Initial checkin of lldb code from internal Apple repo.

llvm-svn: 105619
diff --git a/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
new file mode 100644
index 0000000..6eec80c
--- /dev/null
+++ b/lldb/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp
@@ -0,0 +1,2610 @@
+//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  Created by Greg Clayton on 6/25/07.
+//
+//===----------------------------------------------------------------------===//
+
+#if defined (__arm__)
+
+#include "MacOSX/arm/DNBArchImpl.h"
+#include "MacOSX/MachProcess.h"
+#include "MacOSX/MachThread.h"
+#include "DNBBreakpoint.h"
+#include "DNBLog.h"
+#include "DNBRegisterInfo.h"
+#include "DNB.h"
+
+#include <sys/sysctl.h>
+
+// BCR address match type
+#define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
+#define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
+#define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
+#define BCR_M_RESERVED          ((uint32_t)(3u << 21))
+
+// Link a BVR/BCR or WVR/WCR pair to another
+#define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
+
+// Byte Address Select
+#define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
+#define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
+#define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
+#define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
+#define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
+#define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
+#define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
+
+// Break only in priveleged or user mode
+#define S_RSVD                  ((uint32_t)(0u << 1))
+#define S_PRIV                  ((uint32_t)(1u << 1))
+#define S_USER                  ((uint32_t)(2u << 1))
+#define S_PRIV_USER             ((S_PRIV) | (S_USER))
+
+#define BCR_ENABLE              ((uint32_t)(1u))
+#define WCR_ENABLE              ((uint32_t)(1u))
+
+// Watchpoint load/store
+#define WCR_LOAD                ((uint32_t)(1u << 3))
+#define WCR_STORE               ((uint32_t)(1u << 4))
+
+//#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1
+
+static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
+static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
+
+// ARM constants used during decoding
+#define REG_RD          0
+#define LDM_REGLIST     1
+#define PC_REG          15
+#define PC_REGLIST_BIT  0x8000
+
+// ARM conditions
+#define COND_EQ     0x0
+#define COND_NE     0x1
+#define COND_CS     0x2
+#define COND_HS     0x2
+#define COND_CC     0x3
+#define COND_LO     0x3
+#define COND_MI     0x4
+#define COND_PL     0x5
+#define COND_VS     0x6
+#define COND_VC     0x7
+#define COND_HI     0x8
+#define COND_LS     0x9
+#define COND_GE     0xA
+#define COND_LT     0xB
+#define COND_GT     0xC
+#define COND_LE     0xD
+#define COND_AL     0xE
+#define COND_UNCOND 0xF
+
+#define MASK_CPSR_T (1u << 5)
+#define MASK_CPSR_J (1u << 24)
+
+#define MNEMONIC_STRING_SIZE 32
+#define OPERAND_STRING_SIZE 128
+
+const uint8_t * const
+DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
+{
+    switch (byte_size)
+    {
+    case 2: return g_thumb_breakpooint_opcode;
+    case 4: return g_arm_breakpoint_opcode;
+    }
+    return NULL;
+}
+
+uint32_t
+DNBArchMachARM::GetCPUType()
+{
+    return CPU_TYPE_ARM;
+}
+
+uint64_t
+DNBArchMachARM::GetPC(uint64_t failValue)
+{
+    // Get program counter
+    if (GetGPRState(false) == KERN_SUCCESS)
+        return m_state.gpr.__pc;
+    return failValue;
+}
+
+kern_return_t
+DNBArchMachARM::SetPC(uint64_t value)
+{
+    // Get program counter
+    kern_return_t err = GetGPRState(false);
+    if (err == KERN_SUCCESS)
+    {
+        m_state.gpr.__pc = value;
+        err = SetGPRState();
+    }
+    return err == KERN_SUCCESS;
+}
+
+uint64_t
+DNBArchMachARM::GetSP(uint64_t failValue)
+{
+    // Get stack pointer
+    if (GetGPRState(false) == KERN_SUCCESS)
+        return m_state.gpr.__sp;
+    return failValue;
+}
+
+kern_return_t
+DNBArchMachARM::GetGPRState(bool force)
+{
+    int set = e_regSetGPR;
+    // Check if we have valid cached registers
+    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+        return KERN_SUCCESS;
+
+    // Read the registers from our thread
+    mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
+    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.gpr, &count);
+    uint32_t *r = &m_state.gpr.__r[0];
+    DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", m_thread->ThreadID(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT, kret,
+     r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
+    m_state.SetError(set, Read, kret);
+    return kret;
+}
+
+kern_return_t
+DNBArchMachARM::GetVFPState(bool force)
+{
+    int set = e_regSetVFP;
+    // Check if we have valid cached registers
+    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+        return KERN_SUCCESS;
+
+    // Read the registers from our thread
+    mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
+    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.vfp, &count);
+    m_state.SetError(set, Read, kret);
+    return kret;
+}
+
+kern_return_t
+DNBArchMachARM::GetEXCState(bool force)
+{
+    int set = e_regSetEXC;
+    // Check if we have valid cached registers
+    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+        return KERN_SUCCESS;
+
+    // Read the registers from our thread
+    mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
+    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.exc, &count);
+    m_state.SetError(set, Read, kret);
+    return kret;
+}
+
+static void
+DumpDBGState(const arm_debug_state_t& dbg)
+{
+    uint32_t i = 0;
+    for (i=0; i<16; i++)
+        DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
+            i, i, dbg.__bvr[i], dbg.__bcr[i],
+            i, i, dbg.__wvr[i], dbg.__wcr[i]);
+}
+
+kern_return_t
+DNBArchMachARM::GetDBGState(bool force)
+{
+    int set = e_regSetDBG;
+
+    // Check if we have valid cached registers
+    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
+        return KERN_SUCCESS;
+
+    // Read the registers from our thread
+    mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
+    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
+    m_state.SetError(set, Read, kret);
+    return kret;
+}
+
+kern_return_t
+DNBArchMachARM::SetGPRState()
+{
+    int set = e_regSetGPR;
+    kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.gpr, ARM_THREAD_STATE_COUNT);
+    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
+    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
+    return kret;                                // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetVFPState()
+{
+    int set = e_regSetVFP;
+    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.vfp, ARM_VFP_STATE_COUNT);
+    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
+    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
+    return kret;                                // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetEXCState()
+{
+    int set = e_regSetEXC;
+    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.exc, ARM_EXCEPTION_STATE_COUNT);
+    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
+    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
+    return kret;                                // Return the error code
+}
+
+kern_return_t
+DNBArchMachARM::SetDBGState()
+{
+    int set = e_regSetDBG;
+    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
+    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
+    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
+    return kret;                                // Return the error code
+}
+
+void
+DNBArchMachARM::ThreadWillResume()
+{
+    // Do we need to step this thread? If so, let the mach thread tell us so.
+    if (m_thread->IsStepping())
+    {
+        bool step_handled = false;
+        // This is the primary thread, let the arch do anything it needs
+        if (NumSupportedHardwareBreakpoints() > 0)
+        {
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+            bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS;
+#endif
+            step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS;
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+            if (!half_step)
+                step_handled = false;
+#endif
+        }
+
+        if (!step_handled)
+        {
+            SetSingleStepSoftwareBreakpoints();
+        }
+    }
+}
+
+bool
+DNBArchMachARM::ThreadDidStop()
+{
+    bool success = true;
+
+    m_state.InvalidateRegisterSetState (e_regSetALL);
+
+    // Are we stepping a single instruction?
+    if (GetGPRState(true) == KERN_SUCCESS)
+    {
+        // We are single stepping, was this the primary thread?
+        if (m_thread->IsStepping())
+        {
+#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
+            success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+            // Hardware single step must work if we are going to test software
+            // single step functionality
+            assert(success);
+            if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS)
+            {
+                uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu;
+                bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0;
+                bool actual_next_pc_is_thumb = (m_state.gpr.__cpsr & 0x20) != 0;
+                if (m_state.gpr.__pc != sw_step_next_pc)
+                {
+                    DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.gpr.__pc, sw_step_next_pc, m_state.gpr.__pc);
+                    exit(1);
+                }
+                if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb)
+                {
+                    DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s",
+                                m_state.gpr.__pc,
+                                actual_next_pc_is_thumb ? "Thumb" : "ARM",
+                                sw_step_next_pc_is_thumb ? "Thumb" : "ARM");
+                    exit(1);
+                }
+                m_sw_single_step_next_pc = INVALID_NUB_ADDRESS;
+            }
+#else
+            // Are we software single stepping?
+            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
+            {
+                // Remove any software single stepping breakpoints that we have set
+
+                // Do we have a normal software single step breakpoint?
+                if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
+                {
+                    DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
+                    success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
+                    m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
+                }
+
+                // Do we have any Thumb IT breakpoints?
+                if (m_sw_single_step_itblock_break_count > 0)
+                {
+                    // See if we hit one of our Thumb IT breakpoints?
+                    DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.gpr.__pc);
+
+                    if (step_bp)
+                    {
+                        // We did hit our breakpoint, tell the breakpoint it was
+                        // hit so that it can run its callback routine and fixup
+                        // the PC.
+                        DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
+                        step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
+                    }
+
+                    // Remove all Thumb IT breakpoints
+                    for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
+                    {
+                        if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+                        {
+                            DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
+                            success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
+                            m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
+                        }
+                    }
+                    m_sw_single_step_itblock_break_count = 0;
+
+                    // Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block
+                    // The decoder has to decode each instruction in the IT block even if it is not executed so that
+                    // the fields are correctly updated
+                    DecodeITBlockInstructions(m_state.gpr.__pc);
+                }
+
+            }
+            else
+                success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
+#endif
+        }
+        else
+        {
+            // The MachThread will automatically restore the suspend count
+            // in ThreadDidStop(), so we don't need to do anything here if
+            // we weren't the primary thread the last time
+        }
+    }
+    return success;
+}
+
+bool
+DNBArchMachARM::StepNotComplete ()
+{
+    if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
+    {
+        kern_return_t kret = KERN_INVALID_ARGUMENT;
+        kret = GetGPRState(false);
+        if (kret == KERN_SUCCESS)
+        {
+            if (m_state.gpr.__pc == m_hw_single_chained_step_addr)
+            {
+                DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
+                return true;
+            }
+        }
+    }
+
+    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+    return false;
+}
+
+
+void
+DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc)
+
+{
+    uint16_t opcode16;
+    uint32_t opcode32;
+    nub_addr_t next_pc_in_itblock;
+    nub_addr_t pc_in_itblock = m_last_decode_pc;
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
+
+    // Decode IT block instruction from the instruction following the m_last_decoded_instruction at
+    // PC m_last_decode_pc upto and including the instruction at curr_pc
+    if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
+    {
+        opcode32 = opcode16;
+        pc_in_itblock += 2;
+        // Check for 32 bit thumb opcode and read the upper 16 bits if needed
+        if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800)
+        {
+            // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
+            // a 32 bit Thumb opcode
+            // Read bits 31:16 of a 32 bit Thumb opcode
+            if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
+            {
+                pc_in_itblock += 2;
+                // 32 bit thumb opcode
+                opcode32 = (opcode32 << 16) | opcode16;
+            }
+            else
+            {
+                DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", __FUNCTION__, pc_in_itblock);
+            }
+        }
+    }
+    else
+    {
+        DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock);
+    }
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc);
+
+    next_pc_in_itblock = pc_in_itblock;
+    while (next_pc_in_itblock <= curr_pc)
+    {
+        arm_error_t decodeError;
+
+        m_last_decode_pc = pc_in_itblock;
+        decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock);
+
+        pc_in_itblock = next_pc_in_itblock;
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock);
+    }
+}
+
+
+// Set the single step bit in the processor status register.
+kern_return_t
+DNBArchMachARM::EnableHardwareSingleStep (bool enable)
+{
+    DNBError err;
+    DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
+
+    err = GetGPRState(false);
+
+    if (err.Fail())
+    {
+        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+        return err.Error();
+    }
+
+    err = GetDBGState(false);
+
+    if (err.Fail())
+    {
+        err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
+        return err.Error();
+    }
+
+    const uint32_t i = 0;
+    if (enable)
+    {
+        m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
+
+        // Save our previous state
+        m_dbg_save = m_state.dbg;
+        // Set a breakpoint that will stop when the PC doesn't match the current one!
+        m_state.dbg.__bvr[i] = m_state.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
+        m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
+                               S_USER |                 // Stop only in user mode
+                               BCR_ENABLE;              // Enable this breakpoint
+        if (m_state.gpr.__cpsr & 0x20)
+        {
+            // Thumb breakpoint
+            if (m_state.gpr.__pc & 2)
+                m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
+            else
+                m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
+
+            uint16_t opcode;
+            if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.gpr.__pc, sizeof(opcode), &opcode))
+            {
+                if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
+                {
+                    // 32 bit thumb opcode...
+                    if (m_state.gpr.__pc & 2)
+                    {
+                        // We can't take care of a 32 bit thumb instruction single step
+                        // with just IVA mismatching. We will need to chain an extra
+                        // hardware single step in order to complete this single step...
+                        m_hw_single_chained_step_addr = m_state.gpr.__pc + 2;
+                    }
+                    else
+                    {
+                        // Extend the number of bits to ignore for the mismatch
+                        m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
+                    }
+                }
+            }
+        }
+        else
+        {
+            // ARM breakpoint
+            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
+        }
+
+        DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
+
+        for (uint32_t j=i+1; j<16; ++j)
+        {
+            // Disable all others
+            m_state.dbg.__bvr[j] = 0;
+            m_state.dbg.__bcr[j] = 0;
+        }
+    }
+    else
+    {
+        // Just restore the state we had before we did single stepping
+        m_state.dbg = m_dbg_save;
+    }
+
+    return SetDBGState();
+}
+
+// return 1 if bit "BIT" is set in "value"
+static inline uint32_t bit(uint32_t value, uint32_t bit)
+{
+    return (value >> bit) & 1u;
+}
+
+// return the bitfield "value[msbit:lsbit]".
+static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
+{
+    assert(msbit >= lsbit);
+    uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
+    value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
+    value >>= shift_left + lsbit;   // shift it back again down to the lsbit (including undoing any shift from above)
+    return value;                   // return our result
+}
+
+bool
+DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
+{
+    uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
+    uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
+    uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
+    uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
+
+    switch (condition) {
+        case COND_EQ: // (0x0)
+            if (cpsr_z == 1) return true;
+            break;
+        case COND_NE: // (0x1)
+            if (cpsr_z == 0) return true;
+            break;
+        case COND_CS: // (0x2)
+            if (cpsr_c == 1) return true;
+            break;
+        case COND_CC: // (0x3)
+            if (cpsr_c == 0) return true;
+            break;
+        case COND_MI: // (0x4)
+            if (cpsr_n == 1) return true;
+            break;
+        case COND_PL: // (0x5)
+            if (cpsr_n == 0) return true;
+            break;
+        case COND_VS: // (0x6)
+            if (cpsr_v == 1) return true;
+            break;
+        case COND_VC: // (0x7)
+            if (cpsr_v == 0) return true;
+            break;
+        case COND_HI: // (0x8)
+            if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
+            break;
+        case COND_LS: // (0x9)
+            if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
+            break;
+        case COND_GE: // (0xA)
+            if (cpsr_n == cpsr_v) return true;
+            break;
+        case COND_LT: // (0xB)
+            if (cpsr_n != cpsr_v) return true;
+            break;
+        case COND_GT: // (0xC)
+            if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
+            break;
+        case COND_LE: // (0xD)
+            if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
+            break;
+        default:
+            return true;
+            break;
+    }
+
+    return false;
+}
+
+bool
+DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC)
+{
+    nub_addr_t myTargetPC, addressWherePCLives;
+    pid_t mypid;
+
+    uint32_t cpsr_c = bit(m_state.gpr.__cpsr, 29); // Carry condition code flag
+
+    uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0;
+    uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift;
+    uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX;
+    uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX;
+    uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX;
+    uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX;
+    uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX;
+    uint16_t registerList16, registerList16NoPC;
+    uint8_t registerList8;
+    uint32_t numRegistersToLoad=0;
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code);
+
+    // Get the following in this switch statement:
+    //   - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions
+    //   - baseAddress, immediateOffset, shiftAmount: For LDR
+    //   - numRegistersToLoad: For LDM and POP instructions
+    switch (decodedInstruction.instruction->code)
+    {
+            // Arithmetic operations that can change the PC
+        case ARM_INST_ADC:
+        case ARM_INST_ADCS:
+        case ARM_INST_ADD:
+        case ARM_INST_ADDS:
+        case ARM_INST_AND:
+        case ARM_INST_ANDS:
+        case ARM_INST_ASR:
+        case ARM_INST_ASRS:
+        case ARM_INST_BIC:
+        case ARM_INST_BICS:
+        case ARM_INST_EOR:
+        case ARM_INST_EORS:
+        case ARM_INST_ORR:
+        case ARM_INST_ORRS:
+        case ARM_INST_RSB:
+        case ARM_INST_RSBS:
+        case ARM_INST_RSC:
+        case ARM_INST_RSCS:
+        case ARM_INST_SBC:
+        case ARM_INST_SBCS:
+        case ARM_INST_SUB:
+        case ARM_INST_SUBS:
+            switch (decodedInstruction.addressMode)
+            {
+                case ARM_ADDR_DATA_IMM:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get firstOperand register value (at index=1)
+                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+                    firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+                    // Get immediateValue (at index=2)
+                    immediateValue = decodedInstruction.op[2].value;
+
+                    break;
+
+                case ARM_ADDR_DATA_REG:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get firstOperand register value (at index=1)
+                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+                    firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+                    // Get secondOperand register value (at index=2)
+                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    break;
+
+                case ARM_ADDR_DATA_SCALED_IMM:
+                    if (decodedInstruction.numOperands != 4)
+                    {
+                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get firstOperand register value (at index=1)
+                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+                    firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+                    // Get secondOperand register value (at index=2)
+                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    // Get shiftAmount as immediate value (at index=3)
+                    shiftAmount = decodedInstruction.op[3].value;
+
+                    break;
+
+
+                case ARM_ADDR_DATA_SCALED_REG:
+                    if (decodedInstruction.numOperands != 4)
+                    {
+                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get firstOperand register value (at index=1)
+                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
+                    firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+                    // Get secondOperand register value (at index=2)
+                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    // Get shiftAmount from register (at index=3)
+                    shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index
+                    shiftAmount = m_state.gpr.__r[shiftRegisterIndex];
+
+                    break;
+
+                case THUMB_ADDR_HR_HR:
+                    if (decodedInstruction.numOperands != 2)
+                    {
+                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get firstOperand register value (at index=0)
+                    firstOperandIndex = decodedInstruction.op[0].value; // first operand register index
+                    firstOperand = m_state.gpr.__r[firstOperandIndex];
+
+                    // Get secondOperand register value (at index=1)
+                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    break;
+
+                default:
+                    break;
+            }
+            break;
+
+            // Logical shifts and move operations that can change the PC
+        case ARM_INST_LSL:
+        case ARM_INST_LSLS:
+        case ARM_INST_LSR:
+        case ARM_INST_LSRS:
+        case ARM_INST_MOV:
+        case ARM_INST_MOVS:
+        case ARM_INST_MVN:
+        case ARM_INST_MVNS:
+        case ARM_INST_ROR:
+        case ARM_INST_RORS:
+        case ARM_INST_RRX:
+        case ARM_INST_RRXS:
+            // In these cases, the firstOperand is always 0, as if it does not exist
+            switch (decodedInstruction.addressMode)
+            {
+                case ARM_ADDR_DATA_IMM:
+                    if (decodedInstruction.numOperands != 2)
+                    {
+                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get immediateValue (at index=1)
+                    immediateValue = decodedInstruction.op[1].value;
+
+                    break;
+
+                case ARM_ADDR_DATA_REG:
+                    if (decodedInstruction.numOperands != 2)
+                    {
+                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get secondOperand register value (at index=1)
+                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    break;
+
+                case ARM_ADDR_DATA_SCALED_IMM:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get secondOperand register value (at index=1)
+                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    // Get shiftAmount as immediate value (at index=2)
+                    shiftAmount = decodedInstruction.op[2].value;
+
+                    break;
+
+
+                case ARM_ADDR_DATA_SCALED_REG:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get secondOperand register value (at index=1)
+                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    // Get shiftAmount from register (at index=2)
+                    shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index
+                    shiftAmount = m_state.gpr.__r[shiftRegisterIndex];
+
+                    break;
+
+                case THUMB_ADDR_HR_HR:
+                    if (decodedInstruction.numOperands != 2)
+                    {
+                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    if (decodedInstruction.op[0].value != PC_REG)
+                    {
+                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                        return false;
+                    }
+
+                    // Get secondOperand register value (at index=1)
+                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
+                    secondOperand = m_state.gpr.__r[secondOperandIndex];
+
+                    break;
+
+                default:
+                    break;
+            }
+
+            break;
+
+            // Simple branches, used to hop around within a routine
+        case ARM_INST_B:
+            *targetPC = decodedInstruction.targetPC; // Known targetPC
+            return true;
+            break;
+
+            // Branch-and-link, used to call ARM subroutines
+        case ARM_INST_BL:
+            *targetPC = decodedInstruction.targetPC; // Known targetPC
+            return true;
+            break;
+
+            // Branch-and-link with exchange, used to call opposite-mode subroutines
+        case ARM_INST_BLX:
+            if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) ||
+                (decodedInstruction.addressMode == THUMB_ADDR_UNCOND))
+            {
+                *targetPC = decodedInstruction.targetPC; // Known targetPC
+                return true;
+            }
+            else    // addressMode == ARM_ADDR_BRANCH_REG
+            {
+                // Unknown target unless we're branching to the PC itself,
+                //  although this may not work properly with BLX
+                if (decodedInstruction.op[REG_RD].value == PC_REG)
+                {
+                    // this should (almost) never happen
+                    *targetPC = decodedInstruction.targetPC; // Known targetPC
+                    return true;
+                }
+
+                // Get the branch address and return
+                if (decodedInstruction.numOperands != 1)
+                {
+                    DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                    return false;
+                }
+
+                // Get branch address in register (at index=0)
+                *targetPC = m_state.gpr.__r[decodedInstruction.op[0].value];
+                return true;
+            }
+            break;
+
+            // Branch with exchange, used to hop to opposite-mode code
+            // Branch to Jazelle code, used to execute Java; included here since it
+            //  acts just like BX unless the Jazelle unit is active and JPC is
+            //  already loaded into it.
+        case ARM_INST_BX:
+        case ARM_INST_BXJ:
+            // Unknown target unless we're branching to the PC itself,
+            //  although this can never switch to Thumb mode and is
+            //  therefore pretty much useless
+            if (decodedInstruction.op[REG_RD].value == PC_REG)
+            {
+                // this should (almost) never happen
+                *targetPC = decodedInstruction.targetPC; // Known targetPC
+                return true;
+            }
+
+            // Get the branch address and return
+            if (decodedInstruction.numOperands != 1)
+            {
+                DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                return false;
+            }
+
+            // Get branch address in register (at index=0)
+            *targetPC = m_state.gpr.__r[decodedInstruction.op[0].value];
+            return true;
+            break;
+
+            // Compare and branch on zero/non-zero (Thumb-16 only)
+            // Unusual condition check built into the instruction
+        case ARM_INST_CBZ:
+        case ARM_INST_CBNZ:
+            // Branch address is known at compile time
+            // Get the branch address and return
+            if (decodedInstruction.numOperands != 2)
+            {
+                DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                return false;
+            }
+
+            // Get branch address as an immediate value (at index=1)
+            *targetPC = decodedInstruction.op[1].value;
+            return true;
+            break;
+
+            // Load register can be used to load PC, usually with a function pointer
+        case ARM_INST_LDR:
+            if (decodedInstruction.op[REG_RD].value != PC_REG)
+            {
+                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                return false;
+            }
+            switch (decodedInstruction.addressMode)
+            {
+                case ARM_ADDR_LSWUB_IMM:
+                case ARM_ADDR_LSWUB_IMM_PRE:
+                case ARM_ADDR_LSWUB_IMM_POST:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    // Get baseAddress from register (at index=1)
+                    baseAddressIndex = decodedInstruction.op[1].value;
+                    baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+                    // Get immediateOffset (at index=2)
+                    immediateOffset = decodedInstruction.op[2].value;
+                    break;
+
+                case ARM_ADDR_LSWUB_REG:
+                case ARM_ADDR_LSWUB_REG_PRE:
+                case ARM_ADDR_LSWUB_REG_POST:
+                    if (decodedInstruction.numOperands != 3)
+                    {
+                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    // Get baseAddress from register (at index=1)
+                    baseAddressIndex = decodedInstruction.op[1].value;
+                    baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+                    // Get immediateOffset from register (at index=2)
+                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
+                    addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+
+                    break;
+
+                case ARM_ADDR_LSWUB_SCALED:
+                case ARM_ADDR_LSWUB_SCALED_PRE:
+                case ARM_ADDR_LSWUB_SCALED_POST:
+                    if (decodedInstruction.numOperands != 4)
+                    {
+                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                        return false;
+                    }
+
+                    // Get baseAddress from register (at index=1)
+                    baseAddressIndex = decodedInstruction.op[1].value;
+                    baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+                    // Get immediateOffset from register (at index=2)
+                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
+                    addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+
+                    // Get shiftAmount (at index=3)
+                    shiftAmount = decodedInstruction.op[3].value;
+
+                    break;
+
+                default:
+                    break;
+            }
+            break;
+
+            // 32b load multiple operations can load the PC along with everything else,
+            //  usually to return from a function call
+        case ARM_INST_LDMDA:
+        case ARM_INST_LDMDB:
+        case ARM_INST_LDMIA:
+        case ARM_INST_LDMIB:
+            if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT)
+            {
+                if (decodedInstruction.numOperands != 2)
+                {
+                    DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
+                    return false;
+                }
+
+                // Get baseAddress from register (at index=0)
+                baseAddressIndex = decodedInstruction.op[0].value;
+                baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+                // Get registerList from register (at index=1)
+                registerList16 = (uint16_t)decodedInstruction.op[1].value;
+
+                // Count number of registers to load in the multiple register list excluding the PC
+                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
+                numRegistersToLoad=0;
+                for (int i = 0; i < 16; i++)
+                {
+                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
+                    registerList16NoPC = registerList16NoPC >> 1;
+                }
+            }
+            else
+            {
+                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
+                return false;
+            }
+            break;
+
+            // Normal 16-bit LD multiple can't touch R15, but POP can
+        case ARM_INST_POP:  // Can also get the PC & updates SP
+            // Get baseAddress from SP (at index=0)
+            baseAddress = m_state.gpr.__sp;
+
+            if (decodedInstruction.thumb16b)
+            {
+                // Get registerList from register (at index=0)
+                registerList8 = (uint8_t)decodedInstruction.op[0].value;
+
+                // Count number of registers to load in the multiple register list
+                numRegistersToLoad=0;
+                for (int i = 0; i < 8; i++)
+                {
+                    if (registerList8 & 0x1) numRegistersToLoad++;
+                    registerList8 = registerList8 >> 1;
+                }
+            }
+            else
+            {
+                // Get registerList from register (at index=0)
+                registerList16 = (uint16_t)decodedInstruction.op[0].value;
+
+                // Count number of registers to load in the multiple register list excluding the PC
+                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
+                numRegistersToLoad=0;
+                for (int i = 0; i < 16; i++)
+                {
+                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
+                    registerList16NoPC = registerList16NoPC >> 1;
+                }
+            }
+            break;
+
+            // 16b TBB and TBH instructions load a jump address from a table
+        case ARM_INST_TBB:
+        case ARM_INST_TBH:
+            // Get baseAddress from register (at index=0)
+            baseAddressIndex = decodedInstruction.op[0].value;
+            baseAddress = m_state.gpr.__r[baseAddressIndex];
+
+            // Get immediateOffset from register (at index=1)
+            addressOffsetFromRegisterIndex = decodedInstruction.op[1].value;
+            addressOffsetFromRegister = m_state.gpr.__r[addressOffsetFromRegisterIndex];
+            break;
+
+            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
+            //  from a special base pointer register (which is unknown at disassembly time)
+        case ARM_INST_HB:
+        case ARM_INST_HBP:
+//          TODO: ARM_INST_HB, ARM_INST_HBP
+            break;
+
+        case ARM_INST_HBL:
+        case ARM_INST_HBLP:
+//          TODO: ARM_INST_HBL, ARM_INST_HBLP
+            break;
+
+            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
+        case ARM_INST_BKPT:
+        case ARM_INST_SMC:
+        case ARM_INST_SVC:
+
+            // Return from exception, obviously modifies PC [interrupt only!]
+        case ARM_INST_RFEDA:
+        case ARM_INST_RFEDB:
+        case ARM_INST_RFEIA:
+        case ARM_INST_RFEIB:
+
+            // Other instructions either can't change R15 or are "undefined" if you do,
+            //  so no sane compiler should ever generate them & we don't care here.
+            //  Also, R15 can only legally be used in a read-only manner for the
+            //  various ARM addressing mode (to get PC-relative addressing of constants),
+            //  but can NOT be used with any of the update modes.
+        default:
+            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
+            return false;
+            break;
+    }
+
+    // Adjust PC if PC is one of the input operands
+    if (baseAddressIndex == PC_REG)
+    {
+        if (currentPCIsThumb)
+            baseAddress += 4;
+        else
+            baseAddress += 8;
+    }
+
+    if (firstOperandIndex == PC_REG)
+    {
+        if (currentPCIsThumb)
+            firstOperand += 4;
+        else
+            firstOperand += 8;
+    }
+
+    if (secondOperandIndex == PC_REG)
+    {
+        if (currentPCIsThumb)
+            secondOperand += 4;
+        else
+            secondOperand += 8;
+    }
+
+    if (addressOffsetFromRegisterIndex == PC_REG)
+    {
+        if (currentPCIsThumb)
+            addressOffsetFromRegister += 4;
+        else
+            addressOffsetFromRegister += 8;
+    }
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
+        "%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d",
+        __FUNCTION__,
+        firstOperand,
+        secondOperand,
+        immediateValue,
+        shiftAmount,
+        baseAddress,
+        addressOffsetFromRegister,
+        immediateOffset,
+        numRegistersToLoad);
+
+
+    // Calculate following values after applying shiftAmount:
+    //   - immediateOffsetAfterShift, secondOperandAfterShift
+
+    switch (decodedInstruction.scaleMode)
+    {
+        case ARM_SCALE_NONE:
+            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister;
+            secondOperandAfterShift = secondOperand;
+            break;
+
+        case ARM_SCALE_LSL:             // Logical shift left
+            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount;
+            secondOperandAfterShift = secondOperand << shiftAmount;
+            break;
+
+        case ARM_SCALE_LSR:             // Logical shift right
+            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount;
+            secondOperandAfterShift = secondOperand >> shiftAmount;
+            break;
+
+        case ARM_SCALE_ASR:             // Arithmetic shift right
+            asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
+            asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
+            break;
+
+        case ARM_SCALE_ROR:             // Rotate right
+            asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
+            asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
+            break;
+
+        case ARM_SCALE_RRX:             // Rotate right, pulling in carry (1-bit shift only)
+            asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister));
+            asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand));
+            break;
+    }
+
+    // Emulate instruction to calculate targetPC
+    // All branches are already handled in the first switch statement. A branch should not reach this switch
+    switch (decodedInstruction.instruction->code)
+    {
+            // Arithmetic operations that can change the PC
+        case ARM_INST_ADC:
+        case ARM_INST_ADCS:
+            // Add with Carry
+            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c;
+            break;
+
+        case ARM_INST_ADD:
+        case ARM_INST_ADDS:
+            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue);
+            break;
+
+        case ARM_INST_AND:
+        case ARM_INST_ANDS:
+            *targetPC = firstOperand & (secondOperandAfterShift + immediateValue);
+            break;
+
+        case ARM_INST_ASR:
+        case ARM_INST_ASRS:
+            asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_BIC:
+        case ARM_INST_BICS:
+            asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_EOR:
+        case ARM_INST_EORS:
+            asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_ORR:
+        case ARM_INST_ORRS:
+            asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_RSB:
+        case ARM_INST_RSBS:
+            asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_RSC:
+        case ARM_INST_RSCS:
+            myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c);
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_SBC:
+        case ARM_INST_SBCS:
+            asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue  + !cpsr_c));
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_SUB:
+        case ARM_INST_SUBS:
+            asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
+            *targetPC = myTargetPC;
+            break;
+
+            // Logical shifts and move operations that can change the PC
+        case ARM_INST_LSL:
+        case ARM_INST_LSLS:
+        case ARM_INST_LSR:
+        case ARM_INST_LSRS:
+        case ARM_INST_MOV:
+        case ARM_INST_MOVS:
+        case ARM_INST_ROR:
+        case ARM_INST_RORS:
+        case ARM_INST_RRX:
+        case ARM_INST_RRXS:
+            myTargetPC = secondOperandAfterShift + immediateValue;
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_MVN:
+        case ARM_INST_MVNS:
+            myTargetPC = !(secondOperandAfterShift + immediateValue);
+            *targetPC = myTargetPC;
+            break;
+
+            // Load register can be used to load PC, usually with a function pointer
+        case ARM_INST_LDR:
+            switch (decodedInstruction.addressMode) {
+                case ARM_ADDR_LSWUB_IMM_POST:
+                case ARM_ADDR_LSWUB_REG_POST:
+                case ARM_ADDR_LSWUB_SCALED_POST:
+                    addressWherePCLives = baseAddress;
+                    break;
+
+                case ARM_ADDR_LSWUB_IMM:
+                case ARM_ADDR_LSWUB_REG:
+                case ARM_ADDR_LSWUB_SCALED:
+                case ARM_ADDR_LSWUB_IMM_PRE:
+                case ARM_ADDR_LSWUB_REG_PRE:
+                case ARM_ADDR_LSWUB_SCALED_PRE:
+                    addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset);
+                    break;
+
+                default:
+                    break;
+            }
+
+            mypid = m_thread->ProcessID();
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+                return false;
+            }
+
+            *targetPC = myTargetPC;
+            break;
+
+            // 32b load multiple operations can load the PC along with everything else,
+            //  usually to return from a function call
+        case ARM_INST_LDMDA:
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = baseAddress;
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+                return false;
+            }
+
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_LDMDB:
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = baseAddress - 4;
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+                return false;
+            }
+
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_LDMIB:
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4;
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+                return false;
+            }
+
+            *targetPC = myTargetPC;
+            break;
+
+        case ARM_INST_LDMIA: // same as pop
+            // Normal 16-bit LD multiple can't touch R15, but POP can
+        case ARM_INST_POP:  // Can also get the PC & updates SP
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = baseAddress + numRegistersToLoad*4;
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
+                return false;
+            }
+
+            *targetPC = myTargetPC;
+            break;
+
+            // 16b TBB and TBH instructions load a jump address from a table
+        case ARM_INST_TBB:
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift;
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) !=  1)
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives);
+                return false;
+            }
+            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
+            *targetPC = (currentPC + 4) + 2*halfwords;
+            break;
+
+        case ARM_INST_TBH:
+            mypid = m_thread->ProcessID();
+            addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1);
+            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) !=  2)
+            {
+                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives);
+                return false;
+            }
+            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
+            *targetPC = (currentPC + 4) + 2*halfwords;
+            break;
+
+            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
+            //  from a special base pointer register (which is unknown at disassembly time)
+        case ARM_INST_HB:
+        case ARM_INST_HBP:
+            //          TODO: ARM_INST_HB, ARM_INST_HBP
+            break;
+
+        case ARM_INST_HBL:
+        case ARM_INST_HBLP:
+            //          TODO: ARM_INST_HBL, ARM_INST_HBLP
+            break;
+
+            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
+        case ARM_INST_BKPT:
+        case ARM_INST_SMC:
+        case ARM_INST_SVC:
+            //          TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC
+            break;
+
+            // Return from exception, obviously modifies PC [interrupt only!]
+        case ARM_INST_RFEDA:
+        case ARM_INST_RFEDB:
+        case ARM_INST_RFEIA:
+        case ARM_INST_RFEIB:
+            //          TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB
+            break;
+
+            // Other instructions either can't change R15 or are "undefined" if you do,
+            //  so no sane compiler should ever generate them & we don't care here.
+            //  Also, R15 can only legally be used in a read-only manner for the
+            //  various ARM addressing mode (to get PC-relative addressing of constants),
+            //  but can NOT be used with any of the update modes.
+        default:
+            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
+            return false;
+            break;
+    }
+
+    return true;
+}
+
+void
+DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb)
+{
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called");
+
+    nub_addr_t targetPC = INVALID_NUB_ADDRESS;
+    uint32_t registerValue;
+    arm_error_t decodeError;
+    nub_addr_t currentPCInITBlock, nextPCInITBlock;
+    int i;
+    bool last_decoded_instruction_executes = true;
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
+
+    // Update *nextPC and *nextPCIsThumb for special cases
+    if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block
+    {
+        // Set the nextPC to the PC of the instruction which will execute in the IT block
+        // If none of the instruction execute in the IT block based on the condition flags,
+        // then point to the instruction immediately following the IT block
+        const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining;
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining);
+
+        // Determine the PC at which the next instruction resides
+        if (m_last_decode_arm.thumb16b)
+            currentPCInITBlock = currentPC + 2;
+        else
+            currentPCInITBlock = currentPC + 4;
+
+        for (i = 0; i < itBlockRemaining; i++)
+        {
+            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock);
+            decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock);
+
+            if (decodeError != ARM_SUCCESS)
+                DNBLogError("unable to disassemble instruction at 0x%8.8lx", currentPCInITBlock);
+
+            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition);
+            if (ConditionPassed(m_last_decode_arm.condition, cpsr))
+            {
+                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i);
+                break; // break from the for loop
+            }
+            else
+            {
+                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i);
+            }
+
+            // update currentPC and nextPCInITBlock
+            currentPCInITBlock = nextPCInITBlock;
+        }
+
+        if (i == itBlockRemaining) // We came out of the IT block without executing any instructions
+            last_decoded_instruction_executes = false;
+
+        *nextPC = currentPCInITBlock;
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC);
+    }
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
+                    "%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d",
+                    __FUNCTION__,
+                    cpsr,
+                    m_last_decode_arm.thumb16b,
+                    m_last_decode_arm.thumb,
+                    m_last_decode_arm.branch,
+                    m_last_decode_arm.conditional,
+                    m_last_decode_arm.knownTarget,
+                    m_last_decode_arm.links,
+                    m_last_decode_arm.canSwitchMode,
+                    m_last_decode_arm.doesSwitchMode);
+
+
+    if (last_decoded_instruction_executes &&                    // Was this a conditional instruction that did execute?
+        m_last_decode_arm.branch &&                             // Can this instruction change the PC?
+        (m_last_decode_arm.instruction->code != ARM_INST_SVC))  // If this instruction is not an SVC instruction
+    {
+        // Set targetPC. Compute if needed.
+        if (m_last_decode_arm.knownTarget)
+        {
+            // Fixed, known PC-relative
+            targetPC = m_last_decode_arm.targetPC;
+        }
+        else
+        {
+            // if targetPC is not known at compile time (PC-relative target), compute targetPC
+            if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC))
+            {
+                DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8lx", __FUNCTION__, currentPC);
+                targetPC = INVALID_NUB_ADDRESS;
+            }
+        }
+
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition);
+
+        // Refine nextPC computation
+        if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) ||
+            (m_last_decode_arm.instruction->code == ARM_INST_CBNZ))
+        {
+            // Compare and branch on zero/non-zero (Thumb-16 only)
+            // Unusual condition check built into the instruction
+            registerValue = m_state.gpr.__r[m_last_decode_arm.op[REG_RD].value];
+
+            if (m_last_decode_arm.instruction->code == ARM_INST_CBZ)
+            {
+                if (registerValue == 0)
+                    *nextPC = targetPC;
+            }
+            else
+            {
+                if (registerValue != 0)
+                    *nextPC = targetPC;
+            }
+        }
+        else if (m_last_decode_arm.conditional) // Is the change conditional on flag results?
+        {
+            if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match
+            {
+                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__);
+                *nextPC = targetPC;
+            }
+            else
+            {
+                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__);
+            }
+        }
+        else
+        {
+            *nextPC = targetPC;
+        }
+
+        // Refine nextPCIsThumb computation
+        if (m_last_decode_arm.doesSwitchMode)
+        {
+            *nextPCIsThumb = !currentPCIsThumb;
+        }
+        else if (m_last_decode_arm.canSwitchMode)
+        {
+            // Legal to switch ARM <--> Thumb mode with this branch
+            // dependent on bit[0] of targetPC
+            *nextPCIsThumb = (*nextPC & 1u) != 0;
+        }
+        else
+        {
+            *nextPCIsThumb = currentPCIsThumb;
+        }
+    }
+
+    DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
+}
+
+
+arm_error_t
+DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc)
+{
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr);
+
+    const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J;
+    const uint32_t curr_isetstate = curr_cpsr & isetstate_mask;
+    uint32_t opcode32;
+    nub_addr_t nextPC = curr_pc;
+    arm_error_t decodeReturnCode = ARM_SUCCESS;
+
+    m_last_decode_pc = curr_pc;
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
+
+    switch (curr_isetstate) {
+        case 0x0: // ARM Instruction
+            // Read the ARM opcode
+            if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4)
+            {
+                DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8lx", curr_pc);
+                decodeReturnCode = ARM_ERROR;
+            }
+            else
+            {
+                nextPC += 4;
+                decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0);
+
+                if (decodeReturnCode != ARM_SUCCESS)
+                    DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8lx", opcode32, curr_pc);
+            }
+            break;
+
+        case 0x20: // Thumb Instruction
+            uint16_t opcode16;
+            // Read the a 16 bit Thumb opcode
+            if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2)
+            {
+                DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc);
+                decodeReturnCode = ARM_ERROR;
+            }
+            else
+            {
+                nextPC += 2;
+                opcode32 = opcode16;
+
+                decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
+
+                switch (decodeReturnCode) {
+                    case ARM_SKIP:
+                        // 32 bit thumb opcode
+                        nextPC += 2;
+                        if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2)
+                        {
+                            DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8lx", curr_pc+2);
+                        }
+                        else
+                        {
+                            opcode32 = (opcode32 << 16) | opcode16;
+
+                            decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
+
+                            if (decodeReturnCode != ARM_SUCCESS)
+                                DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc+2);
+                            break;
+                        }
+                        break;
+
+                    case ARM_SUCCESS:
+                        // 16 bit thumb opcode; at this point we are done decoding the opcode
+                        break;
+
+                    default:
+                        DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8lx", opcode16, curr_pc);
+                        decodeReturnCode = ARM_ERROR;
+                        break;
+                }
+            }
+            break;
+
+        default:
+            break;
+    }
+
+    if (next_pc)
+        *next_pc = nextPC;
+
+    return decodeReturnCode;
+}
+
+nub_bool_t
+DNBArchMachARM::BreakpointHit(nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
+{
+    nub_addr_t bkpt_pc = (nub_addr_t)baton;
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
+    return DNBThreadSetRegisterValueByID(pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, bkpt_pc);
+}
+
+// Set the single step bit in the processor status register.
+kern_return_t
+DNBArchMachARM::SetSingleStepSoftwareBreakpoints()
+{
+    DNBError err;
+    err = GetGPRState(false);
+
+    if (err.Fail())
+    {
+        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
+        return err.Error();
+    }
+
+    nub_addr_t curr_pc = m_state.gpr.__pc;
+    uint32_t curr_cpsr = m_state.gpr.__cpsr;
+    nub_addr_t next_pc = curr_pc;
+
+    bool curr_pc_is_thumb = (m_state.gpr.__cpsr & 0x20) != 0;
+    bool next_pc_is_thumb = curr_pc_is_thumb;
+
+    uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8);
+    bool inITBlock = (curr_itstate & 0xF) ? 1 : 0;
+    bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0;
+
+    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock);
+
+    // If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc
+    if (!inITBlock)
+    {
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__);
+
+        arm_error_t decodeReturnCode =  DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc);
+
+        if (decodeReturnCode != ARM_SUCCESS)
+        {
+            err = KERN_INVALID_ARGUMENT;
+            DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8lx", curr_pc);
+        }
+    }
+    else
+    {
+        next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4);
+    }
+
+    // Instruction is NOT in the IT block OR
+    if (!inITBlock)
+    {
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__);
+        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+    }
+    else if (inITBlock && !m_last_decode_arm.setsFlags)
+    {
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__);
+        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+    }
+    else if (lastInITBlock && m_last_decode_arm.branch)
+    {
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__);
+        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
+    }
+    else
+    {
+        // Instruction is in IT block and can modify the CPSR flags
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__);
+
+        // NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded
+        // inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb
+        // reflect the decoded instruction at curr_pc
+
+        // If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR),
+        // we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately
+        // following this one AND a breakpoint at the instruction immediately following the IT block. We do this because
+        // we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we
+        // insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations
+        // starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[],
+        // and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'.
+
+        // The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE)
+        // instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced  Thumb
+        // by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the
+        // breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1)
+        // instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits.
+        // We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit
+        // Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save
+        // the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint
+        // we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine
+        // adjusts the PC based on the baton that is passed to it.
+
+        nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock;
+        uint16_t opcode16;
+        uint32_t opcode32;
+
+        addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4;
+
+        pcInITBlock = addrOfNextInstructionInITBlock;
+
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining);
+
+        m_sw_single_step_itblock_break_count = 0;
+        for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++)
+        {
+            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+            {
+                DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i);
+            }
+            else
+            {
+                nextPCInITBlock = pcInITBlock;
+                // Compute nextPCInITBlock based on opcode present at pcInITBlock
+                if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2)
+                {
+                    opcode32 = opcode16;
+                    nextPCInITBlock += 2;
+
+                    // Check for 32 bit thumb opcode and read the upper 16 bits if needed
+                    if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800))
+                    {
+                        // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
+                        // a 32 bit Thumb opcode
+                        // Read bits 31:16 of a 32 bit Thumb opcode
+                        if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2)
+                        {
+                            // 32 bit thumb opcode
+                            opcode32 = (opcode32 << 16) | opcode16;
+                            nextPCInITBlock += 2;
+                        }
+                        else
+                        {
+                            DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8lx", nextPCInITBlock);
+                        }
+                    }
+                }
+                else
+                {
+                    DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock);
+                }
+
+
+                // Set breakpoint and associate a callback function with it
+                bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i;
+                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock);
+
+                m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID());
+                if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
+                    err = KERN_INVALID_ARGUMENT;
+                else
+                {
+                    DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock);
+
+                    // Set the breakpoint callback for these special IT breakpoints
+                    // so that if one of these breakpoints gets hit, it knows to
+                    // update the PC to the original address of the conditional
+                    // IT instruction.
+                    DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock);
+                    m_sw_single_step_itblock_break_count++;
+                }
+            }
+
+            pcInITBlock = nextPCInITBlock;
+        }
+
+        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count);
+
+    }
+
+    DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM");
+
+    if (next_pc & 0x1)
+    {
+        assert(next_pc_is_thumb);
+    }
+
+    if (next_pc_is_thumb)
+    {
+        next_pc &= ~0x1;
+    }
+    else
+    {
+        assert((next_pc & 0x3) == 0);
+    }
+
+    if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch))
+    {
+        err = KERN_SUCCESS;
+
+#if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP
+        m_sw_single_step_next_pc = next_pc;
+        if (next_pc_is_thumb)
+            m_sw_single_step_next_pc |= 1;  // Set bit zero if the next PC is expected to be Thumb
+#else
+        const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc);
+
+        if (bp == NULL)
+        {
+            m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID());
+            if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
+                err = KERN_INVALID_ARGUMENT;
+            DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc);
+        }
+#endif
+    }
+
+    return err.Error();
+}
+
+uint32_t
+DNBArchMachARM::NumSupportedHardwareBreakpoints()
+{
+    // Set the init value to something that will let us know that we need to
+    // autodetect how many breakpoints are supported dynamically...
+    static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
+    if (g_num_supported_hw_breakpoints == UINT_MAX)
+    {
+        // Set this to zero in case we can't tell if there are any HW breakpoints
+        g_num_supported_hw_breakpoints = 0;
+
+        // Read the DBGDIDR to get the number of available hardware breakpoints
+        // However, in some of our current armv7 processors, hardware
+        // breakpoints/watchpoints were not properly connected. So detect those
+        // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+        // field to distinguish CPU architectures. This is a hack until we can
+        // get <rdar://problem/6372672> fixed, at which point we will switch to
+        // using a different sysctl string that will tell us how many BRPs
+        // are available to us directly without having to read DBGDIDR.
+        uint32_t register_DBGDIDR;
+
+        asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
+        uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
+        // Zero is reserved for the BRP count, so don't increment it if it is zero
+        if (numBRPs > 0)
+            numBRPs++;
+        DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
+
+        if (numBRPs > 0)
+        {
+            uint32_t cpusubtype;
+            size_t len;
+            len = sizeof(cpusubtype);
+            // TODO: remove this hack and change to using hw.optional.xx when implmented
+            if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
+            {
+                DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
+                if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+                    DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
+                else
+                    g_num_supported_hw_breakpoints = numBRPs;
+            }
+        }
+
+    }
+    return g_num_supported_hw_breakpoints;
+}
+
+
+uint32_t
+DNBArchMachARM::NumSupportedHardwareWatchpoints()
+{
+    // Set the init value to something that will let us know that we need to
+    // autodetect how many watchpoints are supported dynamically...
+    static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
+    if (g_num_supported_hw_watchpoints == UINT_MAX)
+    {
+        // Set this to zero in case we can't tell if there are any HW breakpoints
+        g_num_supported_hw_watchpoints = 0;
+        // Read the DBGDIDR to get the number of available hardware breakpoints
+        // However, in some of our current armv7 processors, hardware
+        // breakpoints/watchpoints were not properly connected. So detect those
+        // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
+        // field to distinguish CPU architectures. This is a hack until we can
+        // get <rdar://problem/6372672> fixed, at which point we will switch to
+        // using a different sysctl string that will tell us how many WRPs
+        // are available to us directly without having to read DBGDIDR.
+
+        uint32_t register_DBGDIDR;
+        asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
+        uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
+        DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
+
+        if (numWRPs > 0)
+        {
+            uint32_t cpusubtype;
+            size_t len;
+            len = sizeof(cpusubtype);
+            // TODO: remove this hack and change to using hw.optional.xx when implmented
+            if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
+            {
+                DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
+
+                if (cpusubtype == CPU_SUBTYPE_ARM_V7)
+                    DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
+                else
+                    g_num_supported_hw_watchpoints = numWRPs;
+            }
+        }
+
+    }
+    return g_num_supported_hw_watchpoints;
+}
+
+
+uint32_t
+DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
+{
+    // Make sure our address isn't bogus
+    if (addr & 1)
+        return INVALID_NUB_HW_INDEX;
+
+    kern_return_t kret = GetDBGState(false);
+
+    if (kret == KERN_SUCCESS)
+    {
+        const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
+        uint32_t i;
+        for (i=0; i<num_hw_breakpoints; ++i)
+        {
+            if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
+                break; // We found an available hw breakpoint slot (in i)
+        }
+
+        // See if we found an available hw breakpoint slot above
+        if (i < num_hw_breakpoints)
+        {
+            // Make sure bits 1:0 are clear in our address
+            m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
+
+            if (size == 2 || addr & 2)
+            {
+                uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
+
+                // We have a thumb breakpoint
+                // We have an ARM breakpoint
+                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
+                                        byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
+                                        S_USER |            // Which modes should this breakpoint stop in?
+                                        BCR_ENABLE;         // Enable this hardware breakpoint
+                DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
+                        addr,
+                        size,
+                        i,
+                        i,
+                        m_state.dbg.__bvr[i],
+                        m_state.dbg.__bcr[i]);
+            }
+            else if (size == 4)
+            {
+                // We have an ARM breakpoint
+                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
+                                        BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
+                                        S_USER |            // Which modes should this breakpoint stop in?
+                                        BCR_ENABLE;         // Enable this hardware breakpoint
+                DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = %8.8p, size = %u ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
+                        addr,
+                        size,
+                        i,
+                        i,
+                        m_state.dbg.__bvr[i],
+                        m_state.dbg.__bcr[i]);
+            }
+
+            kret = SetDBGState();
+            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
+
+            if (kret == KERN_SUCCESS)
+                return i;
+        }
+        else
+        {
+            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = %8.8p, size = %u) => all hardware breakpoint resources are being used.", addr, size);
+        }
+    }
+
+    return INVALID_NUB_HW_INDEX;
+}
+
+bool
+DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
+{
+    kern_return_t kret = GetDBGState(false);
+
+    const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
+    if (kret == KERN_SUCCESS)
+    {
+        if (hw_index < num_hw_points)
+        {
+            m_state.dbg.__bcr[hw_index] = 0;
+            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
+                    hw_index,
+                    hw_index,
+                    m_state.dbg.__bvr[hw_index],
+                    hw_index,
+                    m_state.dbg.__bcr[hw_index]);
+
+            kret = SetDBGState();
+
+            if (kret == KERN_SUCCESS)
+                return true;
+        }
+    }
+    return false;
+}
+
+uint32_t
+DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
+{
+    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = %8.8p, size = %u, read = %u, write = %u)", addr, size, read, write);
+
+    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+
+    // Can't watch zero bytes
+    if (size == 0)
+        return INVALID_NUB_HW_INDEX;
+
+    // We must watch for either read or write
+    if (read == false && write == false)
+        return INVALID_NUB_HW_INDEX;
+
+    // Can't watch more than 4 bytes per WVR/WCR pair
+    if (size > 4)
+        return INVALID_NUB_HW_INDEX;
+
+    // We can only watch up to four bytes that follow a 4 byte aligned address
+    // per watchpoint register pair. Since we have at most so we can only watch
+    // until the next 4 byte boundary and we need to make sure we can properly
+    // encode this.
+    uint32_t addr_word_offset = addr % 4;
+    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
+
+    uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
+    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
+    if (byte_mask > 0xfu)
+        return INVALID_NUB_HW_INDEX;
+
+    // Read the debug state
+    kern_return_t kret = GetDBGState(false);
+
+    if (kret == KERN_SUCCESS)
+    {
+        // Check to make sure we have the needed hardware support
+        uint32_t i = 0;
+
+        for (i=0; i<num_hw_watchpoints; ++i)
+        {
+            if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
+                break; // We found an available hw breakpoint slot (in i)
+        }
+
+        // See if we found an available hw breakpoint slot above
+        if (i < num_hw_watchpoints)
+        {
+            // Make the byte_mask into a valid Byte Address Select mask
+            uint32_t byte_address_select = byte_mask << 5;
+            // Make sure bits 1:0 are clear in our address
+            m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);
+            m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the IMVA that we will watch
+                                    S_USER |                    // Stop only in user mode
+                                    (read ? WCR_LOAD : 0) |     // Stop on read access?
+                                    (write ? WCR_STORE : 0) |   // Stop on write access?
+                                    WCR_ENABLE;                 // Enable this watchpoint;
+
+            kret = SetDBGState();
+            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
+
+            if (kret == KERN_SUCCESS)
+                return i;
+        }
+        else
+        {
+            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
+        }
+    }
+    return INVALID_NUB_HW_INDEX;
+}
+
+bool
+DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
+{
+    kern_return_t kret = GetDBGState(false);
+
+    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
+    if (kret == KERN_SUCCESS)
+    {
+        if (hw_index < num_hw_points)
+        {
+            m_state.dbg.__wcr[hw_index] = 0;
+            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ClearHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
+                    hw_index,
+                    hw_index,
+                    m_state.dbg.__wvr[hw_index],
+                    hw_index,
+                    m_state.dbg.__wcr[hw_index]);
+
+            kret = SetDBGState();
+
+            if (kret == KERN_SUCCESS)
+                return true;
+        }
+    }
+    return false;
+}
+
+//----------------------------------------------------------------------
+// Register information defintions for 32 bit ARMV6.
+//----------------------------------------------------------------------
+enum gpr_regnums
+{
+    e_regNumGPR_r0 = 0,
+    e_regNumGPR_r1,
+    e_regNumGPR_r2,
+    e_regNumGPR_r3,
+    e_regNumGPR_r4,
+    e_regNumGPR_r5,
+    e_regNumGPR_r6,
+    e_regNumGPR_r7,
+    e_regNumGPR_r8,
+    e_regNumGPR_r9,
+    e_regNumGPR_r10,
+    e_regNumGPR_r11,
+    e_regNumGPR_r12,
+    e_regNumGPR_sp,
+    e_regNumGPR_lr,
+    e_regNumGPR_pc,
+    e_regNumGPR_cpsr
+};
+
+// General purpose registers
+static DNBRegisterInfo g_gpr_registers[] =
+{
+  { "r0"    , Uint, 4, Hex },
+  { "r1"    , Uint, 4, Hex },
+  { "r2"    , Uint, 4, Hex },
+  { "r3"    , Uint, 4, Hex },
+  { "r4"    , Uint, 4, Hex },
+  { "r5"    , Uint, 4, Hex },
+  { "r6"    , Uint, 4, Hex },
+  { "r7"    , Uint, 4, Hex },
+  { "r8"    , Uint, 4, Hex },
+  { "r9"    , Uint, 4, Hex },
+  { "r10"   , Uint, 4, Hex },
+  { "r11"   , Uint, 4, Hex },
+  { "r12"   , Uint, 4, Hex },
+  { "sp"    , Uint, 4, Hex },
+  { "lr"    , Uint, 4, Hex },
+  { "pc"    , Uint, 4, Hex },
+  { "cpsr"  , Uint, 4, Hex },
+};
+
+// Floating point registers
+static DNBRegisterInfo g_vfp_registers[] =
+{
+  { "s0"    , IEEE754, 4, Float },
+  { "s1"    , IEEE754, 4, Float },
+  { "s2"    , IEEE754, 4, Float },
+  { "s3"    , IEEE754, 4, Float },
+  { "s4"    , IEEE754, 4, Float },
+  { "s5"    , IEEE754, 4, Float },
+  { "s6"    , IEEE754, 4, Float },
+  { "s7"    , IEEE754, 4, Float },
+  { "s8"    , IEEE754, 4, Float },
+  { "s9"    , IEEE754, 4, Float },
+  { "s10"   , IEEE754, 4, Float },
+  { "s11"   , IEEE754, 4, Float },
+  { "s12"   , IEEE754, 4, Float },
+  { "s13"   , IEEE754, 4, Float },
+  { "s14"   , IEEE754, 4, Float },
+  { "s15"   , IEEE754, 4, Float },
+  { "s16"   , IEEE754, 4, Float },
+  { "s17"   , IEEE754, 4, Float },
+  { "s18"   , IEEE754, 4, Float },
+  { "s19"   , IEEE754, 4, Float },
+  { "s20"   , IEEE754, 4, Float },
+  { "s21"   , IEEE754, 4, Float },
+  { "s22"   , IEEE754, 4, Float },
+  { "s23"   , IEEE754, 4, Float },
+  { "s24"   , IEEE754, 4, Float },
+  { "s25"   , IEEE754, 4, Float },
+  { "s26"   , IEEE754, 4, Float },
+  { "s27"   , IEEE754, 4, Float },
+  { "s28"   , IEEE754, 4, Float },
+  { "s29"   , IEEE754, 4, Float },
+  { "s30"   , IEEE754, 4, Float },
+  { "s31"   , IEEE754, 4, Float },
+  { "fpscr" , Uint, 4, Hex }
+};
+
+// Exception registers
+
+static DNBRegisterInfo g_exc_registers[] =
+{
+  { "dar"       , Uint, 4, Hex },
+  { "dsisr"     , Uint, 4, Hex },
+  { "exception" , Uint, 4, Hex }
+};
+
+// Number of registers in each register set
+const size_t k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
+const size_t k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
+const size_t k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
+// Total number of registers for this architecture
+const size_t k_num_armv6_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
+
+//----------------------------------------------------------------------
+// Register set definitions. The first definitions at register set index
+// of zero is for all registers, followed by other registers sets. The
+// register information for the all register set need not be filled in.
+//----------------------------------------------------------------------
+static const DNBRegisterSetInfo g_reg_sets[] =
+{
+    { "ARMV6 Registers",            NULL,               k_num_armv6_registers   },
+    { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
+    { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
+    { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
+};
+// Total number of register sets for this architecture
+const size_t k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
+
+
+const DNBRegisterSetInfo *
+DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) const
+{
+    *num_reg_sets = k_num_register_sets;
+    return g_reg_sets;
+}
+
+bool
+DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
+{
+    if (set == REGISTER_SET_GENERIC)
+    {
+        switch (reg)
+        {
+        case GENERIC_REGNUM_PC:     // Program Counter
+            set = e_regSetGPR;
+            reg = e_regNumGPR_pc;
+            break;
+
+        case GENERIC_REGNUM_SP:     // Stack Pointer
+            set = e_regSetGPR;
+            reg = e_regNumGPR_sp;
+            break;
+
+        case GENERIC_REGNUM_FP:     // Frame Pointer
+            set = e_regSetGPR;
+            reg = e_regNumGPR_r7;   // is this the right reg?
+            break;
+
+        case GENERIC_REGNUM_RA:     // Return Address
+            set = e_regSetGPR;
+            reg = e_regNumGPR_lr;
+            break;
+
+        case GENERIC_REGNUM_FLAGS:  // Processor flags register
+            set = e_regSetGPR;
+            reg = e_regNumGPR_cpsr;
+            break;
+
+        default:
+            return false;
+        }
+    }
+
+    if (GetRegisterState(set, false) != KERN_SUCCESS)
+        return false;
+
+    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+    if (regInfo)
+    {
+        value->info = *regInfo;
+        switch (set)
+        {
+        case e_regSetGPR:
+            if (reg < k_num_gpr_registers)
+            {
+                value->value.uint32 = m_state.gpr.__r[reg];
+                return true;
+            }
+            break;
+
+        case e_regSetVFP:
+            if (reg < 32)
+            {
+                value->value.uint32 = m_state.vfp.__r[reg];
+                return true;
+            }
+            else if (reg == 32)
+            {
+                value->value.uint32 = m_state.vfp.__fpscr;
+                return true;
+            }
+            break;
+
+        case e_regSetEXC:
+            if (reg < k_num_exc_registers)
+            {
+                value->value.uint32 = (&m_state.exc.__exception)[reg];
+                return true;
+            }
+            break;
+        }
+    }
+    return false;
+}
+
+bool
+DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
+{
+    if (set == REGISTER_SET_GENERIC)
+    {
+        switch (reg)
+        {
+        case GENERIC_REGNUM_PC:     // Program Counter
+            set = e_regSetGPR;
+            reg = e_regNumGPR_pc;
+            break;
+
+        case GENERIC_REGNUM_SP:     // Stack Pointer
+            set = e_regSetGPR;
+            reg = e_regNumGPR_sp;
+            break;
+
+        case GENERIC_REGNUM_FP:     // Frame Pointer
+            set = e_regSetGPR;
+            reg = e_regNumGPR_r7;
+            break;
+
+        case GENERIC_REGNUM_RA:     // Return Address
+            set = e_regSetGPR;
+            reg = e_regNumGPR_lr;
+            break;
+
+        case GENERIC_REGNUM_FLAGS:  // Processor flags register
+            set = e_regSetGPR;
+            reg = e_regNumGPR_cpsr;
+            break;
+
+        default:
+            return false;
+        }
+    }
+
+    if (GetRegisterState(set, false) != KERN_SUCCESS)
+        return false;
+
+    bool success = false;
+    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
+    if (regInfo)
+    {
+        switch (set)
+        {
+        case e_regSetGPR:
+            if (reg < k_num_gpr_registers)
+            {
+                m_state.gpr.__r[reg] = value->value.uint32;
+                success = true;
+            }
+            break;
+
+        case e_regSetVFP:
+            if (reg < 32)
+            {
+                m_state.vfp.__r[reg] = value->value.float64;
+                success = true;
+            }
+            else if (reg == 32)
+            {
+                m_state.vfp.__fpscr = value->value.uint32;
+                success = true;
+            }
+            break;
+
+        case e_regSetEXC:
+            if (reg < k_num_exc_registers)
+            {
+                (&m_state.exc.__exception)[reg] = value->value.uint32;
+                success = true;
+            }
+            break;
+        }
+
+    }
+    if (success)
+        return SetRegisterState(set) == KERN_SUCCESS;
+    return false;
+}
+
+kern_return_t
+DNBArchMachARM::GetRegisterState(int set, bool force)
+{
+    switch (set)
+    {
+    case e_regSetALL:   return GetGPRState(force) |
+                               GetVFPState(force) |
+                               GetEXCState(force) |
+                               GetDBGState(force);
+    case e_regSetGPR:   return GetGPRState(force);
+    case e_regSetVFP:   return GetVFPState(force);
+    case e_regSetEXC:   return GetEXCState(force);
+    case e_regSetDBG:   return GetDBGState(force);
+    default: break;
+    }
+    return KERN_INVALID_ARGUMENT;
+}
+
+kern_return_t
+DNBArchMachARM::SetRegisterState(int set)
+{
+    // Make sure we have a valid context to set.
+    kern_return_t err = GetRegisterState(set, false);
+    if (err != KERN_SUCCESS)
+        return err;
+
+    switch (set)
+    {
+    case e_regSetALL:   return SetGPRState() |
+                               SetVFPState() |
+                               SetEXCState() |
+                               SetDBGState();
+    case e_regSetGPR:   return SetGPRState();
+    case e_regSetVFP:   return SetVFPState();
+    case e_regSetEXC:   return SetEXCState();
+    case e_regSetDBG:   return SetDBGState();
+    default: break;
+    }
+    return KERN_INVALID_ARGUMENT;
+}
+
+bool
+DNBArchMachARM::RegisterSetStateIsValid (int set) const
+{
+    return m_state.RegsAreValid(set);
+}
+
+
+#endif    // #if defined (__arm__)
+