaseSpec, R)
+                                 .castAs<loc::MemRegionVal>()
+                                 .getRegionAs<TypedValueRegion>();
+
+    if (isNonUnionUninit(BaseRegion, LocalChain))
+      ContainsUninitField = true;
+  }
+
+  return ContainsUninitField;
+}
+
+bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
+  assert(R->getValueType()->isUnionType() &&
+         "This method only checks union objects!");
+  // TODO: Implement support for union fields.
+  return false;
+}
+
+// Note that pointers/references don't contain fields themselves, so in this
+// function we won't add anything to LocalChain.
+bool FindUninitializedFields::isPointerOrReferenceUninit(
+    const FieldRegion *FR, FieldChainInfo LocalChain) {
+
+  assert((FR->getDecl()->getType()->isPointerType() ||
+          FR->getDecl()->getType()->isReferenceType()) &&
+         "This method only checks pointer/reference objects!");
+
+  SVal V = State->getSVal(FR);
+
+  if (V.isUnknown() || V.isZeroConstant()) {
+    IsAnyFieldInitialized = true;
+    return false;
+  }
+
+  if (V.isUndef()) {
+    return addFieldToUninits({LocalChain, FR});
+  }
+
+  const FieldDecl *FD = FR->getDecl();
+
+  // TODO: The dynamic type of a void pointer may be retrieved with
+  // `getDynamicTypeInfo`.
+  if (isVoidPointer(FD)) {
+    IsAnyFieldInitialized = true;
+    return false;
+  }
+
+  assert(V.getAs<Loc>() && "V should be Loc at this point!");
+
+  // At this point the pointer itself is initialized and points to a valid
+  // location, we'll now check the pointee.
+  SVal DerefdV = State->getSVal(V.castAs<Loc>());
+
+  // TODO: Dereferencing should be done according to the dynamic type.
+  while (Optional<Loc> L = DerefdV.getAs<Loc>()) {
+    DerefdV = State->getSVal(*L);
+  }
+
+  // If V is a pointer pointing to a record type.
+  if (Optional<nonloc::LazyCompoundVal> RecordV =
+          DerefdV.getAs<nonloc::LazyCompoundVal>()) {
+
+    const TypedValueRegion *R = RecordV->getRegion();
+
+    // We can't reason about symbolic regions, assume its initialized.
+    // Note that this also avoids a potential infinite recursion, because
+    // constructors for list-like classes are checked without being called, and
+    // the Static Analyzer will construct a symbolic region for Node *next; or
+    // similar code snippets.
+    if (R->getSymbolicBase()) {
+      IsAnyFieldInitialized = true;
+      return false;
+    }
+
+    const QualType T = R->getValueType();
+
+    if (T->isStructureOrClassType())
+      return isNonUnionUninit(R, {LocalChain, FR});
+
+    if (T->isUnionType()) {
+      if (isUnionUninit(R)) {
+        return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
+      } else {
+        IsAnyFieldInitialized = true;
+        return false;
+      }
+    }
+
+    if (T->isArrayType()) {
+      IsAnyFieldInitialized = true;
+      return false;
+    }
+
+    llvm_unreachable("All cases are handled!");
+  }
+
+  // TODO: If possible, it should be asserted that the DerefdV at this point is
+  // primitive.
+
+  if (isPrimitiveUninit(DerefdV))
+    return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
+
+  IsAnyFieldInitialized = true;
+  return false;
+}
+
+bool FindUninitializedFields::isMemberPointerUninit(const FieldRegion *FR,
+                                                    FieldChainInfo LocalChain) {
+  assert(FR->getDecl()->getType()->isMemberPointerType() &&
+         "This function only checks regions that hold MemberPointerTypes!");
+  // TODO: Implement support for MemberPointerTypes.
+  return false;
+}
+
+bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
+  if (V.isUndef())
+    return true;
+
+  IsAnyFieldInitialized = true;
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+//                       Methods for FieldChainInfo.
+//===----------------------------------------------------------------------===//
+
+FieldChainInfo::FieldChainInfo(const FieldChainInfo &Other,
+                               const FieldRegion *FR, const bool IsDereferenced)
+    : FieldChainInfo(Other, IsDereferenced) {
+  assert(!contains(FR) && "Can't add a field that is already a part of the "
+                          "fieldchain! Is this a cyclic reference?");
+  Chain = Factory.add(FR, Other.Chain);
+}
+
+bool FieldChainInfo::isPointer() const {
+  assert(!Chain.isEmpty() && "Empty fieldchain!");
+  return (*Chain.begin())->getDecl()->getType()->isPointerType();
+}
+
+bool FieldChainInfo::isDereferenced() const {
+  assert(isPointer() && "Only pointers may or may not be dereferenced!");
+  return IsDereferenced;
+}
+
+const FieldDecl *FieldChainInfo::getEndOfChain() const {
+  assert(!Chain.isEmpty() && "Empty fieldchain!");
+  return (*Chain.begin())->getDecl();
+}
+
+// TODO: This function constructs an incorrect fieldchain string in the
+// following case:
+//
+//   struct Base { int x; };
+//   struct D1 : Base {}; struct D2 : Base {};
+//
+//   struct MostDerived : D1, D2 {
+//     MostDerived() {}
+//   }
+//
+// A call to MostDerived::MostDerived() will cause two notes that say
+// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
+// we need an explicit namespace resolution whether the uninit field was
+// 'D1::x' or 'D2::x'.
+//
+// TODO: If a field in the fieldchain is a captured lambda parameter, this
+// function constructs an empty string for it:
+//
+//   template <class Callable> struct A {
+//     Callable c;
+//     A(const Callable &c, int) : c(c) {}
+//   };
+//
+//   int b; // say that this isn't zero initialized
+//   auto alwaysTrue = [&b](int a) { return true; };
+//
+// A call with these parameters: A<decltype(alwaysTrue)>::A(alwaysTrue, int())
+// will emit a note with the message "uninitialized field: 'this->c.'". If
+// possible, the lambda parameter name should be retrieved or be replaced with a
+// "<lambda parameter>" or something similar.
+void FieldChainInfo::print(llvm::raw_ostream &Out) const {
+  if (Chain.isEmpty())
+    return;
+
+  const llvm::ImmutableListImpl<const FieldRegion *> *L =
+      Chain.getInternalPointer();
+  printTail(Out, L->getTail());
+  Out << L->getHead()->getDecl()->getNameAsString();
+}
+
+void FieldChainInfo::printTail(
+    llvm::raw_ostream &Out,
+    const llvm::ImmutableListImpl<const FieldRegion *> *L) {
+  if (!L)
+    return;
+
+  printTail(Out, L->getTail());
+  const FieldDecl *Field = L->getHead()->getDecl();
+  Out << Field->getNameAsString();
+  Out << (Field->getType()->isPointerType() ? "->" : ".");
+}
+
+//===----------------------------------------------------------------------===//
+//                           Utility functions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+bool isVoidPointer(const FieldDecl *FD) {
+  QualType T = FD->getType();
+
+  while (!T.isNull()) {
+    if (T->isVoidPointerType())
+      return true;
+    T = T->getPointeeType();
+  }
+  return false;
+}
+
+Optional<nonloc::LazyCompoundVal>
+getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context) {
+
+  Loc ThisLoc = Context.getSValBuilder().getCXXThis(CtorDecl->getParent(),
+                                                    Context.getStackFrame());
+  // Getting the value for 'this'.
+  SVal This = Context.getState()->getSVal(ThisLoc);
+
+  // Getting the value for '*this'.
+  SVal Object = Context.getState()->getSVal(This.castAs<Loc>());
+
+  return Object.getAs<nonloc::LazyCompoundVal>();
+}
+
+// TODO: We should also check that if the constructor was called by another
+// constructor, whether those two are in any relation to one another. In it's
+// current state, this introduces some false negatives.
+bool isCalledByConstructor(const CheckerContext &Context) {
+  const LocationContext *LC = Context.getLocationContext()->getParent();
+
+  while (LC) {
+    if (isa<CXXConstructorDecl>(LC->getDecl()))
+      return true;
+
+    LC = LC->getParent();
+  }
+  return false;
+}
+
+} // end of anonymous namespace
+
+void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
+  auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();
+  Chk->IsPedantic = Mgr.getAnalyzerOptions().getBooleanOption(
+      "Pedantic", /*DefaultVal*/ false, Chk);
+}