Thread Safety: Moving the analysis to a new file

llvm-svn: 139369
diff --git a/clang/lib/Analysis/ThreadSafety.cpp b/clang/lib/Analysis/ThreadSafety.cpp
new file mode 100644
index 0000000..b0d1d30
--- /dev/null
+++ b/clang/lib/Analysis/ThreadSafety.cpp
@@ -0,0 +1,794 @@
+//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A intra-procedural analysis for thread safety (e.g. deadlocks and race
+// conditions), based off of an annotation system.
+//
+// See http://gcc.gnu.org/wiki/ThreadSafetyAnnotation for the gcc version.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/CFGStmtMap.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include <algorithm>
+#include <vector>
+
+using namespace clang;
+using namespace thread_safety;
+
+namespace {
+/// \brief Implements a set of CFGBlocks using a BitVector.
+///
+/// This class contains a minimal interface, primarily dictated by the SetType
+/// template parameter of the llvm::po_iterator template, as used with external
+/// storage. We also use this set to keep track of which CFGBlocks we visit
+/// during the analysis.
+class CFGBlockSet {
+  llvm::BitVector VisitedBlockIDs;
+
+public:
+  // po_iterator requires this iterator, but the only interface needed is the
+  // value_type typedef.
+  struct iterator {
+    typedef const CFGBlock *value_type;
+  };
+
+  CFGBlockSet() {}
+  CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
+
+  /// \brief Set the bit associated with a particular CFGBlock.
+  /// This is the important method for the SetType template parameter.
+  bool insert(const CFGBlock *Block) {
+    // Note that insert() is called by po_iterator, which doesn't check to make
+    // sure that Block is non-null.  Moreover, the CFGBlock iterator will
+    // occasionally hand out null pointers for pruned edges, so we catch those
+    // here.
+    if (Block == 0)
+      return false;  // if an edge is trivially false.
+    if (VisitedBlockIDs.test(Block->getBlockID()))
+      return false;
+    VisitedBlockIDs.set(Block->getBlockID());
+    return true;
+  }
+
+  /// \brief Check if the bit for a CFGBlock has been already set.
+  /// This method is for tracking visited blocks in the main threadsafety loop.
+  /// Block must not be null.
+  bool alreadySet(const CFGBlock *Block) {
+    return VisitedBlockIDs.test(Block->getBlockID());
+  }
+};
+
+/// \brief We create a helper class which we use to iterate through CFGBlocks in
+/// the topological order.
+class TopologicallySortedCFG {
+  typedef llvm::po_iterator<const CFG*, CFGBlockSet, true>  po_iterator;
+
+  std::vector<const CFGBlock*> Blocks;
+
+public:
+  typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
+
+  TopologicallySortedCFG(const CFG *CFGraph) {
+    Blocks.reserve(CFGraph->getNumBlockIDs());
+    CFGBlockSet BSet(CFGraph);
+
+    for (po_iterator I = po_iterator::begin(CFGraph, BSet),
+         E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
+      Blocks.push_back(*I);
+    }
+  }
+
+  iterator begin() {
+    return Blocks.rbegin();
+  }
+
+  iterator end() {
+    return Blocks.rend();
+  }
+};
+
+/// \brief A MutexID object uniquely identifies a particular mutex, and
+/// is built from an Expr* (i.e. calling a lock function).
+///
+/// Thread-safety analysis works by comparing lock expressions.  Within the
+/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
+/// a particular mutex object at run-time.  Subsequent occurrences of the same
+/// expression (where "same" means syntactic equality) will refer to the same
+/// run-time object if three conditions hold:
+/// (1) Local variables in the expression, such as "x" have not changed.
+/// (2) Values on the heap that affect the expression have not changed.
+/// (3) The expression involves only pure function calls.
+/// The current implementation assumes, but does not verify, that multiple uses
+/// of the same lock expression satisfies these criteria.
+///
+/// Clang introduces an additional wrinkle, which is that it is difficult to
+/// derive canonical expressions, or compare expressions directly for equality.
+/// Thus, we identify a mutex not by an Expr, but by the set of named
+/// declarations that are referenced by the Expr.  In other words,
+/// x->foo->bar.mu will be a four element vector with the Decls for
+/// mu, bar, and foo, and x.  The vector will uniquely identify the expression
+/// for all practical purposes.
+///
+/// Note we will need to perform substitution on "this" and function parameter
+/// names when constructing a lock expression.
+///
+/// For example:
+/// class C { Mutex Mu;  void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
+/// void myFunc(C *X) { ... X->lock() ... }
+/// The original expression for the mutex acquired by myFunc is "this->Mu", but
+/// "X" is substituted for "this" so we get X->Mu();
+///
+/// For another example:
+/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
+/// MyList *MyL;
+/// foo(MyL);  // requires lock MyL->Mu to be held
+class MutexID {
+  SmallVector<NamedDecl*, 2> DeclSeq;
+
+  /// Build a Decl sequence representing the lock from the given expression.
+  /// Recursive function that bottoms out when the final DeclRefExpr is reached.
+  void buildMutexID(Expr *Exp) {
+    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
+      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
+      DeclSeq.push_back(ND);
+    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
+      NamedDecl *ND = ME->getMemberDecl();
+      DeclSeq.push_back(ND);
+      buildMutexID(ME->getBase());
+    } else if (isa<CXXThisExpr>(Exp)) {
+      return;
+    } else {
+      // FIXME: add diagnostic
+      llvm::report_fatal_error("Expected lock expression!");
+    }
+  }
+
+public:
+  MutexID(Expr *LExpr) {
+    buildMutexID(LExpr);
+    assert(!DeclSeq.empty());
+  }
+
+  bool operator==(const MutexID &other) const {
+    return DeclSeq == other.DeclSeq;
+  }
+
+  bool operator!=(const MutexID &other) const {
+    return !(*this == other);
+  }
+
+  // SmallVector overloads Operator< to do lexicographic ordering. Note that
+  // we use pointer equality (and <) to compare NamedDecls. This means the order
+  // of MutexIDs in a lockset is nondeterministic. In order to output
+  // diagnostics in a deterministic ordering, we must order all diagnostics to
+  // output by SourceLocation when iterating through this lockset.
+  bool operator<(const MutexID &other) const {
+    return DeclSeq < other.DeclSeq;
+  }
+
+  /// \brief Returns the name of the first Decl in the list for a given MutexID;
+  /// e.g. the lock expression foo.bar() has name "bar".
+  /// The caret will point unambiguously to the lock expression, so using this
+  /// name in diagnostics is a way to get simple, and consistent, mutex names.
+  /// We do not want to output the entire expression text for security reasons.
+  StringRef getName() const {
+    return DeclSeq.front()->getName();
+  }
+
+  void Profile(llvm::FoldingSetNodeID &ID) const {
+    for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
+         E = DeclSeq.end(); I != E; ++I) {
+      ID.AddPointer(*I);
+    }
+  }
+};
+
+/// \brief This is a helper class that stores info about the most recent
+/// accquire of a Lock.
+///
+/// The main body of the analysis maps MutexIDs to LockDatas.
+struct LockData {
+  SourceLocation AcquireLoc;
+
+  /// \brief LKind stores whether a lock is held shared or exclusively.
+  /// Note that this analysis does not currently support either re-entrant
+  /// locking or lock "upgrading" and "downgrading" between exclusive and
+  /// shared.
+  ///
+  /// FIXME: add support for re-entrant locking and lock up/downgrading
+  LockKind LKind;
+
+  LockData(SourceLocation AcquireLoc, LockKind LKind)
+    : AcquireLoc(AcquireLoc), LKind(LKind) {}
+
+  bool operator==(const LockData &other) const {
+    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
+  }
+
+  bool operator!=(const LockData &other) const {
+    return !(*this == other);
+  }
+
+  void Profile(llvm::FoldingSetNodeID &ID) const {
+      ID.AddInteger(AcquireLoc.getRawEncoding());
+      ID.AddInteger(LKind);
+    }
+};
+
+/// A Lockset maps each MutexID (defined above) to information about how it has
+/// been locked.
+typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
+
+/// \brief We use this class to visit different types of expressions in
+/// CFGBlocks, and build up the lockset.
+/// An expression may cause us to add or remove locks from the lockset, or else
+/// output error messages related to missing locks.
+/// FIXME: In future, we may be able to not inherit from a visitor.
+class BuildLockset : public StmtVisitor<BuildLockset> {
+  ThreadSafetyHandler &Handler;
+  Lockset LSet;
+  Lockset::Factory &LocksetFactory;
+
+  // Helper functions
+  void removeLock(SourceLocation UnlockLoc, Expr *LockExp);
+  void addLock(SourceLocation LockLoc, Expr *LockExp, LockKind LK);
+  const ValueDecl *getValueDecl(Expr *Exp);
+  void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
+                           Expr *MutexExp, ProtectedOperationKind POK);
+  void checkAccess(Expr *Exp, AccessKind AK);
+  void checkDereference(Expr *Exp, AccessKind AK);
+
+  template <class AttrType>
+  void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
+
+  /// \brief Returns true if the lockset contains a lock, regardless of whether
+  /// the lock is held exclusively or shared.
+  bool locksetContains(MutexID Lock) const {
+    return LSet.lookup(Lock);
+  }
+
+  /// \brief Returns true if the lockset contains a lock with the passed in
+  /// locktype.
+  bool locksetContains(MutexID Lock, LockKind KindRequested) const {
+    const LockData *LockHeld = LSet.lookup(Lock);
+    return (LockHeld && KindRequested == LockHeld->LKind);
+  }
+
+  /// \brief Returns true if the lockset contains a lock with at least the
+  /// passed in locktype. So for example, if we pass in LK_Shared, this function
+  /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
+  /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
+  bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
+    switch (KindRequested) {
+      case LK_Shared:
+        return locksetContains(Lock);
+      case LK_Exclusive:
+        return locksetContains(Lock, KindRequested);
+    }
+  }
+
+public:
+  BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
+    : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
+      LocksetFactory(F) {}
+
+  Lockset getLockset() {
+    return LSet;
+  }
+
+  void VisitUnaryOperator(UnaryOperator *UO);
+  void VisitBinaryOperator(BinaryOperator *BO);
+  void VisitCastExpr(CastExpr *CE);
+  void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
+};
+
+/// \brief Add a new lock to the lockset, warning if the lock is already there.
+/// \param LockLoc The source location of the acquire
+/// \param LockExp The lock expression corresponding to the lock to be added
+void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp,
+                           LockKind LK) {
+  // FIXME: deal with acquired before/after annotations
+  MutexID Mutex(LockExp);
+  LockData NewLock(LockLoc, LK);
+
+  // FIXME: Don't always warn when we have support for reentrant locks.
+  if (locksetContains(Mutex))
+    Handler.handleDoubleLock(Mutex.getName(), LockLoc);
+  LSet = LocksetFactory.add(LSet, Mutex, NewLock);
+}
+
+/// \brief Remove a lock from the lockset, warning if the lock is not there.
+/// \param LockExp The lock expression corresponding to the lock to be removed
+/// \param UnlockLoc The source location of the unlock (only used in error msg)
+void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp) {
+  MutexID Mutex(LockExp);
+
+  Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
+  if(NewLSet == LSet)
+    Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
+
+  LSet = NewLSet;
+}
+
+/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
+const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
+  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
+    return DR->getDecl();
+
+  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
+    return ME->getMemberDecl();
+
+  return 0;
+}
+
+/// \brief Warn if the LSet does not contain a lock sufficient to protect access
+/// of at least the passed in AccessType.
+void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
+                                      AccessKind AK, Expr *MutexExp,
+                                      ProtectedOperationKind POK) {
+  LockKind LK = getLockKindFromAccessKind(AK);
+  MutexID Mutex(MutexExp);
+  if (!locksetContainsAtLeast(Mutex, LK))
+    Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
+}
+
+
+/// \brief This method identifies variable dereferences and checks pt_guarded_by
+/// and pt_guarded_var annotations. Note that we only check these annotations
+/// at the time a pointer is dereferenced.
+/// FIXME: We need to check for other types of pointer dereferences
+/// (e.g. [], ->) and deal with them here.
+/// \param Exp An expression that has been read or written.
+void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
+  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
+  if (!UO || UO->getOpcode() != clang::UO_Deref)
+    return;
+  Exp = UO->getSubExpr()->IgnoreParenCasts();
+
+  const ValueDecl *D = getValueDecl(Exp);
+  if(!D || !D->hasAttrs())
+    return;
+
+  if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
+    Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
+
+  const AttrVec &ArgAttrs = D->getAttrs();
+  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
+    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
+      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
+}
+
+/// \brief Checks guarded_by and guarded_var attributes.
+/// Whenever we identify an access (read or write) of a DeclRefExpr or
+/// MemberExpr, we need to check whether there are any guarded_by or
+/// guarded_var attributes, and make sure we hold the appropriate mutexes.
+void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
+  const ValueDecl *D = getValueDecl(Exp);
+  if(!D || !D->hasAttrs())
+    return;
+
+  if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
+    Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
+
+  const AttrVec &ArgAttrs = D->getAttrs();
+  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
+    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
+      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
+}
+
+/// \brief For unary operations which read and write a variable, we need to
+/// check whether we hold any required mutexes. Reads are checked in
+/// VisitCastExpr.
+void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
+  switch (UO->getOpcode()) {
+    case clang::UO_PostDec:
+    case clang::UO_PostInc:
+    case clang::UO_PreDec:
+    case clang::UO_PreInc: {
+      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
+      checkAccess(SubExp, AK_Written);
+      checkDereference(SubExp, AK_Written);
+      break;
+    }
+    default:
+      break;
+  }
+}
+
+/// For binary operations which assign to a variable (writes), we need to check
+/// whether we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
+  if (!BO->isAssignmentOp())
+    return;
+  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
+  checkAccess(LHSExp, AK_Written);
+  checkDereference(LHSExp, AK_Written);
+}
+
+/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
+/// need to ensure we hold any required mutexes.
+/// FIXME: Deal with non-primitive types.
+void BuildLockset::VisitCastExpr(CastExpr *CE) {
+  if (CE->getCastKind() != CK_LValueToRValue)
+    return;
+  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
+  checkAccess(SubExp, AK_Read);
+  checkDereference(SubExp, AK_Read);
+}
+
+/// \brief This function, parameterized by an attribute type, is used to add a
+/// set of locks specified as attribute arguments to the lockset.
+template <typename AttrType>
+void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
+                                 CXXMemberCallExpr *Exp) {
+  typedef typename AttrType::args_iterator iterator_type;
+  SourceLocation ExpLocation = Exp->getExprLoc();
+  Expr *Parent = Exp->getImplicitObjectArgument();
+  AttrType *SpecificAttr = cast<AttrType>(Attr);
+
+  if (SpecificAttr->args_size() == 0) {
+    // The mutex held is the "this" object.
+    addLock(ExpLocation, Parent, LK);
+    return;
+  }
+
+  for (iterator_type I = SpecificAttr->args_begin(),
+       E = SpecificAttr->args_end(); I != E; ++I)
+    addLock(ExpLocation, *I, LK);
+}
+
+/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
+/// the method that is being called and add, remove or check locks in the
+/// lockset accordingly.
+///
+/// FIXME: For classes annotated with one of the guarded annotations, we need
+/// to treat const method calls as reads and non-const method calls as writes,
+/// and check that the appropriate locks are held. Non-const method calls with
+/// the same signature as const method calls can be also treated as reads.
+///
+/// FIXME: We need to also visit CallExprs to catch/check global functions.
+void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
+  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
+
+  SourceLocation ExpLocation = Exp->getExprLoc();
+  Expr *Parent = Exp->getImplicitObjectArgument();
+
+  if(!D || !D->hasAttrs())
+    return;
+
+  AttrVec &ArgAttrs = D->getAttrs();
+  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
+    Attr *Attr = ArgAttrs[i];
+    switch (Attr->getKind()) {
+      // When we encounter an exclusive lock function, we need to add the lock
+      // to our lockset with kind exclusive.
+      case attr::ExclusiveLockFunction:
+        addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
+        break;
+
+      // When we encounter a shared lock function, we need to add the lock
+      // to our lockset with kind shared.
+      case attr::SharedLockFunction:
+        addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
+        break;
+
+      // When we encounter an unlock function, we need to remove unlocked
+      // mutexes from the lockset, and flag a warning if they are not there.
+      case attr::UnlockFunction: {
+        UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
+
+        if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
+          removeLock(ExpLocation, Parent);
+          break;
+        }
+
+        for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
+             E = UFAttr->args_end(); I != E; ++I)
+          removeLock(ExpLocation, *I);
+        break;
+      }
+
+      case attr::ExclusiveLocksRequired: {
+        // FIXME: Also use this attribute to add required locks to the initial
+        // lockset when processing a CFG for a function annotated with this
+        // attribute.
+        ExclusiveLocksRequiredAttr *ELRAttr =
+            cast<ExclusiveLocksRequiredAttr>(Attr);
+
+        for (ExclusiveLocksRequiredAttr::args_iterator
+             I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
+          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
+        break;
+      }
+
+      case attr::SharedLocksRequired: {
+        // FIXME: Also use this attribute to add required locks to the initial
+        // lockset when processing a CFG for a function annotated with this
+        // attribute.
+        SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
+
+        for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
+             E = SLRAttr->args_end(); I != E; ++I)
+          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
+        break;
+      }
+
+      case attr::LocksExcluded: {
+        LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
+        for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
+            E = LEAttr->args_end(); I != E; ++I) {
+          MutexID Mutex(*I);
+          if (locksetContains(Mutex))
+            Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
+                                          ExpLocation);
+        }
+        break;
+      }
+
+      case attr::LockReturned:
+        // FIXME: Deal with this attribute.
+        break;
+
+      // Ignore other (non thread-safety) attributes
+      default:
+        break;
+    }
+  }
+}
+
+} // end anonymous namespace
+
+/// \brief Flags a warning for each lock that is in LSet2 but not LSet1, or
+/// else mutexes that are held shared in one lockset and exclusive in the other.
+static Lockset warnIfNotInFirstSetOrNotSameKind(ThreadSafetyHandler &Handler,
+                                                const Lockset LSet1,
+                                                const Lockset LSet2,
+                                                Lockset Intersection,
+                                                Lockset::Factory &Fact) {
+  for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
+    const MutexID &LSet2Mutex = I.getKey();
+    const LockData &LSet2LockData = I.getData();
+    if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
+      if (LD->LKind != LSet2LockData.LKind) {
+        Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
+                                         LSet2LockData.AcquireLoc,
+                                         LD->AcquireLoc);
+        if (LD->LKind != LK_Exclusive)
+          Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
+      }
+    } else {
+      Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
+                                        LSet2LockData.AcquireLoc);
+    }
+  }
+  return Intersection;
+}
+
+
+/// \brief Compute the intersection of two locksets and issue warnings for any
+/// locks in the symmetric difference.
+///
+/// This function is used at a merge point in the CFG when comparing the lockset
+/// of each branch being merged. For example, given the following sequence:
+/// A; if () then B; else C; D; we need to check that the lockset after B and C
+/// are the same. In the event of a difference, we use the intersection of these
+/// two locksets at the start of D.
+static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
+                                const Lockset LSet1, const Lockset LSet2,
+                                Lockset::Factory &Fact) {
+  Lockset Intersection = LSet1;
+  Intersection = warnIfNotInFirstSetOrNotSameKind(Handler, LSet1, LSet2,
+                                                  Intersection, Fact);
+
+  for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
+    if (!LSet2.contains(I.getKey())) {
+      const MutexID &Mutex = I.getKey();
+      const LockData &MissingLock = I.getData();
+      Handler.handleMutexHeldEndOfScope(Mutex.getName(),
+                                        MissingLock.AcquireLoc);
+      Intersection = Fact.remove(Intersection, Mutex);
+    }
+  }
+  return Intersection;
+}
+
+/// \brief Returns the location of the first Stmt in a Block.
+static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
+  SourceLocation Loc;
+  for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
+       BI != BE; ++BI) {
+    if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
+      Loc = CfgStmt->getStmt()->getLocStart();
+      if (Loc.isValid()) return Loc;
+    }
+  }
+  if (Stmt *S = Block->getTerminator().getStmt()) {
+    Loc = S->getLocStart();
+    if (Loc.isValid()) return Loc;
+  }
+  return Loc;
+}
+
+/// \brief Warn about different locksets along backedges of loops.
+/// This function is called when we encounter a back edge. At that point,
+/// we need to verify that the lockset before taking the backedge is the
+/// same as the lockset before entering the loop.
+///
+/// \param LoopEntrySet Locks before starting the loop
+/// \param LoopReentrySet Locks in the last CFG block of the loop
+static void warnBackEdgeUnequalLocksets(ThreadSafetyHandler &Handler,
+                                        const Lockset LoopReentrySet,
+                                        const Lockset LoopEntrySet,
+                                        SourceLocation FirstLocInLoop,
+                                        Lockset::Factory &Fact) {
+  assert(FirstLocInLoop.isValid());
+  // Warn for locks held at the start of the loop, but not the end.
+  for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
+       I != E; ++I) {
+    if (!LoopReentrySet.contains(I.getKey())) {
+      // We report this error at the location of the first statement in a loop
+      Handler.handleNoLockLoopEntry(I.getKey().getName(), FirstLocInLoop);
+    }
+  }
+
+  // Warn for locks held at the end of the loop, but not at the start.
+  warnIfNotInFirstSetOrNotSameKind(Handler, LoopEntrySet, LoopReentrySet,
+                                   LoopReentrySet, Fact);
+}
+
+
+namespace clang { namespace thread_safety {
+/// \brief Check a function's CFG for thread-safety violations.
+///
+/// We traverse the blocks in the CFG, compute the set of mutexes that are held
+/// at the end of each block, and issue warnings for thread safety violations.
+/// Each block in the CFG is traversed exactly once.
+void runThreadSafetyAnalysis(AnalysisContext &AC,
+                             ThreadSafetyHandler &Handler) {
+  CFG *CFGraph = AC.getCFG();
+  if (!CFGraph) return;
+  const Decl *D = AC.getDecl();
+  if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
+
+  Lockset::Factory LocksetFactory;
+
+  // FIXME: Swith to SmallVector? Otherwise improve performance impact?
+  std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
+                                     LocksetFactory.getEmptyMap());
+  std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
+                                    LocksetFactory.getEmptyMap());
+
+  // We need to explore the CFG via a "topological" ordering.
+  // That way, we will be guaranteed to have information about required
+  // predecessor locksets when exploring a new block.
+  TopologicallySortedCFG SortedGraph(CFGraph);
+  CFGBlockSet VisitedBlocks(CFGraph);
+
+  for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
+       E = SortedGraph.end(); I!= E; ++I) {
+    const CFGBlock *CurrBlock = *I;
+    int CurrBlockID = CurrBlock->getBlockID();
+
+    VisitedBlocks.insert(CurrBlock);
+
+    // Use the default initial lockset in case there are no predecessors.
+    Lockset &Entryset = EntryLocksets[CurrBlockID];
+    Lockset &Exitset = ExitLocksets[CurrBlockID];
+
+    // Iterate through the predecessor blocks and warn if the lockset for all
+    // predecessors is not the same. We take the entry lockset of the current
+    // block to be the intersection of all previous locksets.
+    // FIXME: By keeping the intersection, we may output more errors in future
+    // for a lock which is not in the intersection, but was in the union. We
+    // may want to also keep the union in future. As an example, let's say
+    // the intersection contains Mutex L, and the union contains L and M.
+    // Later we unlock M. At this point, we would output an error because we
+    // never locked M; although the real error is probably that we forgot to
+    // lock M on all code paths. Conversely, let's say that later we lock M.
+    // In this case, we should compare against the intersection instead of the
+    // union because the real error is probably that we forgot to unlock M on
+    // all code paths.
+    bool LocksetInitialized = false;
+    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
+         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
+
+      // if *PI -> CurrBlock is a back edge
+      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
+        continue;
+
+      int PrevBlockID = (*PI)->getBlockID();
+      if (!LocksetInitialized) {
+        Entryset = ExitLocksets[PrevBlockID];
+        LocksetInitialized = true;
+      } else {
+        Entryset = intersectAndWarn(Handler, Entryset,
+                                    ExitLocksets[PrevBlockID], LocksetFactory);
+      }
+    }
+
+    BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
+    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
+         BE = CurrBlock->end(); BI != BE; ++BI) {
+      if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
+        LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
+    }
+    Exitset = LocksetBuilder.getLockset();
+
+    // For every back edge from CurrBlock (the end of the loop) to another block
+    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
+    // the one held at the beginning of FirstLoopBlock. We can look up the
+    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
+    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
+         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
+
+      // if CurrBlock -> *SI is *not* a back edge
+      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
+        continue;
+
+      CFGBlock *FirstLoopBlock = *SI;
+      SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
+
+      assert(FirstLoopLocation.isValid());
+
+      // Fail gracefully in release code.
+      if (!FirstLoopLocation.isValid())
+        continue;
+
+      Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
+      Lockset LoopEnd = ExitLocksets[CurrBlockID];
+      warnBackEdgeUnequalLocksets(Handler, LoopEnd, PreLoop, FirstLoopLocation,
+                                  LocksetFactory);
+    }
+  }
+
+  Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
+  if (!FinalLockset.isEmpty()) {
+    for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
+         I != E; ++I) {
+      const MutexID &Mutex = I.getKey();
+      const LockData &MissingLock = I.getData();
+
+      std::string FunName = "<unknown>";
+      if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
+        FunName = ContextDecl->getDeclName().getAsString();
+      }
+
+      Handler.handleNoUnlock(Mutex.getName(), FunName, MissingLock.AcquireLoc);
+    }
+  }
+}
+
+/// \brief Helper function that returns a LockKind required for the given level
+/// of access.
+LockKind getLockKindFromAccessKind(AccessKind AK) {
+  switch (AK) {
+    case AK_Read :
+      return LK_Shared;
+    case AK_Written :
+      return LK_Exclusive;
+  }
+}
+}} // end namespace clang::thread_safety