Remove the BBVectorize pass.

It served us well, helped kick-start much of the vectorization efforts
in LLVM, etc. Its time has come and past. Back in 2014:
http://lists.llvm.org/pipermail/llvm-dev/2014-November/079091.html

Time to actually let go and move forward. =]

I've updated the release notes both about the removal and the
deprecation of the corresponding C API.

llvm-svn: 306797
diff --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 5538756..5b1b58b 100644
--- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -56,10 +56,6 @@
                     cl::desc("Run the SLP vectorization passes"));
 
 static cl::opt<bool>
-RunBBVectorization("vectorize-slp-aggressive", cl::Hidden,
-                    cl::desc("Run the BB vectorization passes"));
-
-static cl::opt<bool>
 UseGVNAfterVectorization("use-gvn-after-vectorization",
   cl::init(false), cl::Hidden,
   cl::desc("Run GVN instead of Early CSE after vectorization passes"));
@@ -166,7 +162,6 @@
     Inliner = nullptr;
     DisableUnitAtATime = false;
     DisableUnrollLoops = false;
-    BBVectorize = RunBBVectorization;
     SLPVectorize = RunSLPVectorization;
     LoopVectorize = RunLoopVectorization;
     RerollLoops = RunLoopRerolling;
@@ -384,26 +379,8 @@
 
   if (RerollLoops)
     MPM.add(createLoopRerollPass());
-  if (!RunSLPAfterLoopVectorization) {
-    if (SLPVectorize)
-      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
-
-    if (BBVectorize) {
-      MPM.add(createBBVectorizePass());
-      addInstructionCombiningPass(MPM);
-      addExtensionsToPM(EP_Peephole, MPM);
-      if (OptLevel > 1 && UseGVNAfterVectorization)
-        MPM.add(NewGVN
-                    ? createNewGVNPass()
-                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
-      else
-        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
-
-      // BBVectorize may have significantly shortened a loop body; unroll again.
-      if (!DisableUnrollLoops)
-        MPM.add(createLoopUnrollPass(OptLevel));
-    }
-  }
+  if (!RunSLPAfterLoopVectorization && SLPVectorize)
+    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
 
   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
   MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
@@ -635,28 +612,10 @@
     addInstructionCombiningPass(MPM);
   }
 
-  if (RunSLPAfterLoopVectorization) {
-    if (SLPVectorize) {
-      MPM.add(createSLPVectorizerPass());   // Vectorize parallel scalar chains.
-      if (OptLevel > 1 && ExtraVectorizerPasses) {
-        MPM.add(createEarlyCSEPass());
-      }
-    }
-
-    if (BBVectorize) {
-      MPM.add(createBBVectorizePass());
-      addInstructionCombiningPass(MPM);
-      addExtensionsToPM(EP_Peephole, MPM);
-      if (OptLevel > 1 && UseGVNAfterVectorization)
-        MPM.add(NewGVN
-                    ? createNewGVNPass()
-                    : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
-      else
-        MPM.add(createEarlyCSEPass());      // Catch trivial redundancies
-
-      // BBVectorize may have significantly shortened a loop body; unroll again.
-      if (!DisableUnrollLoops)
-        MPM.add(createLoopUnrollPass(OptLevel));
+  if (RunSLPAfterLoopVectorization && SLPVectorize) {
+    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
+    if (OptLevel > 1 && ExtraVectorizerPasses) {
+      MPM.add(createEarlyCSEPass());
     }
   }
 
diff --git a/llvm/lib/Transforms/Vectorize/BBVectorize.cpp b/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
deleted file mode 100644
index 78453aa..0000000
--- a/llvm/lib/Transforms/Vectorize/BBVectorize.cpp
+++ /dev/null
@@ -1,3282 +0,0 @@
-//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a basic-block vectorization pass. The algorithm was
-// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
-// et al. It works by looking for chains of pairable operations and then
-// pairing them.
-//
-//===----------------------------------------------------------------------===//
-
-#define BBV_NAME "bb-vectorize"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Vectorize.h"
-#include <algorithm>
-using namespace llvm;
-
-#define DEBUG_TYPE BBV_NAME
-
-static cl::opt<bool>
-IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
-  cl::Hidden, cl::desc("Ignore target information"));
-
-static cl::opt<unsigned>
-ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
-  cl::desc("The required chain depth for vectorization"));
-
-static cl::opt<bool>
-UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
-  cl::Hidden, cl::desc("Use the chain depth requirement with"
-                       " target information"));
-
-static cl::opt<unsigned>
-SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
-  cl::desc("The maximum search distance for instruction pairs"));
-
-static cl::opt<bool>
-SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
-  cl::desc("Replicating one element to a pair breaks the chain"));
-
-static cl::opt<unsigned>
-VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
-  cl::desc("The size of the native vector registers"));
-
-static cl::opt<unsigned>
-MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
-  cl::desc("The maximum number of pairing iterations"));
-
-static cl::opt<bool>
-Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to form non-2^n-length vectors"));
-
-static cl::opt<unsigned>
-MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
-  cl::desc("The maximum number of pairable instructions per group"));
-
-static cl::opt<unsigned>
-MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
-  cl::desc("The maximum number of candidate instruction pairs per group"));
-
-static cl::opt<unsigned>
-MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
-  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
-                       " a full cycle check"));
-
-static cl::opt<bool>
-NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize boolean (i1) values"));
-
-static cl::opt<bool>
-NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize integer values"));
-
-static cl::opt<bool>
-NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize floating-point values"));
-
-// FIXME: This should default to false once pointer vector support works.
-static cl::opt<bool>
-NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
-  cl::desc("Don't try to vectorize pointer values"));
-
-static cl::opt<bool>
-NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize casting (conversion) operations"));
-
-static cl::opt<bool>
-NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize floating-point math intrinsics"));
-
-static cl::opt<bool>
-  NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize BitManipulation intrinsics"));
-
-static cl::opt<bool>
-NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
-
-static cl::opt<bool>
-NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize select instructions"));
-
-static cl::opt<bool>
-NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize comparison instructions"));
-
-static cl::opt<bool>
-NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize getelementptr instructions"));
-
-static cl::opt<bool>
-NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
-  cl::desc("Don't try to vectorize loads and stores"));
-
-static cl::opt<bool>
-AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
-  cl::desc("Only generate aligned loads and stores"));
-
-static cl::opt<bool>
-NoMemOpBoost("bb-vectorize-no-mem-op-boost",
-  cl::init(false), cl::Hidden,
-  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
-
-static cl::opt<bool>
-FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
-  cl::desc("Use a fast instruction dependency analysis"));
-
-#ifndef NDEBUG
-static cl::opt<bool>
-DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
-  cl::init(false), cl::Hidden,
-  cl::desc("When debugging is enabled, output information on the"
-           " instruction-examination process"));
-static cl::opt<bool>
-DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
-  cl::init(false), cl::Hidden,
-  cl::desc("When debugging is enabled, output information on the"
-           " candidate-selection process"));
-static cl::opt<bool>
-DebugPairSelection("bb-vectorize-debug-pair-selection",
-  cl::init(false), cl::Hidden,
-  cl::desc("When debugging is enabled, output information on the"
-           " pair-selection process"));
-static cl::opt<bool>
-DebugCycleCheck("bb-vectorize-debug-cycle-check",
-  cl::init(false), cl::Hidden,
-  cl::desc("When debugging is enabled, output information on the"
-           " cycle-checking process"));
-
-static cl::opt<bool>
-PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
-  cl::init(false), cl::Hidden,
-  cl::desc("When debugging is enabled, dump the basic block after"
-           " every pair is fused"));
-#endif
-
-STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
-
-namespace {
-  struct BBVectorize : public BasicBlockPass {
-    static char ID; // Pass identification, replacement for typeid
-
-    const VectorizeConfig Config;
-
-    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
-      : BasicBlockPass(ID), Config(C) {
-      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
-    }
-
-    BBVectorize(Pass *P, Function &F, const VectorizeConfig &C)
-      : BasicBlockPass(ID), Config(C) {
-      AA = &P->getAnalysis<AAResultsWrapperPass>().getAAResults();
-      DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-      SE = &P->getAnalysis<ScalarEvolutionWrapperPass>().getSE();
-      TLI = &P->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
-      TTI = IgnoreTargetInfo
-                ? nullptr
-                : &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
-    }
-
-    typedef std::pair<Value *, Value *> ValuePair;
-    typedef std::pair<ValuePair, int> ValuePairWithCost;
-    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
-    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
-    typedef std::pair<VPPair, unsigned> VPPairWithType;
-
-    AliasAnalysis *AA;
-    DominatorTree *DT;
-    ScalarEvolution *SE;
-    const TargetLibraryInfo *TLI;
-    const TargetTransformInfo *TTI;
-
-    // FIXME: const correct?
-
-    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
-
-    bool getCandidatePairs(BasicBlock &BB,
-                       BasicBlock::iterator &Start,
-                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                       DenseSet<ValuePair> &FixedOrderPairs,
-                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
-                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
-
-    // FIXME: The current implementation does not account for pairs that
-    // are connected in multiple ways. For example:
-    //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
-    enum PairConnectionType {
-      PairConnectionDirect,
-      PairConnectionSwap,
-      PairConnectionSplat
-    };
-
-    void computeConnectedPairs(
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             DenseSet<ValuePair> &CandidatePairsSet,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes);
-
-    void buildDepMap(BasicBlock &BB,
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             std::vector<Value *> &PairableInsts,
-             DenseSet<ValuePair> &PairableInstUsers);
-
-    void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             DenseSet<ValuePair> &CandidatePairsSet,
-             DenseMap<ValuePair, int> &CandidatePairCostSavings,
-             std::vector<Value *> &PairableInsts,
-             DenseSet<ValuePair> &FixedOrderPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<Value *, Value *>& ChosenPairs);
-
-    void fuseChosenPairs(BasicBlock &BB,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<Value *, Value *>& ChosenPairs,
-             DenseSet<ValuePair> &FixedOrderPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
-
-
-    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
-
-    bool areInstsCompatible(Instruction *I, Instruction *J,
-                       bool IsSimpleLoadStore, bool NonPow2Len,
-                       int &CostSavings, int &FixedOrder);
-
-    bool trackUsesOfI(DenseSet<Value *> &Users,
-                      AliasSetTracker &WriteSet, Instruction *I,
-                      Instruction *J, bool UpdateUsers = true,
-                      DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
-
-  void computePairsConnectedTo(
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             DenseSet<ValuePair> &CandidatePairsSet,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes,
-             ValuePair P);
-
-    bool pairsConflict(ValuePair P, ValuePair Q,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<ValuePair, std::vector<ValuePair> >
-               *PairableInstUserMap = nullptr,
-             DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
-
-    bool pairWillFormCycle(ValuePair P,
-             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
-             DenseSet<ValuePair> &CurrentPairs);
-
-    void pruneDAGFor(
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
-             DenseSet<VPPair> &PairableInstUserPairSet,
-             DenseMap<Value *, Value *> &ChosenPairs,
-             DenseMap<ValuePair, size_t> &DAG,
-             DenseSet<ValuePair> &PrunedDAG, ValuePair J,
-             bool UseCycleCheck);
-
-    void buildInitialDAGFor(
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             DenseSet<ValuePair> &CandidatePairsSet,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<Value *, Value *> &ChosenPairs,
-             DenseMap<ValuePair, size_t> &DAG, ValuePair J);
-
-    void findBestDAGFor(
-             DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-             DenseSet<ValuePair> &CandidatePairsSet,
-             DenseMap<ValuePair, int> &CandidatePairCostSavings,
-             std::vector<Value *> &PairableInsts,
-             DenseSet<ValuePair> &FixedOrderPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
-             DenseSet<VPPair> &PairableInstUserPairSet,
-             DenseMap<Value *, Value *> &ChosenPairs,
-             DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
-             int &BestEffSize, Value *II, std::vector<Value *>&JJ,
-             bool UseCycleCheck);
-
-    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
-                     Instruction *J, unsigned o);
-
-    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
-                     unsigned MaskOffset, unsigned NumInElem,
-                     unsigned NumInElem1, unsigned IdxOffset,
-                     std::vector<Constant*> &Mask);
-
-    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
-                     Instruction *J);
-
-    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
-                       unsigned o, Value *&LOp, unsigned numElemL,
-                       Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
-                       unsigned IdxOff = 0);
-
-    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
-                     Instruction *J, unsigned o, bool IBeforeJ);
-
-    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
-                     Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
-                     bool IBeforeJ);
-
-    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
-                     Instruction *J, Instruction *K,
-                     Instruction *&InsertionPt, Instruction *&K1,
-                     Instruction *&K2);
-
-    void collectPairLoadMoveSet(BasicBlock &BB,
-                     DenseMap<Value *, Value *> &ChosenPairs,
-                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *I);
-
-    void collectLoadMoveSet(BasicBlock &BB,
-                     std::vector<Value *> &PairableInsts,
-                     DenseMap<Value *, Value *> &ChosenPairs,
-                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
-                     DenseSet<ValuePair> &LoadMoveSetPairs);
-
-    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *I, Instruction *J);
-
-    void moveUsesOfIAfterJ(BasicBlock &BB,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *&InsertionPt,
-                     Instruction *I, Instruction *J);
-
-    bool vectorizeBB(BasicBlock &BB) {
-      if (skipBasicBlock(BB))
-        return false;
-      if (!DT->isReachableFromEntry(&BB)) {
-        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
-              " in " << BB.getParent()->getName() << "\n");
-        return false;
-      }
-
-      DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
-
-      bool changed = false;
-      // Iterate a sufficient number of times to merge types of size 1 bit,
-      // then 2 bits, then 4, etc. up to half of the target vector width of the
-      // target vector register.
-      unsigned n = 1;
-      for (unsigned v = 2;
-           (TTI || v <= Config.VectorBits) &&
-           (!Config.MaxIter || n <= Config.MaxIter);
-           v *= 2, ++n) {
-        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
-              " for " << BB.getName() << " in " <<
-              BB.getParent()->getName() << "...\n");
-        if (vectorizePairs(BB))
-          changed = true;
-        else
-          break;
-      }
-
-      if (changed && !Pow2LenOnly) {
-        ++n;
-        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
-          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
-                n << " for " << BB.getName() << " in " <<
-                BB.getParent()->getName() << "...\n");
-          if (!vectorizePairs(BB, true)) break;
-        }
-      }
-
-      DEBUG(dbgs() << "BBV: done!\n");
-      return changed;
-    }
-
-    bool runOnBasicBlock(BasicBlock &BB) override {
-      // OptimizeNone check deferred to vectorizeBB().
-
-      AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
-      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-      SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
-      TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
-      TTI = IgnoreTargetInfo
-                ? nullptr
-                : &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
-                      *BB.getParent());
-
-      return vectorizeBB(BB);
-    }
-
-    void getAnalysisUsage(AnalysisUsage &AU) const override {
-      BasicBlockPass::getAnalysisUsage(AU);
-      AU.addRequired<AAResultsWrapperPass>();
-      AU.addRequired<DominatorTreeWrapperPass>();
-      AU.addRequired<ScalarEvolutionWrapperPass>();
-      AU.addRequired<TargetLibraryInfoWrapperPass>();
-      AU.addRequired<TargetTransformInfoWrapperPass>();
-      AU.addPreserved<DominatorTreeWrapperPass>();
-      AU.addPreserved<GlobalsAAWrapperPass>();
-      AU.addPreserved<ScalarEvolutionWrapperPass>();
-      AU.addPreserved<SCEVAAWrapperPass>();
-      AU.setPreservesCFG();
-    }
-
-    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
-      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
-             "Cannot form vector from incompatible scalar types");
-      Type *STy = ElemTy->getScalarType();
-
-      unsigned numElem;
-      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
-        numElem = VTy->getNumElements();
-      } else {
-        numElem = 1;
-      }
-
-      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
-        numElem += VTy->getNumElements();
-      } else {
-        numElem += 1;
-      }
-
-      return VectorType::get(STy, numElem);
-    }
-
-    static inline void getInstructionTypes(Instruction *I,
-                                           Type *&T1, Type *&T2) {
-      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
-        // For stores, it is the value type, not the pointer type that matters
-        // because the value is what will come from a vector register.
-
-        Value *IVal = SI->getValueOperand();
-        T1 = IVal->getType();
-      } else {
-        T1 = I->getType();
-      }
-
-      if (CastInst *CI = dyn_cast<CastInst>(I))
-        T2 = CI->getSrcTy();
-      else
-        T2 = T1;
-
-      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
-        T2 = SI->getCondition()->getType();
-      } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
-        T2 = SI->getOperand(0)->getType();
-      } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
-        T2 = CI->getOperand(0)->getType();
-      }
-    }
-
-    // Returns the weight associated with the provided value. A chain of
-    // candidate pairs has a length given by the sum of the weights of its
-    // members (one weight per pair; the weight of each member of the pair
-    // is assumed to be the same). This length is then compared to the
-    // chain-length threshold to determine if a given chain is significant
-    // enough to be vectorized. The length is also used in comparing
-    // candidate chains where longer chains are considered to be better.
-    // Note: when this function returns 0, the resulting instructions are
-    // not actually fused.
-    inline size_t getDepthFactor(Value *V) {
-      // InsertElement and ExtractElement have a depth factor of zero. This is
-      // for two reasons: First, they cannot be usefully fused. Second, because
-      // the pass generates a lot of these, they can confuse the simple metric
-      // used to compare the dags in the next iteration. Thus, giving them a
-      // weight of zero allows the pass to essentially ignore them in
-      // subsequent iterations when looking for vectorization opportunities
-      // while still tracking dependency chains that flow through those
-      // instructions.
-      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
-        return 0;
-
-      // Give a load or store half of the required depth so that load/store
-      // pairs will vectorize.
-      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
-        return Config.ReqChainDepth/2;
-
-      return 1;
-    }
-
-    // Returns the cost of the provided instruction using TTI.
-    // This does not handle loads and stores.
-    unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2,
-                          TargetTransformInfo::OperandValueKind Op1VK =
-                              TargetTransformInfo::OK_AnyValue,
-                          TargetTransformInfo::OperandValueKind Op2VK =
-                              TargetTransformInfo::OK_AnyValue,
-                          const Instruction *I = nullptr) {
-      switch (Opcode) {
-      default: break;
-      case Instruction::GetElementPtr:
-        // We mark this instruction as zero-cost because scalar GEPs are usually
-        // lowered to the instruction addressing mode. At the moment we don't
-        // generate vector GEPs.
-        return 0;
-      case Instruction::Br:
-        return TTI->getCFInstrCost(Opcode);
-      case Instruction::PHI:
-        return 0;
-      case Instruction::Add:
-      case Instruction::FAdd:
-      case Instruction::Sub:
-      case Instruction::FSub:
-      case Instruction::Mul:
-      case Instruction::FMul:
-      case Instruction::UDiv:
-      case Instruction::SDiv:
-      case Instruction::FDiv:
-      case Instruction::URem:
-      case Instruction::SRem:
-      case Instruction::FRem:
-      case Instruction::Shl:
-      case Instruction::LShr:
-      case Instruction::AShr:
-      case Instruction::And:
-      case Instruction::Or:
-      case Instruction::Xor:
-        return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK);
-      case Instruction::Select:
-      case Instruction::ICmp:
-      case Instruction::FCmp:
-        return TTI->getCmpSelInstrCost(Opcode, T1, T2, I);
-      case Instruction::ZExt:
-      case Instruction::SExt:
-      case Instruction::FPToUI:
-      case Instruction::FPToSI:
-      case Instruction::FPExt:
-      case Instruction::PtrToInt:
-      case Instruction::IntToPtr:
-      case Instruction::SIToFP:
-      case Instruction::UIToFP:
-      case Instruction::Trunc:
-      case Instruction::FPTrunc:
-      case Instruction::BitCast:
-      case Instruction::ShuffleVector:
-        return TTI->getCastInstrCost(Opcode, T1, T2, I);
-      }
-
-      return 1;
-    }
-
-    // This determines the relative offset of two loads or stores, returning
-    // true if the offset could be determined to be some constant value.
-    // For example, if OffsetInElmts == 1, then J accesses the memory directly
-    // after I; if OffsetInElmts == -1 then I accesses the memory
-    // directly after J.
-    bool getPairPtrInfo(Instruction *I, Instruction *J,
-        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
-        unsigned &IAddressSpace, unsigned &JAddressSpace,
-        int64_t &OffsetInElmts, bool ComputeOffset = true) {
-      OffsetInElmts = 0;
-      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
-        LoadInst *LJ = cast<LoadInst>(J);
-        IPtr = LI->getPointerOperand();
-        JPtr = LJ->getPointerOperand();
-        IAlignment = LI->getAlignment();
-        JAlignment = LJ->getAlignment();
-        IAddressSpace = LI->getPointerAddressSpace();
-        JAddressSpace = LJ->getPointerAddressSpace();
-      } else {
-        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
-        IPtr = SI->getPointerOperand();
-        JPtr = SJ->getPointerOperand();
-        IAlignment = SI->getAlignment();
-        JAlignment = SJ->getAlignment();
-        IAddressSpace = SI->getPointerAddressSpace();
-        JAddressSpace = SJ->getPointerAddressSpace();
-      }
-
-      if (!ComputeOffset)
-        return true;
-
-      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
-      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
-
-      // If this is a trivial offset, then we'll get something like
-      // 1*sizeof(type). With target data, which we need anyway, this will get
-      // constant folded into a number.
-      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
-      if (const SCEVConstant *ConstOffSCEV =
-            dyn_cast<SCEVConstant>(OffsetSCEV)) {
-        ConstantInt *IntOff = ConstOffSCEV->getValue();
-        int64_t Offset = IntOff->getSExtValue();
-        const DataLayout &DL = I->getModule()->getDataLayout();
-        Type *VTy = IPtr->getType()->getPointerElementType();
-        int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy);
-
-        Type *VTy2 = JPtr->getType()->getPointerElementType();
-        if (VTy != VTy2 && Offset < 0) {
-          int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2);
-          OffsetInElmts = Offset/VTy2TSS;
-          return (std::abs(Offset) % VTy2TSS) == 0;
-        }
-
-        OffsetInElmts = Offset/VTyTSS;
-        return (std::abs(Offset) % VTyTSS) == 0;
-      }
-
-      return false;
-    }
-
-    // Returns true if the provided CallInst represents an intrinsic that can
-    // be vectorized.
-    bool isVectorizableIntrinsic(CallInst* I) {
-      Function *F = I->getCalledFunction();
-      if (!F) return false;
-
-      Intrinsic::ID IID = F->getIntrinsicID();
-      if (!IID) return false;
-
-      switch(IID) {
-      default:
-        return false;
-      case Intrinsic::sqrt:
-      case Intrinsic::powi:
-      case Intrinsic::sin:
-      case Intrinsic::cos:
-      case Intrinsic::log:
-      case Intrinsic::log2:
-      case Intrinsic::log10:
-      case Intrinsic::exp:
-      case Intrinsic::exp2:
-      case Intrinsic::pow:
-      case Intrinsic::round:
-      case Intrinsic::copysign:
-      case Intrinsic::ceil:
-      case Intrinsic::nearbyint:
-      case Intrinsic::rint:
-      case Intrinsic::trunc:
-      case Intrinsic::floor:
-      case Intrinsic::fabs:
-      case Intrinsic::minnum:
-      case Intrinsic::maxnum:
-        return Config.VectorizeMath;
-      case Intrinsic::bswap:
-      case Intrinsic::ctpop:
-      case Intrinsic::ctlz:
-      case Intrinsic::cttz:
-        return Config.VectorizeBitManipulations;
-      case Intrinsic::fma:
-      case Intrinsic::fmuladd:
-        return Config.VectorizeFMA;
-      }
-    }
-
-    bool isPureIEChain(InsertElementInst *IE) {
-      InsertElementInst *IENext = IE;
-      do {
-        if (!isa<UndefValue>(IENext->getOperand(0)) &&
-            !isa<InsertElementInst>(IENext->getOperand(0))) {
-          return false;
-        }
-      } while ((IENext =
-                 dyn_cast<InsertElementInst>(IENext->getOperand(0))));
-
-      return true;
-    }
-  };
-
-  // This function implements one vectorization iteration on the provided
-  // basic block. It returns true if the block is changed.
-  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
-    bool ShouldContinue;
-    BasicBlock::iterator Start = BB.getFirstInsertionPt();
-
-    std::vector<Value *> AllPairableInsts;
-    DenseMap<Value *, Value *> AllChosenPairs;
-    DenseSet<ValuePair> AllFixedOrderPairs;
-    DenseMap<VPPair, unsigned> AllPairConnectionTypes;
-    DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
-                                                 AllConnectedPairDeps;
-
-    do {
-      std::vector<Value *> PairableInsts;
-      DenseMap<Value *, std::vector<Value *> > CandidatePairs;
-      DenseSet<ValuePair> FixedOrderPairs;
-      DenseMap<ValuePair, int> CandidatePairCostSavings;
-      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
-                                         FixedOrderPairs,
-                                         CandidatePairCostSavings,
-                                         PairableInsts, NonPow2Len);
-      if (PairableInsts.empty()) continue;
-
-      // Build the candidate pair set for faster lookups.
-      DenseSet<ValuePair> CandidatePairsSet;
-      for (DenseMap<Value *, std::vector<Value *> >::iterator I =
-           CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
-        for (std::vector<Value *>::iterator J = I->second.begin(),
-             JE = I->second.end(); J != JE; ++J)
-          CandidatePairsSet.insert(ValuePair(I->first, *J));
-
-      // Now we have a map of all of the pairable instructions and we need to
-      // select the best possible pairing. A good pairing is one such that the
-      // users of the pair are also paired. This defines a (directed) forest
-      // over the pairs such that two pairs are connected iff the second pair
-      // uses the first.
-
-      // Note that it only matters that both members of the second pair use some
-      // element of the first pair (to allow for splatting).
-
-      DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
-                                                   ConnectedPairDeps;
-      DenseMap<VPPair, unsigned> PairConnectionTypes;
-      computeConnectedPairs(CandidatePairs, CandidatePairsSet,
-                            PairableInsts, ConnectedPairs, PairConnectionTypes);
-      if (ConnectedPairs.empty()) continue;
-
-      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
-           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
-           I != IE; ++I)
-        for (std::vector<ValuePair>::iterator J = I->second.begin(),
-             JE = I->second.end(); J != JE; ++J)
-          ConnectedPairDeps[*J].push_back(I->first);
-
-      // Build the pairable-instruction dependency map
-      DenseSet<ValuePair> PairableInstUsers;
-      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
-
-      // There is now a graph of the connected pairs. For each variable, pick
-      // the pairing with the largest dag meeting the depth requirement on at
-      // least one branch. Then select all pairings that are part of that dag
-      // and remove them from the list of available pairings and pairable
-      // variables.
-
-      DenseMap<Value *, Value *> ChosenPairs;
-      choosePairs(CandidatePairs, CandidatePairsSet,
-        CandidatePairCostSavings,
-        PairableInsts, FixedOrderPairs, PairConnectionTypes,
-        ConnectedPairs, ConnectedPairDeps,
-        PairableInstUsers, ChosenPairs);
-
-      if (ChosenPairs.empty()) continue;
-      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
-                              PairableInsts.end());
-      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
-
-      // Only for the chosen pairs, propagate information on fixed-order pairs,
-      // pair connections, and their types to the data structures used by the
-      // pair fusion procedures.
-      for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
-           IE = ChosenPairs.end(); I != IE; ++I) {
-        if (FixedOrderPairs.count(*I))
-          AllFixedOrderPairs.insert(*I);
-        else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
-          AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
-
-        for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
-             J != IE; ++J) {
-          DenseMap<VPPair, unsigned>::iterator K =
-            PairConnectionTypes.find(VPPair(*I, *J));
-          if (K != PairConnectionTypes.end()) {
-            AllPairConnectionTypes.insert(*K);
-          } else {
-            K = PairConnectionTypes.find(VPPair(*J, *I));
-            if (K != PairConnectionTypes.end())
-              AllPairConnectionTypes.insert(*K);
-          }
-        }
-      }
-
-      for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
-           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
-           I != IE; ++I)
-        for (std::vector<ValuePair>::iterator J = I->second.begin(),
-          JE = I->second.end(); J != JE; ++J)
-          if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
-            AllConnectedPairs[I->first].push_back(*J);
-            AllConnectedPairDeps[*J].push_back(I->first);
-          }
-    } while (ShouldContinue);
-
-    if (AllChosenPairs.empty()) return false;
-    NumFusedOps += AllChosenPairs.size();
-
-    // A set of pairs has now been selected. It is now necessary to replace the
-    // paired instructions with vector instructions. For this procedure each
-    // operand must be replaced with a vector operand. This vector is formed
-    // by using build_vector on the old operands. The replaced values are then
-    // replaced with a vector_extract on the result.  Subsequent optimization
-    // passes should coalesce the build/extract combinations.
-
-    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
-                    AllPairConnectionTypes,
-                    AllConnectedPairs, AllConnectedPairDeps);
-
-    // It is important to cleanup here so that future iterations of this
-    // function have less work to do.
-    (void)SimplifyInstructionsInBlock(&BB, TLI);
-    return true;
-  }
-
-  // This function returns true if the provided instruction is capable of being
-  // fused into a vector instruction. This determination is based only on the
-  // type and other attributes of the instruction.
-  bool BBVectorize::isInstVectorizable(Instruction *I,
-                                         bool &IsSimpleLoadStore) {
-    IsSimpleLoadStore = false;
-
-    if (CallInst *C = dyn_cast<CallInst>(I)) {
-      if (!isVectorizableIntrinsic(C))
-        return false;
-    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
-      // Vectorize simple loads if possbile:
-      IsSimpleLoadStore = L->isSimple();
-      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
-        return false;
-    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
-      // Vectorize simple stores if possbile:
-      IsSimpleLoadStore = S->isSimple();
-      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
-        return false;
-    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
-      // We can vectorize casts, but not casts of pointer types, etc.
-      if (!Config.VectorizeCasts)
-        return false;
-
-      Type *SrcTy = C->getSrcTy();
-      if (!SrcTy->isSingleValueType())
-        return false;
-
-      Type *DestTy = C->getDestTy();
-      if (!DestTy->isSingleValueType())
-        return false;
-    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
-      if (!Config.VectorizeSelect)
-        return false;
-      // We can vectorize a select if either all operands are scalars,
-      // or all operands are vectors. Trying to "widen" a select between
-      // vectors that has a scalar condition results in a malformed select.
-      // FIXME: We could probably be smarter about this by rewriting the select
-      // with different types instead.
-      return (SI->getCondition()->getType()->isVectorTy() ==
-              SI->getTrueValue()->getType()->isVectorTy());
-    } else if (isa<CmpInst>(I)) {
-      if (!Config.VectorizeCmp)
-        return false;
-    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
-      if (!Config.VectorizeGEP)
-        return false;
-
-      // Currently, vector GEPs exist only with one index.
-      if (G->getNumIndices() != 1)
-        return false;
-    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
-        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
-      return false;
-    }
-
-    Type *T1, *T2;
-    getInstructionTypes(I, T1, T2);
-
-    // Not every type can be vectorized...
-    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
-        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
-      return false;
-
-    if (T1->getScalarSizeInBits() == 1) {
-      if (!Config.VectorizeBools)
-        return false;
-    } else {
-      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
-        return false;
-    }
-
-    if (T2->getScalarSizeInBits() == 1) {
-      if (!Config.VectorizeBools)
-        return false;
-    } else {
-      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
-        return false;
-    }
-
-    if (!Config.VectorizeFloats
-        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
-      return false;
-
-    // Don't vectorize target-specific types.
-    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
-      return false;
-    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
-      return false;
-
-    if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() ||
-                                      T2->getScalarType()->isPointerTy()))
-      return false;
-
-    if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
-                 T2->getPrimitiveSizeInBits() >= Config.VectorBits))
-      return false;
-
-    return true;
-  }
-
-  // This function returns true if the two provided instructions are compatible
-  // (meaning that they can be fused into a vector instruction). This assumes
-  // that I has already been determined to be vectorizable and that J is not
-  // in the use dag of I.
-  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
-                       bool IsSimpleLoadStore, bool NonPow2Len,
-                       int &CostSavings, int &FixedOrder) {
-    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
-                     " <-> " << *J << "\n");
-
-    CostSavings = 0;
-    FixedOrder = 0;
-
-    // Loads and stores can be merged if they have different alignments,
-    // but are otherwise the same.
-    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
-                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
-      return false;
-
-    Type *IT1, *IT2, *JT1, *JT2;
-    getInstructionTypes(I, IT1, IT2);
-    getInstructionTypes(J, JT1, JT2);
-    unsigned MaxTypeBits = std::max(
-      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
-      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
-    if (!TTI && MaxTypeBits > Config.VectorBits)
-      return false;
-
-    // FIXME: handle addsub-type operations!
-
-    if (IsSimpleLoadStore) {
-      Value *IPtr, *JPtr;
-      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
-      int64_t OffsetInElmts = 0;
-      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
-                         IAddressSpace, JAddressSpace, OffsetInElmts) &&
-          std::abs(OffsetInElmts) == 1) {
-        FixedOrder = (int) OffsetInElmts;
-        unsigned BottomAlignment = IAlignment;
-        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
-
-        Type *aTypeI = isa<StoreInst>(I) ?
-          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
-        Type *aTypeJ = isa<StoreInst>(J) ?
-          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
-        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
-
-        if (Config.AlignedOnly) {
-          // An aligned load or store is possible only if the instruction
-          // with the lower offset has an alignment suitable for the
-          // vector type.
-          const DataLayout &DL = I->getModule()->getDataLayout();
-          unsigned VecAlignment = DL.getPrefTypeAlignment(VType);
-          if (BottomAlignment < VecAlignment)
-            return false;
-        }
-
-        if (TTI) {
-          unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
-                                                IAlignment, IAddressSpace);
-          unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
-                                                JAlignment, JAddressSpace);
-          unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
-                                                BottomAlignment,
-                                                IAddressSpace);
-
-          ICost += TTI->getAddressComputationCost(aTypeI);
-          JCost += TTI->getAddressComputationCost(aTypeJ);
-          VCost += TTI->getAddressComputationCost(VType);
-
-          if (VCost > ICost + JCost)
-            return false;
-
-          // We don't want to fuse to a type that will be split, even
-          // if the two input types will also be split and there is no other
-          // associated cost.
-          unsigned VParts = TTI->getNumberOfParts(VType);
-          if (VParts > 1)
-            return false;
-          else if (!VParts && VCost == ICost + JCost)
-            return false;
-
-          CostSavings = ICost + JCost - VCost;
-        }
-      } else {
-        return false;
-      }
-    } else if (TTI) {
-      TargetTransformInfo::OperandValueKind Op1VK =
-          TargetTransformInfo::OK_AnyValue;
-      TargetTransformInfo::OperandValueKind Op2VK =
-          TargetTransformInfo::OK_AnyValue;
-      unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2, Op1VK, Op2VK, I);
-      unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2, Op1VK, Op2VK, J);
-      Type *VT1 = getVecTypeForPair(IT1, JT1),
-           *VT2 = getVecTypeForPair(IT2, JT2);
-
-      // On some targets (example X86) the cost of a vector shift may vary
-      // depending on whether the second operand is a Uniform or
-      // NonUniform Constant.
-      switch (I->getOpcode()) {
-      default : break;
-      case Instruction::Shl:
-      case Instruction::LShr:
-      case Instruction::AShr:
-
-        // If both I and J are scalar shifts by constant, then the
-        // merged vector shift count would be either a constant splat value
-        // or a non-uniform vector of constants.
-        if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) {
-          if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1)))
-            Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue :
-                               TargetTransformInfo::OK_NonUniformConstantValue;
-        } else {
-          // Check for a splat of a constant or for a non uniform vector
-          // of constants.
-          Value *IOp = I->getOperand(1);
-          Value *JOp = J->getOperand(1);
-          if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) &&
-              (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
-            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
-            Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
-            if (SplatValue != nullptr &&
-                SplatValue == cast<Constant>(JOp)->getSplatValue())
-              Op2VK = TargetTransformInfo::OK_UniformConstantValue;
-          }
-        }
-      }
-
-      // Note that this procedure is incorrect for insert and extract element
-      // instructions (because combining these often results in a shuffle),
-      // but this cost is ignored (because insert and extract element
-      // instructions are assigned a zero depth factor and are not really
-      // fused in general).
-      unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK, I);
-
-      if (VCost > ICost + JCost)
-        return false;
-
-      // We don't want to fuse to a type that will be split, even
-      // if the two input types will also be split and there is no other
-      // associated cost.
-      unsigned VParts1 = TTI->getNumberOfParts(VT1),
-               VParts2 = TTI->getNumberOfParts(VT2);
-      if (VParts1 > 1 || VParts2 > 1)
-        return false;
-      else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
-        return false;
-
-      CostSavings = ICost + JCost - VCost;
-    }
-
-    // The powi,ctlz,cttz intrinsics are special because only the first
-    // argument is vectorized, the second arguments must be equal.
-    CallInst *CI = dyn_cast<CallInst>(I);
-    Function *FI;
-    if (CI && (FI = CI->getCalledFunction())) {
-      Intrinsic::ID IID = FI->getIntrinsicID();
-      if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
-          IID == Intrinsic::cttz) {
-        Value *A1I = CI->getArgOperand(1),
-              *A1J = cast<CallInst>(J)->getArgOperand(1);
-        const SCEV *A1ISCEV = SE->getSCEV(A1I),
-                   *A1JSCEV = SE->getSCEV(A1J);
-        return (A1ISCEV == A1JSCEV);
-      }
-
-      if (IID && TTI) {
-        FastMathFlags FMFCI;
-        if (auto *FPMOCI = dyn_cast<FPMathOperator>(CI))
-          FMFCI = FPMOCI->getFastMathFlags();
-        SmallVector<Value *, 4> IArgs(CI->arg_operands());
-        unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, IArgs, FMFCI);
-
-        CallInst *CJ = cast<CallInst>(J);
-
-        FastMathFlags FMFCJ;
-        if (auto *FPMOCJ = dyn_cast<FPMathOperator>(CJ))
-          FMFCJ = FPMOCJ->getFastMathFlags();
-
-        SmallVector<Value *, 4> JArgs(CJ->arg_operands());
-        unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, JArgs, FMFCJ);
-
-        assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
-               "Intrinsic argument counts differ");
-        SmallVector<Type*, 4> Tys;
-        SmallVector<Value *, 4> VecArgs;
-        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
-          if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
-               IID == Intrinsic::cttz) && i == 1) {
-            Tys.push_back(CI->getArgOperand(i)->getType());
-            VecArgs.push_back(CI->getArgOperand(i));
-          }
-          else {
-            Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
-                                            CJ->getArgOperand(i)->getType()));
-            // Add both operands, and then count their scalarization overhead
-            // with VF 1.
-            VecArgs.push_back(CI->getArgOperand(i));
-            VecArgs.push_back(CJ->getArgOperand(i));
-          }
-        }
-
-        // Compute the scalarization cost here with the original operands (to
-        // check for uniqueness etc), and then call getIntrinsicInstrCost()
-        // with the constructed vector types.
-        Type *RetTy = getVecTypeForPair(IT1, JT1);
-        unsigned ScalarizationCost = 0;
-        if (!RetTy->isVoidTy())
-          ScalarizationCost += TTI->getScalarizationOverhead(RetTy, true, false);
-        ScalarizationCost += TTI->getOperandsScalarizationOverhead(VecArgs, 1);
-
-        FastMathFlags FMFV = FMFCI;
-        FMFV &= FMFCJ;
-        unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys, FMFV,
-                                                    ScalarizationCost);
-
-        if (VCost > ICost + JCost)
-          return false;
-
-        // We don't want to fuse to a type that will be split, even
-        // if the two input types will also be split and there is no other
-        // associated cost.
-        unsigned RetParts = TTI->getNumberOfParts(RetTy);
-        if (RetParts > 1)
-          return false;
-        else if (!RetParts && VCost == ICost + JCost)
-          return false;
-
-        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
-          if (!Tys[i]->isVectorTy())
-            continue;
-
-          unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
-          if (NumParts > 1)
-            return false;
-          else if (!NumParts && VCost == ICost + JCost)
-            return false;
-        }
-
-        CostSavings = ICost + JCost - VCost;
-      }
-    }
-
-    return true;
-  }
-
-  // Figure out whether or not J uses I and update the users and write-set
-  // structures associated with I. Specifically, Users represents the set of
-  // instructions that depend on I. WriteSet represents the set
-  // of memory locations that are dependent on I. If UpdateUsers is true,
-  // and J uses I, then Users is updated to contain J and WriteSet is updated
-  // to contain any memory locations to which J writes. The function returns
-  // true if J uses I. By default, alias analysis is used to determine
-  // whether J reads from memory that overlaps with a location in WriteSet.
-  // If LoadMoveSet is not null, then it is a previously-computed map
-  // where the key is the memory-based user instruction and the value is
-  // the instruction to be compared with I. So, if LoadMoveSet is provided,
-  // then the alias analysis is not used. This is necessary because this
-  // function is called during the process of moving instructions during
-  // vectorization and the results of the alias analysis are not stable during
-  // that process.
-  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
-                       AliasSetTracker &WriteSet, Instruction *I,
-                       Instruction *J, bool UpdateUsers,
-                       DenseSet<ValuePair> *LoadMoveSetPairs) {
-    bool UsesI = false;
-
-    // This instruction may already be marked as a user due, for example, to
-    // being a member of a selected pair.
-    if (Users.count(J))
-      UsesI = true;
-
-    if (!UsesI)
-      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
-           JU != JE; ++JU) {
-        Value *V = *JU;
-        if (I == V || Users.count(V)) {
-          UsesI = true;
-          break;
-        }
-      }
-    if (!UsesI && J->mayReadFromMemory()) {
-      if (LoadMoveSetPairs) {
-        UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
-      } else {
-        for (AliasSetTracker::iterator W = WriteSet.begin(),
-             WE = WriteSet.end(); W != WE; ++W) {
-          if (W->aliasesUnknownInst(J, *AA)) {
-            UsesI = true;
-            break;
-          }
-        }
-      }
-    }
-
-    if (UsesI && UpdateUsers) {
-      if (J->mayWriteToMemory()) WriteSet.add(J);
-      Users.insert(J);
-    }
-
-    return UsesI;
-  }
-
-  // This function iterates over all instruction pairs in the provided
-  // basic block and collects all candidate pairs for vectorization.
-  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
-                       BasicBlock::iterator &Start,
-                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                       DenseSet<ValuePair> &FixedOrderPairs,
-                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
-                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
-    size_t TotalPairs = 0;
-    BasicBlock::iterator E = BB.end();
-    if (Start == E) return false;
-
-    bool ShouldContinue = false, IAfterStart = false;
-    for (BasicBlock::iterator I = Start++; I != E; ++I) {
-      if (I == Start) IAfterStart = true;
-
-      bool IsSimpleLoadStore;
-      if (!isInstVectorizable(&*I, IsSimpleLoadStore))
-        continue;
-
-      // Look for an instruction with which to pair instruction *I...
-      DenseSet<Value *> Users;
-      AliasSetTracker WriteSet(*AA);
-      if (I->mayWriteToMemory())
-        WriteSet.add(&*I);
-
-      bool JAfterStart = IAfterStart;
-      BasicBlock::iterator J = std::next(I);
-      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
-        if (J == Start)
-          JAfterStart = true;
-
-        // Determine if J uses I, if so, exit the loop.
-        bool UsesI = trackUsesOfI(Users, WriteSet, &*I, &*J, !Config.FastDep);
-        if (Config.FastDep) {
-          // Note: For this heuristic to be effective, independent operations
-          // must tend to be intermixed. This is likely to be true from some
-          // kinds of grouped loop unrolling (but not the generic LLVM pass),
-          // but otherwise may require some kind of reordering pass.
-
-          // When using fast dependency analysis,
-          // stop searching after first use:
-          if (UsesI) break;
-        } else {
-          if (UsesI) continue;
-        }
-
-        // J does not use I, and comes before the first use of I, so it can be
-        // merged with I if the instructions are compatible.
-        int CostSavings, FixedOrder;
-        if (!areInstsCompatible(&*I, &*J, IsSimpleLoadStore, NonPow2Len,
-                                CostSavings, FixedOrder))
-          continue;
-
-        // J is a candidate for merging with I.
-        if (PairableInsts.empty() ||
-            PairableInsts[PairableInsts.size() - 1] != &*I) {
-          PairableInsts.push_back(&*I);
-        }
-
-        CandidatePairs[&*I].push_back(&*J);
-        ++TotalPairs;
-        if (TTI)
-          CandidatePairCostSavings.insert(
-              ValuePairWithCost(ValuePair(&*I, &*J), CostSavings));
-
-        if (FixedOrder == 1)
-          FixedOrderPairs.insert(ValuePair(&*I, &*J));
-        else if (FixedOrder == -1)
-          FixedOrderPairs.insert(ValuePair(&*J, &*I));
-
-        // The next call to this function must start after the last instruction
-        // selected during this invocation.
-        if (JAfterStart) {
-          Start = std::next(J);
-          IAfterStart = JAfterStart = false;
-        }
-
-        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
-                     << *I << " <-> " << *J << " (cost savings: " <<
-                     CostSavings << ")\n");
-
-        // If we have already found too many pairs, break here and this function
-        // will be called again starting after the last instruction selected
-        // during this invocation.
-        if (PairableInsts.size() >= Config.MaxInsts ||
-            TotalPairs >= Config.MaxPairs) {
-          ShouldContinue = true;
-          break;
-        }
-      }
-
-      if (ShouldContinue)
-        break;
-    }
-
-    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
-           << " instructions with candidate pairs\n");
-
-    return ShouldContinue;
-  }
-
-  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
-  // it looks for pairs such that both members have an input which is an
-  // output of PI or PJ.
-  void BBVectorize::computePairsConnectedTo(
-                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                  DenseSet<ValuePair> &CandidatePairsSet,
-                  std::vector<Value *> &PairableInsts,
-                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-                  DenseMap<VPPair, unsigned> &PairConnectionTypes,
-                  ValuePair P) {
-    StoreInst *SI, *SJ;
-
-    // For each possible pairing for this variable, look at the uses of
-    // the first value...
-    for (Value::user_iterator I = P.first->user_begin(),
-                              E = P.first->user_end();
-         I != E; ++I) {
-      User *UI = *I;
-      if (isa<LoadInst>(UI)) {
-        // A pair cannot be connected to a load because the load only takes one
-        // operand (the address) and it is a scalar even after vectorization.
-        continue;
-      } else if ((SI = dyn_cast<StoreInst>(UI)) &&
-                 P.first == SI->getPointerOperand()) {
-        // Similarly, a pair cannot be connected to a store through its
-        // pointer operand.
-        continue;
-      }
-
-      // For each use of the first variable, look for uses of the second
-      // variable...
-      for (User *UJ : P.second->users()) {
-        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
-            P.second == SJ->getPointerOperand())
-          continue;
-
-        // Look for <I, J>:
-        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
-          VPPair VP(P, ValuePair(UI, UJ));
-          ConnectedPairs[VP.first].push_back(VP.second);
-          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
-        }
-
-        // Look for <J, I>:
-        if (CandidatePairsSet.count(ValuePair(UJ, UI))) {
-          VPPair VP(P, ValuePair(UJ, UI));
-          ConnectedPairs[VP.first].push_back(VP.second);
-          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
-        }
-      }
-
-      if (Config.SplatBreaksChain) continue;
-      // Look for cases where just the first value in the pair is used by
-      // both members of another pair (splatting).
-      for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) {
-        User *UJ = *J;
-        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
-            P.first == SJ->getPointerOperand())
-          continue;
-
-        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
-          VPPair VP(P, ValuePair(UI, UJ));
-          ConnectedPairs[VP.first].push_back(VP.second);
-          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
-        }
-      }
-    }
-
-    if (Config.SplatBreaksChain) return;
-    // Look for cases where just the second value in the pair is used by
-    // both members of another pair (splatting).
-    for (Value::user_iterator I = P.second->user_begin(),
-                              E = P.second->user_end();
-         I != E; ++I) {
-      User *UI = *I;
-      if (isa<LoadInst>(UI))
-        continue;
-      else if ((SI = dyn_cast<StoreInst>(UI)) &&
-               P.second == SI->getPointerOperand())
-        continue;
-
-      for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) {
-        User *UJ = *J;
-        if ((SJ = dyn_cast<StoreInst>(UJ)) &&
-            P.second == SJ->getPointerOperand())
-          continue;
-
-        if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
-          VPPair VP(P, ValuePair(UI, UJ));
-          ConnectedPairs[VP.first].push_back(VP.second);
-          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
-        }
-      }
-    }
-  }
-
-  // This function figures out which pairs are connected.  Two pairs are
-  // connected if some output of the first pair forms an input to both members
-  // of the second pair.
-  void BBVectorize::computeConnectedPairs(
-                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                  DenseSet<ValuePair> &CandidatePairsSet,
-                  std::vector<Value *> &PairableInsts,
-                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-                  DenseMap<VPPair, unsigned> &PairConnectionTypes) {
-    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
-         PE = PairableInsts.end(); PI != PE; ++PI) {
-      DenseMap<Value *, std::vector<Value *> >::iterator PP =
-        CandidatePairs.find(*PI);
-      if (PP == CandidatePairs.end())
-        continue;
-
-      for (std::vector<Value *>::iterator P = PP->second.begin(),
-           E = PP->second.end(); P != E; ++P)
-        computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
-                                PairableInsts, ConnectedPairs,
-                                PairConnectionTypes, ValuePair(*PI, *P));
-    }
-
-    DEBUG(size_t TotalPairs = 0;
-          for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
-               ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
-            TotalPairs += I->second.size();
-          dbgs() << "BBV: found " << TotalPairs
-                 << " pair connections.\n");
-  }
-
-  // This function builds a set of use tuples such that <A, B> is in the set
-  // if B is in the use dag of A. If B is in the use dag of A, then B
-  // depends on the output of A.
-  void BBVectorize::buildDepMap(
-                      BasicBlock &BB,
-                      DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                      std::vector<Value *> &PairableInsts,
-                      DenseSet<ValuePair> &PairableInstUsers) {
-    DenseSet<Value *> IsInPair;
-    for (DenseMap<Value *, std::vector<Value *> >::iterator C =
-         CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
-      IsInPair.insert(C->first);
-      IsInPair.insert(C->second.begin(), C->second.end());
-    }
-
-    // Iterate through the basic block, recording all users of each
-    // pairable instruction.
-
-    BasicBlock::iterator E = BB.end(), EL =
-      BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
-    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
-      if (IsInPair.find(&*I) == IsInPair.end())
-        continue;
-
-      DenseSet<Value *> Users;
-      AliasSetTracker WriteSet(*AA);
-      if (I->mayWriteToMemory())
-        WriteSet.add(&*I);
-
-      for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
-        (void)trackUsesOfI(Users, WriteSet, &*I, &*J);
-
-        if (J == EL)
-          break;
-      }
-
-      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
-           U != E; ++U) {
-        if (IsInPair.find(*U) == IsInPair.end()) continue;
-        PairableInstUsers.insert(ValuePair(&*I, *U));
-      }
-
-      if (I == EL)
-        break;
-    }
-  }
-
-  // Returns true if an input to pair P is an output of pair Q and also an
-  // input of pair Q is an output of pair P. If this is the case, then these
-  // two pairs cannot be simultaneously fused.
-  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
-             DenseSet<ValuePair> &PairableInstUsers,
-             DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
-             DenseSet<VPPair> *PairableInstUserPairSet) {
-    // Two pairs are in conflict if they are mutual Users of eachother.
-    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
-                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
-                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
-                  PairableInstUsers.count(ValuePair(P.second, Q.second));
-    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
-                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
-                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
-                  PairableInstUsers.count(ValuePair(Q.second, P.second));
-    if (PairableInstUserMap) {
-      // FIXME: The expensive part of the cycle check is not so much the cycle
-      // check itself but this edge insertion procedure. This needs some
-      // profiling and probably a different data structure.
-      if (PUsesQ) {
-        if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
-          (*PairableInstUserMap)[Q].push_back(P);
-      }
-      if (QUsesP) {
-        if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
-          (*PairableInstUserMap)[P].push_back(Q);
-      }
-    }
-
-    return (QUsesP && PUsesQ);
-  }
-
-  // This function walks the use graph of current pairs to see if, starting
-  // from P, the walk returns to P.
-  bool BBVectorize::pairWillFormCycle(ValuePair P,
-             DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
-             DenseSet<ValuePair> &CurrentPairs) {
-    DEBUG(if (DebugCycleCheck)
-            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
-                   << *P.second << "\n");
-    // A lookup table of visisted pairs is kept because the PairableInstUserMap
-    // contains non-direct associations.
-    DenseSet<ValuePair> Visited;
-    SmallVector<ValuePair, 32> Q;
-    // General depth-first post-order traversal:
-    Q.push_back(P);
-    do {
-      ValuePair QTop = Q.pop_back_val();
-      Visited.insert(QTop);
-
-      DEBUG(if (DebugCycleCheck)
-              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
-                     << *QTop.second << "\n");
-      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
-        PairableInstUserMap.find(QTop);
-      if (QQ == PairableInstUserMap.end())
-        continue;
-
-      for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
-           CE = QQ->second.end(); C != CE; ++C) {
-        if (*C == P) {
-          DEBUG(dbgs()
-                 << "BBV: rejected to prevent non-trivial cycle formation: "
-                 << QTop.first << " <-> " << C->second << "\n");
-          return true;
-        }
-
-        if (CurrentPairs.count(*C) && !Visited.count(*C))
-          Q.push_back(*C);
-      }
-    } while (!Q.empty());
-
-    return false;
-  }
-
-  // This function builds the initial dag of connected pairs with the
-  // pair J at the root.
-  void BBVectorize::buildInitialDAGFor(
-                  DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                  DenseSet<ValuePair> &CandidatePairsSet,
-                  std::vector<Value *> &PairableInsts,
-                  DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-                  DenseSet<ValuePair> &PairableInstUsers,
-                  DenseMap<Value *, Value *> &ChosenPairs,
-                  DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
-    // Each of these pairs is viewed as the root node of a DAG. The DAG
-    // is then walked (depth-first). As this happens, we keep track of
-    // the pairs that compose the DAG and the maximum depth of the DAG.
-    SmallVector<ValuePairWithDepth, 32> Q;
-    // General depth-first post-order traversal:
-    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
-    do {
-      ValuePairWithDepth QTop = Q.back();
-
-      // Push each child onto the queue:
-      bool MoreChildren = false;
-      size_t MaxChildDepth = QTop.second;
-      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
-        ConnectedPairs.find(QTop.first);
-      if (QQ != ConnectedPairs.end())
-        for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
-             ke = QQ->second.end(); k != ke; ++k) {
-          // Make sure that this child pair is still a candidate:
-          if (CandidatePairsSet.count(*k)) {
-            DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
-            if (C == DAG.end()) {
-              size_t d = getDepthFactor(k->first);
-              Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
-              MoreChildren = true;
-            } else {
-              MaxChildDepth = std::max(MaxChildDepth, C->second);
-            }
-          }
-        }
-
-      if (!MoreChildren) {
-        // Record the current pair as part of the DAG:
-        DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
-        Q.pop_back();
-      }
-    } while (!Q.empty());
-  }
-
-  // Given some initial dag, prune it by removing conflicting pairs (pairs
-  // that cannot be simultaneously chosen for vectorization).
-  void BBVectorize::pruneDAGFor(
-              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-              std::vector<Value *> &PairableInsts,
-              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-              DenseSet<ValuePair> &PairableInstUsers,
-              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
-              DenseSet<VPPair> &PairableInstUserPairSet,
-              DenseMap<Value *, Value *> &ChosenPairs,
-              DenseMap<ValuePair, size_t> &DAG,
-              DenseSet<ValuePair> &PrunedDAG, ValuePair J,
-              bool UseCycleCheck) {
-    SmallVector<ValuePairWithDepth, 32> Q;
-    // General depth-first post-order traversal:
-    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
-    do {
-      ValuePairWithDepth QTop = Q.pop_back_val();
-      PrunedDAG.insert(QTop.first);
-
-      // Visit each child, pruning as necessary...
-      SmallVector<ValuePairWithDepth, 8> BestChildren;
-      DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
-        ConnectedPairs.find(QTop.first);
-      if (QQ == ConnectedPairs.end())
-        continue;
-
-      for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
-           KE = QQ->second.end(); K != KE; ++K) {
-        DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
-        if (C == DAG.end()) continue;
-
-        // This child is in the DAG, now we need to make sure it is the
-        // best of any conflicting children. There could be multiple
-        // conflicting children, so first, determine if we're keeping
-        // this child, then delete conflicting children as necessary.
-
-        // It is also necessary to guard against pairing-induced
-        // dependencies. Consider instructions a .. x .. y .. b
-        // such that (a,b) are to be fused and (x,y) are to be fused
-        // but a is an input to x and b is an output from y. This
-        // means that y cannot be moved after b but x must be moved
-        // after b for (a,b) to be fused. In other words, after
-        // fusing (a,b) we have y .. a/b .. x where y is an input
-        // to a/b and x is an output to a/b: x and y can no longer
-        // be legally fused. To prevent this condition, we must
-        // make sure that a child pair added to the DAG is not
-        // both an input and output of an already-selected pair.
-
-        // Pairing-induced dependencies can also form from more complicated
-        // cycles. The pair vs. pair conflicts are easy to check, and so
-        // that is done explicitly for "fast rejection", and because for
-        // child vs. child conflicts, we may prefer to keep the current
-        // pair in preference to the already-selected child.
-        DenseSet<ValuePair> CurrentPairs;
-
-        bool CanAdd = true;
-        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
-              = BestChildren.begin(), E2 = BestChildren.end();
-             C2 != E2; ++C2) {
-          if (C2->first.first == C->first.first ||
-              C2->first.first == C->first.second ||
-              C2->first.second == C->first.first ||
-              C2->first.second == C->first.second ||
-              pairsConflict(C2->first, C->first, PairableInstUsers,
-                            UseCycleCheck ? &PairableInstUserMap : nullptr,
-                            UseCycleCheck ? &PairableInstUserPairSet
-                                          : nullptr)) {
-            if (C2->second >= C->second) {
-              CanAdd = false;
-              break;
-            }
-
-            CurrentPairs.insert(C2->first);
-          }
-        }
-        if (!CanAdd) continue;
-
-        // Even worse, this child could conflict with another node already
-        // selected for the DAG. If that is the case, ignore this child.
-        for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
-             E2 = PrunedDAG.end(); T != E2; ++T) {
-          if (T->first == C->first.first ||
-              T->first == C->first.second ||
-              T->second == C->first.first ||
-              T->second == C->first.second ||
-              pairsConflict(*T, C->first, PairableInstUsers,
-                            UseCycleCheck ? &PairableInstUserMap : nullptr,
-                            UseCycleCheck ? &PairableInstUserPairSet
-                                          : nullptr)) {
-            CanAdd = false;
-            break;
-          }
-
-          CurrentPairs.insert(*T);
-        }
-        if (!CanAdd) continue;
-
-        // And check the queue too...
-        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
-             E2 = Q.end(); C2 != E2; ++C2) {
-          if (C2->first.first == C->first.first ||
-              C2->first.first == C->first.second ||
-              C2->first.second == C->first.first ||
-              C2->first.second == C->first.second ||
-              pairsConflict(C2->first, C->first, PairableInstUsers,
-                            UseCycleCheck ? &PairableInstUserMap : nullptr,
-                            UseCycleCheck ? &PairableInstUserPairSet
-                                          : nullptr)) {
-            CanAdd = false;
-            break;
-          }
-
-          CurrentPairs.insert(C2->first);
-        }
-        if (!CanAdd) continue;
-
-        // Last but not least, check for a conflict with any of the
-        // already-chosen pairs.
-        for (DenseMap<Value *, Value *>::iterator C2 =
-              ChosenPairs.begin(), E2 = ChosenPairs.end();
-             C2 != E2; ++C2) {
-          if (pairsConflict(*C2, C->first, PairableInstUsers,
-                            UseCycleCheck ? &PairableInstUserMap : nullptr,
-                            UseCycleCheck ? &PairableInstUserPairSet
-                                          : nullptr)) {
-            CanAdd = false;
-            break;
-          }
-
-          CurrentPairs.insert(*C2);
-        }
-        if (!CanAdd) continue;
-
-        // To check for non-trivial cycles formed by the addition of the
-        // current pair we've formed a list of all relevant pairs, now use a
-        // graph walk to check for a cycle. We start from the current pair and
-        // walk the use dag to see if we again reach the current pair. If we
-        // do, then the current pair is rejected.
-
-        // FIXME: It may be more efficient to use a topological-ordering
-        // algorithm to improve the cycle check. This should be investigated.
-        if (UseCycleCheck &&
-            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
-          continue;
-
-        // This child can be added, but we may have chosen it in preference
-        // to an already-selected child. Check for this here, and if a
-        // conflict is found, then remove the previously-selected child
-        // before adding this one in its place.
-        for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
-              = BestChildren.begin(); C2 != BestChildren.end();) {
-          if (C2->first.first == C->first.first ||
-              C2->first.first == C->first.second ||
-              C2->first.second == C->first.first ||
-              C2->first.second == C->first.second ||
-              pairsConflict(C2->first, C->first, PairableInstUsers))
-            C2 = BestChildren.erase(C2);
-          else
-            ++C2;
-        }
-
-        BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
-      }
-
-      for (SmallVectorImpl<ValuePairWithDepth>::iterator C
-            = BestChildren.begin(), E2 = BestChildren.end();
-           C != E2; ++C) {
-        size_t DepthF = getDepthFactor(C->first.first);
-        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
-      }
-    } while (!Q.empty());
-  }
-
-  // This function finds the best dag of mututally-compatible connected
-  // pairs, given the choice of root pairs as an iterator range.
-  void BBVectorize::findBestDAGFor(
-              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-              DenseSet<ValuePair> &CandidatePairsSet,
-              DenseMap<ValuePair, int> &CandidatePairCostSavings,
-              std::vector<Value *> &PairableInsts,
-              DenseSet<ValuePair> &FixedOrderPairs,
-              DenseMap<VPPair, unsigned> &PairConnectionTypes,
-              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
-              DenseSet<ValuePair> &PairableInstUsers,
-              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
-              DenseSet<VPPair> &PairableInstUserPairSet,
-              DenseMap<Value *, Value *> &ChosenPairs,
-              DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
-              int &BestEffSize, Value *II, std::vector<Value *>&JJ,
-              bool UseCycleCheck) {
-    for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
-         J != JE; ++J) {
-      ValuePair IJ(II, *J);
-      if (!CandidatePairsSet.count(IJ))
-        continue;
-
-      // Before going any further, make sure that this pair does not
-      // conflict with any already-selected pairs (see comment below
-      // near the DAG pruning for more details).
-      DenseSet<ValuePair> ChosenPairSet;
-      bool DoesConflict = false;
-      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
-           E = ChosenPairs.end(); C != E; ++C) {
-        if (pairsConflict(*C, IJ, PairableInstUsers,
-                          UseCycleCheck ? &PairableInstUserMap : nullptr,
-                          UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
-          DoesConflict = true;
-          break;
-        }
-
-        ChosenPairSet.insert(*C);
-      }
-      if (DoesConflict) continue;
-
-      if (UseCycleCheck &&
-          pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
-        continue;
-
-      DenseMap<ValuePair, size_t> DAG;
-      buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
-                          PairableInsts, ConnectedPairs,
-                          PairableInstUsers, ChosenPairs, DAG, IJ);
-
-      // Because we'll keep the child with the largest depth, the largest
-      // depth is still the same in the unpruned DAG.
-      size_t MaxDepth = DAG.lookup(IJ);
-
-      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
-                   << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
-                   MaxDepth << " and size " << DAG.size() << "\n");
-
-      // At this point the DAG has been constructed, but, may contain
-      // contradictory children (meaning that different children of
-      // some dag node may be attempting to fuse the same instruction).
-      // So now we walk the dag again, in the case of a conflict,
-      // keep only the child with the largest depth. To break a tie,
-      // favor the first child.
-
-      DenseSet<ValuePair> PrunedDAG;
-      pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
-                   PairableInstUsers, PairableInstUserMap,
-                   PairableInstUserPairSet,
-                   ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
-
-      int EffSize = 0;
-      if (TTI) {
-        DenseSet<Value *> PrunedDAGInstrs;
-        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
-             E = PrunedDAG.end(); S != E; ++S) {
-          PrunedDAGInstrs.insert(S->first);
-          PrunedDAGInstrs.insert(S->second);
-        }
-
-        // The set of pairs that have already contributed to the total cost.
-        DenseSet<ValuePair> IncomingPairs;
-
-        // If the cost model were perfect, this might not be necessary; but we
-        // need to make sure that we don't get stuck vectorizing our own
-        // shuffle chains.
-        bool HasNontrivialInsts = false;
-
-        // The node weights represent the cost savings associated with
-        // fusing the pair of instructions.
-        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
-             E = PrunedDAG.end(); S != E; ++S) {
-          if (!isa<ShuffleVectorInst>(S->first) &&
-              !isa<InsertElementInst>(S->first) &&
-              !isa<ExtractElementInst>(S->first))
-            HasNontrivialInsts = true;
-
-          bool FlipOrder = false;
-
-          if (getDepthFactor(S->first)) {
-            int ESContrib = CandidatePairCostSavings.find(*S)->second;
-            DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
-                   << *S->first << " <-> " << *S->second << "} = " <<
-                   ESContrib << "\n");
-            EffSize += ESContrib;
-          }
-
-          // The edge weights contribute in a negative sense: they represent
-          // the cost of shuffles.
-          DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
-            ConnectedPairDeps.find(*S);
-          if (SS != ConnectedPairDeps.end()) {
-            unsigned NumDepsDirect = 0, NumDepsSwap = 0;
-            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
-                 TE = SS->second.end(); T != TE; ++T) {
-              VPPair Q(*S, *T);
-              if (!PrunedDAG.count(Q.second))
-                continue;
-              DenseMap<VPPair, unsigned>::iterator R =
-                PairConnectionTypes.find(VPPair(Q.second, Q.first));
-              assert(R != PairConnectionTypes.end() &&
-                     "Cannot find pair connection type");
-              if (R->second == PairConnectionDirect)
-                ++NumDepsDirect;
-              else if (R->second == PairConnectionSwap)
-                ++NumDepsSwap;
-            }
-
-            // If there are more swaps than direct connections, then
-            // the pair order will be flipped during fusion. So the real
-            // number of swaps is the minimum number.
-            FlipOrder = !FixedOrderPairs.count(*S) &&
-              ((NumDepsSwap > NumDepsDirect) ||
-                FixedOrderPairs.count(ValuePair(S->second, S->first)));
-
-            for (std::vector<ValuePair>::iterator T = SS->second.begin(),
-                 TE = SS->second.end(); T != TE; ++T) {
-              VPPair Q(*S, *T);
-              if (!PrunedDAG.count(Q.second))
-                continue;
-              DenseMap<VPPair, unsigned>::iterator R =
-                PairConnectionTypes.find(VPPair(Q.second, Q.first));
-              assert(R != PairConnectionTypes.end() &&
-                     "Cannot find pair connection type");
-              Type *Ty1 = Q.second.first->getType(),
-                   *Ty2 = Q.second.second->getType();
-              Type *VTy = getVecTypeForPair(Ty1, Ty2);
-              if ((R->second == PairConnectionDirect && FlipOrder) ||
-                  (R->second == PairConnectionSwap && !FlipOrder)  ||
-                  R->second == PairConnectionSplat) {
-                int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
-                                                   VTy, VTy);
-
-                if (VTy->getVectorNumElements() == 2) {
-                  if (R->second == PairConnectionSplat)
-                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
-                      TargetTransformInfo::SK_Broadcast, VTy));
-                  else
-                    ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
-                      TargetTransformInfo::SK_Reverse, VTy));
-                }
-
-                DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
-                  *Q.second.first << " <-> " << *Q.second.second <<
-                    "} -> {" <<
-                  *S->first << " <-> " << *S->second << "} = " <<
-                   ESContrib << "\n");
-                EffSize -= ESContrib;
-              }
-            }
-          }
-
-          // Compute the cost of outgoing edges. We assume that edges outgoing
-          // to shuffles, inserts or extracts can be merged, and so contribute
-          // no additional cost.
-          if (!S->first->getType()->isVoidTy()) {
-            Type *Ty1 = S->first->getType(),
-                 *Ty2 = S->second->getType();
-            Type *VTy = getVecTypeForPair(Ty1, Ty2);
-
-            bool NeedsExtraction = false;
-            for (User *U : S->first->users()) {
-              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
-                // Shuffle can be folded if it has no other input
-                if (isa<UndefValue>(SI->getOperand(1)))
-                  continue;
-              }
-              if (isa<ExtractElementInst>(U))
-                continue;
-              if (PrunedDAGInstrs.count(U))
-                continue;
-              NeedsExtraction = true;
-              break;
-            }
-
-            if (NeedsExtraction) {
-              int ESContrib;
-              if (Ty1->isVectorTy()) {
-                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
-                                               Ty1, VTy);
-                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
-                  TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
-              } else
-                ESContrib = (int) TTI->getVectorInstrCost(
-                                    Instruction::ExtractElement, VTy, 0);
-
-              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
-                *S->first << "} = " << ESContrib << "\n");
-              EffSize -= ESContrib;
-            }
-
-            NeedsExtraction = false;
-            for (User *U : S->second->users()) {
-              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
-                // Shuffle can be folded if it has no other input
-                if (isa<UndefValue>(SI->getOperand(1)))
-                  continue;
-              }
-              if (isa<ExtractElementInst>(U))
-                continue;
-              if (PrunedDAGInstrs.count(U))
-                continue;
-              NeedsExtraction = true;
-              break;
-            }
-
-            if (NeedsExtraction) {
-              int ESContrib;
-              if (Ty2->isVectorTy()) {
-                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
-                                               Ty2, VTy);
-                ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
-                  TargetTransformInfo::SK_ExtractSubvector, VTy,
-                  Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
-              } else
-                ESContrib = (int) TTI->getVectorInstrCost(
-                                    Instruction::ExtractElement, VTy, 1);
-              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
-                *S->second << "} = " << ESContrib << "\n");
-              EffSize -= ESContrib;
-            }
-          }
-
-          // Compute the cost of incoming edges.
-          if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
-            Instruction *S1 = cast<Instruction>(S->first),
-                        *S2 = cast<Instruction>(S->second);
-            for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
-              Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
-
-              // Combining constants into vector constants (or small vector
-              // constants into larger ones are assumed free).
-              if (isa<Constant>(O1) && isa<Constant>(O2))
-                continue;
-
-              if (FlipOrder)
-                std::swap(O1, O2);
-
-              ValuePair VP  = ValuePair(O1, O2);
-              ValuePair VPR = ValuePair(O2, O1);
-
-              // Internal edges are not handled here.
-              if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
-                continue;
-
-              Type *Ty1 = O1->getType(),
-                   *Ty2 = O2->getType();
-              Type *VTy = getVecTypeForPair(Ty1, Ty2);
-
-              // Combining vector operations of the same type is also assumed
-              // folded with other operations.
-              if (Ty1 == Ty2) {
-                // If both are insert elements, then both can be widened.
-                InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
-                                  *IEO2 = dyn_cast<InsertElementInst>(O2);
-                if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
-                  continue;
-                // If both are extract elements, and both have the same input
-                // type, then they can be replaced with a shuffle
-                ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
-                                   *EIO2 = dyn_cast<ExtractElementInst>(O2);
-                if (EIO1 && EIO2 &&
-                    EIO1->getOperand(0)->getType() ==
-                      EIO2->getOperand(0)->getType())
-                  continue;
-                // If both are a shuffle with equal operand types and only two
-                // unqiue operands, then they can be replaced with a single
-                // shuffle
-                ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
-                                  *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
-                if (SIO1 && SIO2 &&
-                    SIO1->getOperand(0)->getType() ==
-                      SIO2->getOperand(0)->getType()) {
-                  SmallSet<Value *, 4> SIOps;
-                  SIOps.insert(SIO1->getOperand(0));
-                  SIOps.insert(SIO1->getOperand(1));
-                  SIOps.insert(SIO2->getOperand(0));
-                  SIOps.insert(SIO2->getOperand(1));
-                  if (SIOps.size() <= 2)
-                    continue;
-                }
-              }
-
-              int ESContrib;
-              // This pair has already been formed.
-              if (IncomingPairs.count(VP)) {
-                continue;
-              } else if (IncomingPairs.count(VPR)) {
-                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
-                                               VTy, VTy);
-
-                if (VTy->getVectorNumElements() == 2)
-                  ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
-                    TargetTransformInfo::SK_Reverse, VTy));
-              } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
-                ESContrib = (int) TTI->getVectorInstrCost(
-                                    Instruction::InsertElement, VTy, 0);
-                ESContrib += (int) TTI->getVectorInstrCost(
-                                     Instruction::InsertElement, VTy, 1);
-              } else if (!Ty1->isVectorTy()) {
-                // O1 needs to be inserted into a vector of size O2, and then
-                // both need to be shuffled together.
-                ESContrib = (int) TTI->getVectorInstrCost(
-                                    Instruction::InsertElement, Ty2, 0);
-                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
-                                                VTy, Ty2);
-              } else if (!Ty2->isVectorTy()) {
-                // O2 needs to be inserted into a vector of size O1, and then
-                // both need to be shuffled together.
-                ESContrib = (int) TTI->getVectorInstrCost(
-                                    Instruction::InsertElement, Ty1, 0);
-                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
-                                                VTy, Ty1);
-              } else {
-                Type *TyBig = Ty1, *TySmall = Ty2;
-                if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
-                  std::swap(TyBig, TySmall);
-
-                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
-                                               VTy, TyBig);
-                if (TyBig != TySmall)
-                  ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
-                                                  TyBig, TySmall);
-              }
-
-              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
-                     << *O1 << " <-> " << *O2 << "} = " <<
-                     ESContrib << "\n");
-              EffSize -= ESContrib;
-              IncomingPairs.insert(VP);
-            }
-          }
-        }
-
-        if (!HasNontrivialInsts) {
-          DEBUG(if (DebugPairSelection) dbgs() <<
-                "\tNo non-trivial instructions in DAG;"
-                " override to zero effective size\n");
-          EffSize = 0;
-        }
-      } else {
-        for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
-             E = PrunedDAG.end(); S != E; ++S)
-          EffSize += (int) getDepthFactor(S->first);
-      }
-
-      DEBUG(if (DebugPairSelection)
-             dbgs() << "BBV: found pruned DAG for pair {"
-             << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
-             MaxDepth << " and size " << PrunedDAG.size() <<
-            " (effective size: " << EffSize << ")\n");
-      if (((TTI && !UseChainDepthWithTI) ||
-            MaxDepth >= Config.ReqChainDepth) &&
-          EffSize > 0 && EffSize > BestEffSize) {
-        BestMaxDepth = MaxDepth;
-        BestEffSize = EffSize;
-        BestDAG = PrunedDAG;
-      }
-    }
-  }
-
-  // Given the list of candidate pairs, this function selects those
-  // that will be fused into vector instructions.
-  void BBVectorize::choosePairs(
-                DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
-                DenseSet<ValuePair> &CandidatePairsSet,
-                DenseMap<ValuePair, int> &CandidatePairCostSavings,
-                std::vector<Value *> &PairableInsts,
-                DenseSet<ValuePair> &FixedOrderPairs,
-                DenseMap<VPPair, unsigned> &PairConnectionTypes,
-                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-                DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
-                DenseSet<ValuePair> &PairableInstUsers,
-                DenseMap<Value *, Value *>& ChosenPairs) {
-    bool UseCycleCheck =
-     CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
-
-    DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
-    for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
-         E = CandidatePairsSet.end(); I != E; ++I) {
-      std::vector<Value *> &JJ = CandidatePairs2[I->second];
-      if (JJ.empty()) JJ.reserve(32);
-      JJ.push_back(I->first);
-    }
-
-    DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
-    DenseSet<VPPair> PairableInstUserPairSet;
-    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
-         E = PairableInsts.end(); I != E; ++I) {
-      // The number of possible pairings for this variable:
-      size_t NumChoices = CandidatePairs.lookup(*I).size();
-      if (!NumChoices) continue;
-
-      std::vector<Value *> &JJ = CandidatePairs[*I];
-
-      // The best pair to choose and its dag:
-      size_t BestMaxDepth = 0;
-      int BestEffSize = 0;
-      DenseSet<ValuePair> BestDAG;
-      findBestDAGFor(CandidatePairs, CandidatePairsSet,
-                      CandidatePairCostSavings,
-                      PairableInsts, FixedOrderPairs, PairConnectionTypes,
-                      ConnectedPairs, ConnectedPairDeps,
-                      PairableInstUsers, PairableInstUserMap,
-                      PairableInstUserPairSet, ChosenPairs,
-                      BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
-                      UseCycleCheck);
-
-      if (BestDAG.empty())
-        continue;
-
-      // A dag has been chosen (or not) at this point. If no dag was
-      // chosen, then this instruction, I, cannot be paired (and is no longer
-      // considered).
-
-      DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
-                   << *cast<Instruction>(*I) << "\n");
-
-      for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
-           SE2 = BestDAG.end(); S != SE2; ++S) {
-        // Insert the members of this dag into the list of chosen pairs.
-        ChosenPairs.insert(ValuePair(S->first, S->second));
-        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
-               *S->second << "\n");
-
-        // Remove all candidate pairs that have values in the chosen dag.
-        std::vector<Value *> &KK = CandidatePairs[S->first];
-        for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
-             K != KE; ++K) {
-          if (*K == S->second)
-            continue;
-
-          CandidatePairsSet.erase(ValuePair(S->first, *K));
-        }
-
-        std::vector<Value *> &LL = CandidatePairs2[S->second];
-        for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
-             L != LE; ++L) {
-          if (*L == S->first)
-            continue;
-
-          CandidatePairsSet.erase(ValuePair(*L, S->second));
-        }
-
-        std::vector<Value *> &MM = CandidatePairs[S->second];
-        for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
-             M != ME; ++M) {
-          assert(*M != S->first && "Flipped pair in candidate list?");
-          CandidatePairsSet.erase(ValuePair(S->second, *M));
-        }
-
-        std::vector<Value *> &NN = CandidatePairs2[S->first];
-        for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
-             N != NE; ++N) {
-          assert(*N != S->second && "Flipped pair in candidate list?");
-          CandidatePairsSet.erase(ValuePair(*N, S->first));
-        }
-      }
-    }
-
-    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
-  }
-
-  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
-                     unsigned n = 0) {
-    if (!I->hasName())
-      return "";
-
-    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
-             (n > 0 ? "." + utostr(n) : "")).str();
-  }
-
-  // Returns the value that is to be used as the pointer input to the vector
-  // instruction that fuses I with J.
-  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
-                     Instruction *I, Instruction *J, unsigned o) {
-    Value *IPtr, *JPtr;
-    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
-    int64_t OffsetInElmts;
-
-    // Note: the analysis might fail here, that is why the pair order has
-    // been precomputed (OffsetInElmts must be unused here).
-    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
-                          IAddressSpace, JAddressSpace,
-                          OffsetInElmts, false);
-
-    // The pointer value is taken to be the one with the lowest offset.
-    Value *VPtr = IPtr;
-
-    Type *ArgTypeI = IPtr->getType()->getPointerElementType();
-    Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
-    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
-    Type *VArgPtrType
-      = PointerType::get(VArgType,
-                         IPtr->getType()->getPointerAddressSpace());
-    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
-                        /* insert before */ I);
-  }
-
-  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
-                     unsigned MaskOffset, unsigned NumInElem,
-                     unsigned NumInElem1, unsigned IdxOffset,
-                     std::vector<Constant*> &Mask) {
-    unsigned NumElem1 = J->getType()->getVectorNumElements();
-    for (unsigned v = 0; v < NumElem1; ++v) {
-      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
-      if (m < 0) {
-        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
-      } else {
-        unsigned mm = m + (int) IdxOffset;
-        if (m >= (int) NumInElem1)
-          mm += (int) NumInElem;
-
-        Mask[v+MaskOffset] =
-          ConstantInt::get(Type::getInt32Ty(Context), mm);
-      }
-    }
-  }
-
-  // Returns the value that is to be used as the vector-shuffle mask to the
-  // vector instruction that fuses I with J.
-  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
-                     Instruction *I, Instruction *J) {
-    // This is the shuffle mask. We need to append the second
-    // mask to the first, and the numbers need to be adjusted.
-
-    Type *ArgTypeI = I->getType();
-    Type *ArgTypeJ = J->getType();
-    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
-
-    unsigned NumElemI = ArgTypeI->getVectorNumElements();
-
-    // Get the total number of elements in the fused vector type.
-    // By definition, this must equal the number of elements in
-    // the final mask.
-    unsigned NumElem = VArgType->getVectorNumElements();
-    std::vector<Constant*> Mask(NumElem);
-
-    Type *OpTypeI = I->getOperand(0)->getType();
-    unsigned NumInElemI = OpTypeI->getVectorNumElements();
-    Type *OpTypeJ = J->getOperand(0)->getType();
-    unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
-
-    // The fused vector will be:
-    // -----------------------------------------------------
-    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
-    // -----------------------------------------------------
-    // from which we'll extract NumElem total elements (where the first NumElemI
-    // of them come from the mask in I and the remainder come from the mask
-    // in J.
-
-    // For the mask from the first pair...
-    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
-                       0,          Mask);
-
-    // For the mask from the second pair...
-    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
-                       NumInElemI, Mask);
-
-    return ConstantVector::get(Mask);
-  }
-
-  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
-                                  Instruction *J, unsigned o, Value *&LOp,
-                                  unsigned numElemL,
-                                  Type *ArgTypeL, Type *ArgTypeH,
-                                  bool IBeforeJ, unsigned IdxOff) {
-    bool ExpandedIEChain = false;
-    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
-      // If we have a pure insertelement chain, then this can be rewritten
-      // into a chain that directly builds the larger type.
-      if (isPureIEChain(LIE)) {
-        SmallVector<Value *, 8> VectElemts(numElemL,
-          UndefValue::get(ArgTypeL->getScalarType()));
-        InsertElementInst *LIENext = LIE;
-        do {
-          unsigned Idx =
-            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
-          VectElemts[Idx] = LIENext->getOperand(1);
-        } while ((LIENext =
-                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
-
-        LIENext = nullptr;
-        Value *LIEPrev = UndefValue::get(ArgTypeH);
-        for (unsigned i = 0; i < numElemL; ++i) {
-          if (isa<UndefValue>(VectElemts[i])) continue;
-          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
-                             ConstantInt::get(Type::getInt32Ty(Context),
-                                              i + IdxOff),
-                             getReplacementName(IBeforeJ ? I : J,
-                                                true, o, i+1));
-          LIENext->insertBefore(IBeforeJ ? J : I);
-          LIEPrev = LIENext;
-        }
-
-        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
-        ExpandedIEChain = true;
-      }
-    }
-
-    return ExpandedIEChain;
-  }
-
-  static unsigned getNumScalarElements(Type *Ty) {
-    if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
-      return VecTy->getNumElements();
-    return 1;
-  }
-
-  // Returns the value to be used as the specified operand of the vector
-  // instruction that fuses I with J.
-  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
-                     Instruction *J, unsigned o, bool IBeforeJ) {
-    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
-    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
-
-    // Compute the fused vector type for this operand
-    Type *ArgTypeI = I->getOperand(o)->getType();
-    Type *ArgTypeJ = J->getOperand(o)->getType();
-    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
-
-    Instruction *L = I, *H = J;
-    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
-
-    unsigned numElemL = getNumScalarElements(ArgTypeL);
-    unsigned numElemH = getNumScalarElements(ArgTypeH);
-
-    Value *LOp = L->getOperand(o);
-    Value *HOp = H->getOperand(o);
-    unsigned numElem = VArgType->getNumElements();
-
-    // First, we check if we can reuse the "original" vector outputs (if these
-    // exist). We might need a shuffle.
-    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
-    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
-    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
-    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
-
-    // FIXME: If we're fusing shuffle instructions, then we can't apply this
-    // optimization. The input vectors to the shuffle might be a different
-    // length from the shuffle outputs. Unfortunately, the replacement
-    // shuffle mask has already been formed, and the mask entries are sensitive
-    // to the sizes of the inputs.
-    bool IsSizeChangeShuffle =
-      isa<ShuffleVectorInst>(L) &&
-        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
-
-    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
-      // We can have at most two unique vector inputs.
-      bool CanUseInputs = true;
-      Value *I1, *I2 = nullptr;
-      if (LEE) {
-        I1 = LEE->getOperand(0);
-      } else {
-        I1 = LSV->getOperand(0);
-        I2 = LSV->getOperand(1);
-        if (I2 == I1 || isa<UndefValue>(I2))
-          I2 = nullptr;
-      }
-
-      if (HEE) {
-        Value *I3 = HEE->getOperand(0);
-        if (!I2 && I3 != I1)
-          I2 = I3;
-        else if (I3 != I1 && I3 != I2)
-          CanUseInputs = false;
-      } else {
-        Value *I3 = HSV->getOperand(0);
-        if (!I2 && I3 != I1)
-          I2 = I3;
-        else if (I3 != I1 && I3 != I2)
-          CanUseInputs = false;
-
-        if (CanUseInputs) {
-          Value *I4 = HSV->getOperand(1);
-          if (!isa<UndefValue>(I4)) {
-            if (!I2 && I4 != I1)
-              I2 = I4;
-            else if (I4 != I1 && I4 != I2)
-              CanUseInputs = false;
-          }
-        }
-      }
-
-      if (CanUseInputs) {
-        unsigned LOpElem =
-          cast<Instruction>(LOp)->getOperand(0)->getType()
-            ->getVectorNumElements();
-
-        unsigned HOpElem =
-          cast<Instruction>(HOp)->getOperand(0)->getType()
-            ->getVectorNumElements();
-
-        // We have one or two input vectors. We need to map each index of the
-        // operands to the index of the original vector.
-        SmallVector<std::pair<int, int>, 8>  II(numElem);
-        for (unsigned i = 0; i < numElemL; ++i) {
-          int Idx, INum;
-          if (LEE) {
-            Idx =
-              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
-            INum = LEE->getOperand(0) == I1 ? 0 : 1;
-          } else {
-            Idx = LSV->getMaskValue(i);
-            if (Idx < (int) LOpElem) {
-              INum = LSV->getOperand(0) == I1 ? 0 : 1;
-            } else {
-              Idx -= LOpElem;
-              INum = LSV->getOperand(1) == I1 ? 0 : 1;
-            }
-          }
-
-          II[i] = std::pair<int, int>(Idx, INum);
-        }
-        for (unsigned i = 0; i < numElemH; ++i) {
-          int Idx, INum;
-          if (HEE) {
-            Idx =
-              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
-            INum = HEE->getOperand(0) == I1 ? 0 : 1;
-          } else {
-            Idx = HSV->getMaskValue(i);
-            if (Idx < (int) HOpElem) {
-              INum = HSV->getOperand(0) == I1 ? 0 : 1;
-            } else {
-              Idx -= HOpElem;
-              INum = HSV->getOperand(1) == I1 ? 0 : 1;
-            }
-          }
-
-          II[i + numElemL] = std::pair<int, int>(Idx, INum);
-        }
-
-        // We now have an array which tells us from which index of which
-        // input vector each element of the operand comes.
-        VectorType *I1T = cast<VectorType>(I1->getType());
-        unsigned I1Elem = I1T->getNumElements();
-
-        if (!I2) {
-          // In this case there is only one underlying vector input. Check for
-          // the trivial case where we can use the input directly.
-          if (I1Elem == numElem) {
-            bool ElemInOrder = true;
-            for (unsigned i = 0; i < numElem; ++i) {
-              if (II[i].first != (int) i && II[i].first != -1) {
-                ElemInOrder = false;
-                break;
-              }
-            }
-
-            if (ElemInOrder)
-              return I1;
-          }
-
-          // A shuffle is needed.
-          std::vector<Constant *> Mask(numElem);
-          for (unsigned i = 0; i < numElem; ++i) {
-            int Idx = II[i].first;
-            if (Idx == -1)
-              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
-            else
-              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
-          }
-
-          Instruction *S =
-            new ShuffleVectorInst(I1, UndefValue::get(I1T),
-                                  ConstantVector::get(Mask),
-                                  getReplacementName(IBeforeJ ? I : J,
-                                                     true, o));
-          S->insertBefore(IBeforeJ ? J : I);
-          return S;
-        }
-
-        VectorType *I2T = cast<VectorType>(I2->getType());
-        unsigned I2Elem = I2T->getNumElements();
-
-        // This input comes from two distinct vectors. The first step is to
-        // make sure that both vectors are the same length. If not, the
-        // smaller one will need to grow before they can be shuffled together.
-        if (I1Elem < I2Elem) {
-          std::vector<Constant *> Mask(I2Elem);
-          unsigned v = 0;
-          for (; v < I1Elem; ++v)
-            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-          for (; v < I2Elem; ++v)
-            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
-
-          Instruction *NewI1 =
-            new ShuffleVectorInst(I1, UndefValue::get(I1T),
-                                  ConstantVector::get(Mask),
-                                  getReplacementName(IBeforeJ ? I : J,
-                                                     true, o, 1));
-          NewI1->insertBefore(IBeforeJ ? J : I);
-          I1 = NewI1;
-          I1Elem = I2Elem;
-        } else if (I1Elem > I2Elem) {
-          std::vector<Constant *> Mask(I1Elem);
-          unsigned v = 0;
-          for (; v < I2Elem; ++v)
-            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-          for (; v < I1Elem; ++v)
-            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
-
-          Instruction *NewI2 =
-            new ShuffleVectorInst(I2, UndefValue::get(I2T),
-                                  ConstantVector::get(Mask),
-                                  getReplacementName(IBeforeJ ? I : J,
-                                                     true, o, 1));
-          NewI2->insertBefore(IBeforeJ ? J : I);
-          I2 = NewI2;
-        }
-
-        // Now that both I1 and I2 are the same length we can shuffle them
-        // together (and use the result).
-        std::vector<Constant *> Mask(numElem);
-        for (unsigned v = 0; v < numElem; ++v) {
-          if (II[v].first == -1) {
-            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
-          } else {
-            int Idx = II[v].first + II[v].second * I1Elem;
-            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
-          }
-        }
-
-        Instruction *NewOp =
-          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
-                                getReplacementName(IBeforeJ ? I : J, true, o));
-        NewOp->insertBefore(IBeforeJ ? J : I);
-        return NewOp;
-      }
-    }
-
-    Type *ArgType = ArgTypeL;
-    if (numElemL < numElemH) {
-      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
-                                         ArgTypeL, VArgType, IBeforeJ, 1)) {
-        // This is another short-circuit case: we're combining a scalar into
-        // a vector that is formed by an IE chain. We've just expanded the IE
-        // chain, now insert the scalar and we're done.
-
-        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
-                           getReplacementName(IBeforeJ ? I : J, true, o));
-        S->insertBefore(IBeforeJ ? J : I);
-        return S;
-      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
-                                ArgTypeH, IBeforeJ)) {
-        // The two vector inputs to the shuffle must be the same length,
-        // so extend the smaller vector to be the same length as the larger one.
-        Instruction *NLOp;
-        if (numElemL > 1) {
-
-          std::vector<Constant *> Mask(numElemH);
-          unsigned v = 0;
-          for (; v < numElemL; ++v)
-            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-          for (; v < numElemH; ++v)
-            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
-
-          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
-                                       ConstantVector::get(Mask),
-                                       getReplacementName(IBeforeJ ? I : J,
-                                                          true, o, 1));
-        } else {
-          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
-                                           getReplacementName(IBeforeJ ? I : J,
-                                                              true, o, 1));
-        }
-
-        NLOp->insertBefore(IBeforeJ ? J : I);
-        LOp = NLOp;
-      }
-
-      ArgType = ArgTypeH;
-    } else if (numElemL > numElemH) {
-      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
-                                         ArgTypeH, VArgType, IBeforeJ)) {
-        Instruction *S =
-          InsertElementInst::Create(LOp, HOp,
-                                    ConstantInt::get(Type::getInt32Ty(Context),
-                                                     numElemL),
-                                    getReplacementName(IBeforeJ ? I : J,
-                                                       true, o));
-        S->insertBefore(IBeforeJ ? J : I);
-        return S;
-      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
-                                ArgTypeL, IBeforeJ)) {
-        Instruction *NHOp;
-        if (numElemH > 1) {
-          std::vector<Constant *> Mask(numElemL);
-          unsigned v = 0;
-          for (; v < numElemH; ++v)
-            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-          for (; v < numElemL; ++v)
-            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
-
-          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
-                                       ConstantVector::get(Mask),
-                                       getReplacementName(IBeforeJ ? I : J,
-                                                          true, o, 1));
-        } else {
-          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
-                                           getReplacementName(IBeforeJ ? I : J,
-                                                              true, o, 1));
-        }
-
-        NHOp->insertBefore(IBeforeJ ? J : I);
-        HOp = NHOp;
-      }
-    }
-
-    if (ArgType->isVectorTy()) {
-      unsigned numElem = VArgType->getVectorNumElements();
-      std::vector<Constant*> Mask(numElem);
-      for (unsigned v = 0; v < numElem; ++v) {
-        unsigned Idx = v;
-        // If the low vector was expanded, we need to skip the extra
-        // undefined entries.
-        if (v >= numElemL && numElemH > numElemL)
-          Idx += (numElemH - numElemL);
-        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
-      }
-
-      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
-                          ConstantVector::get(Mask),
-                          getReplacementName(IBeforeJ ? I : J, true, o));
-      BV->insertBefore(IBeforeJ ? J : I);
-      return BV;
-    }
-
-    Instruction *BV1 = InsertElementInst::Create(
-                                          UndefValue::get(VArgType), LOp, CV0,
-                                          getReplacementName(IBeforeJ ? I : J,
-                                                             true, o, 1));
-    BV1->insertBefore(IBeforeJ ? J : I);
-    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
-                                          getReplacementName(IBeforeJ ? I : J,
-                                                             true, o, 2));
-    BV2->insertBefore(IBeforeJ ? J : I);
-    return BV2;
-  }
-
-  // This function creates an array of values that will be used as the inputs
-  // to the vector instruction that fuses I with J.
-  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
-                     Instruction *I, Instruction *J,
-                     SmallVectorImpl<Value *> &ReplacedOperands,
-                     bool IBeforeJ) {
-    unsigned NumOperands = I->getNumOperands();
-
-    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
-      // Iterate backward so that we look at the store pointer
-      // first and know whether or not we need to flip the inputs.
-
-      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
-        // This is the pointer for a load/store instruction.
-        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
-        continue;
-      } else if (isa<CallInst>(I)) {
-        Function *F = cast<CallInst>(I)->getCalledFunction();
-        Intrinsic::ID IID = F->getIntrinsicID();
-        if (o == NumOperands-1) {
-          BasicBlock &BB = *I->getParent();
-
-          Module *M = BB.getParent()->getParent();
-          Type *ArgTypeI = I->getType();
-          Type *ArgTypeJ = J->getType();
-          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
-
-          ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
-          continue;
-        } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
-                    IID == Intrinsic::cttz) && o == 1) {
-          // The second argument of powi/ctlz/cttz is a single integer/constant
-          // and we've already checked that both arguments are equal.
-          // As a result, we just keep I's second argument.
-          ReplacedOperands[o] = I->getOperand(o);
-          continue;
-        }
-      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
-        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
-        continue;
-      }
-
-      ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
-    }
-  }
-
-  // This function creates two values that represent the outputs of the
-  // original I and J instructions. These are generally vector shuffles
-  // or extracts. In many cases, these will end up being unused and, thus,
-  // eliminated by later passes.
-  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
-                     Instruction *J, Instruction *K,
-                     Instruction *&InsertionPt,
-                     Instruction *&K1, Instruction *&K2) {
-    if (isa<StoreInst>(I))
-      return;
-
-    Type *IType = I->getType();
-    Type *JType = J->getType();
-
-    VectorType *VType = getVecTypeForPair(IType, JType);
-    unsigned numElem = VType->getNumElements();
-
-    unsigned numElemI = getNumScalarElements(IType);
-    unsigned numElemJ = getNumScalarElements(JType);
-
-    if (IType->isVectorTy()) {
-      std::vector<Constant *> Mask1(numElemI), Mask2(numElemI);
-      for (unsigned v = 0; v < numElemI; ++v) {
-        Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-        Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ + v);
-      }
-
-      K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
-                                 ConstantVector::get(Mask1),
-                                 getReplacementName(K, false, 1));
-    } else {
-      Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
-      K1 = ExtractElementInst::Create(K, CV0, getReplacementName(K, false, 1));
-    }
-
-    if (JType->isVectorTy()) {
-      std::vector<Constant *> Mask1(numElemJ), Mask2(numElemJ);
-      for (unsigned v = 0; v < numElemJ; ++v) {
-        Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
-        Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI + v);
-      }
-
-      K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
-                                 ConstantVector::get(Mask2),
-                                 getReplacementName(K, false, 2));
-    } else {
-      Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem - 1);
-      K2 = ExtractElementInst::Create(K, CV1, getReplacementName(K, false, 2));
-    }
-
-    K1->insertAfter(K);
-    K2->insertAfter(K1);
-    InsertionPt = K2;
-  }
-
-  // Move all uses of the function I (including pairing-induced uses) after J.
-  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *I, Instruction *J) {
-    // Skip to the first instruction past I.
-    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
-
-    DenseSet<Value *> Users;
-    AliasSetTracker WriteSet(*AA);
-    if (I->mayWriteToMemory()) WriteSet.add(I);
-
-    for (; cast<Instruction>(L) != J; ++L)
-      (void)trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs);
-
-    assert(cast<Instruction>(L) == J &&
-      "Tracking has not proceeded far enough to check for dependencies");
-    // If J is now in the use set of I, then trackUsesOfI will return true
-    // and we have a dependency cycle (and the fusing operation must abort).
-    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
-  }
-
-  // Move all uses of the function I (including pairing-induced uses) after J.
-  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *&InsertionPt,
-                     Instruction *I, Instruction *J) {
-    // Skip to the first instruction past I.
-    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
-
-    DenseSet<Value *> Users;
-    AliasSetTracker WriteSet(*AA);
-    if (I->mayWriteToMemory()) WriteSet.add(I);
-
-    for (; cast<Instruction>(L) != J;) {
-      if (trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs)) {
-        // Move this instruction
-        Instruction *InstToMove = &*L++;
-
-        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
-                        " to after " << *InsertionPt << "\n");
-        InstToMove->removeFromParent();
-        InstToMove->insertAfter(InsertionPt);
-        InsertionPt = InstToMove;
-      } else {
-        ++L;
-      }
-    }
-  }
-
-  // Collect all load instruction that are in the move set of a given first
-  // pair member.  These loads depend on the first instruction, I, and so need
-  // to be moved after J (the second instruction) when the pair is fused.
-  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
-                     DenseMap<Value *, Value *> &ChosenPairs,
-                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
-                     DenseSet<ValuePair> &LoadMoveSetPairs,
-                     Instruction *I) {
-    // Skip to the first instruction past I.
-    BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
-
-    DenseSet<Value *> Users;
-    AliasSetTracker WriteSet(*AA);
-    if (I->mayWriteToMemory()) WriteSet.add(I);
-
-    // Note: We cannot end the loop when we reach J because J could be moved
-    // farther down the use chain by another instruction pairing. Also, J
-    // could be before I if this is an inverted input.
-    for (BasicBlock::iterator E = BB.end(); L != E; ++L) {
-      if (trackUsesOfI(Users, WriteSet, I, &*L)) {
-        if (L->mayReadFromMemory()) {
-          LoadMoveSet[&*L].push_back(I);
-          LoadMoveSetPairs.insert(ValuePair(&*L, I));
-        }
-      }
-    }
-  }
-
-  // In cases where both load/stores and the computation of their pointers
-  // are chosen for vectorization, we can end up in a situation where the
-  // aliasing analysis starts returning different query results as the
-  // process of fusing instruction pairs continues. Because the algorithm
-  // relies on finding the same use dags here as were found earlier, we'll
-  // need to precompute the necessary aliasing information here and then
-  // manually update it during the fusion process.
-  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
-                     std::vector<Value *> &PairableInsts,
-                     DenseMap<Value *, Value *> &ChosenPairs,
-                     DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
-                     DenseSet<ValuePair> &LoadMoveSetPairs) {
-    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
-         PIE = PairableInsts.end(); PI != PIE; ++PI) {
-      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
-      if (P == ChosenPairs.end()) continue;
-
-      Instruction *I = cast<Instruction>(P->first);
-      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
-                             LoadMoveSetPairs, I);
-    }
-  }
-
-  // This function fuses the chosen instruction pairs into vector instructions,
-  // taking care preserve any needed scalar outputs and, then, it reorders the
-  // remaining instructions as needed (users of the first member of the pair
-  // need to be moved to after the location of the second member of the pair
-  // because the vector instruction is inserted in the location of the pair's
-  // second member).
-  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
-             std::vector<Value *> &PairableInsts,
-             DenseMap<Value *, Value *> &ChosenPairs,
-             DenseSet<ValuePair> &FixedOrderPairs,
-             DenseMap<VPPair, unsigned> &PairConnectionTypes,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
-             DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
-    LLVMContext& Context = BB.getContext();
-
-    // During the vectorization process, the order of the pairs to be fused
-    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
-    // list. After a pair is fused, the flipped pair is removed from the list.
-    DenseSet<ValuePair> FlippedPairs;
-    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
-         E = ChosenPairs.end(); P != E; ++P)
-      FlippedPairs.insert(ValuePair(P->second, P->first));
-    for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
-         E = FlippedPairs.end(); P != E; ++P)
-      ChosenPairs.insert(*P);
-
-    DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
-    DenseSet<ValuePair> LoadMoveSetPairs;
-    collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
-                       LoadMoveSet, LoadMoveSetPairs);
-
-    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
-
-    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
-      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(&*PI);
-      if (P == ChosenPairs.end()) {
-        ++PI;
-        continue;
-      }
-
-      if (getDepthFactor(P->first) == 0) {
-        // These instructions are not really fused, but are tracked as though
-        // they are. Any case in which it would be interesting to fuse them
-        // will be taken care of by InstCombine.
-        --NumFusedOps;
-        ++PI;
-        continue;
-      }
-
-      Instruction *I = cast<Instruction>(P->first),
-        *J = cast<Instruction>(P->second);
-
-      DEBUG(dbgs() << "BBV: fusing: " << *I <<
-             " <-> " << *J << "\n");
-
-      // Remove the pair and flipped pair from the list.
-      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
-      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
-      ChosenPairs.erase(FP);
-      ChosenPairs.erase(P);
-
-      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
-        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
-               " <-> " << *J <<
-               " aborted because of non-trivial dependency cycle\n");
-        --NumFusedOps;
-        ++PI;
-        continue;
-      }
-
-      // If the pair must have the other order, then flip it.
-      bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
-      if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
-        // This pair does not have a fixed order, and so we might want to
-        // flip it if that will yield fewer shuffles. We count the number
-        // of dependencies connected via swaps, and those directly connected,
-        // and flip the order if the number of swaps is greater.
-        bool OrigOrder = true;
-        DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
-          ConnectedPairDeps.find(ValuePair(I, J));
-        if (IJ == ConnectedPairDeps.end()) {
-          IJ = ConnectedPairDeps.find(ValuePair(J, I));
-          OrigOrder = false;
-        }
-
-        if (IJ != ConnectedPairDeps.end()) {
-          unsigned NumDepsDirect = 0, NumDepsSwap = 0;
-          for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
-               TE = IJ->second.end(); T != TE; ++T) {
-            VPPair Q(IJ->first, *T);
-            DenseMap<VPPair, unsigned>::iterator R =
-              PairConnectionTypes.find(VPPair(Q.second, Q.first));
-            assert(R != PairConnectionTypes.end() &&
-                   "Cannot find pair connection type");
-            if (R->second == PairConnectionDirect)
-              ++NumDepsDirect;
-            else if (R->second == PairConnectionSwap)
-              ++NumDepsSwap;
-          }
-
-          if (!OrigOrder)
-            std::swap(NumDepsDirect, NumDepsSwap);
-
-          if (NumDepsSwap > NumDepsDirect) {
-            FlipPairOrder = true;
-            DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
-                            " <-> " << *J << "\n");
-          }
-        }
-      }
-
-      Instruction *L = I, *H = J;
-      if (FlipPairOrder)
-        std::swap(H, L);
-
-      // If the pair being fused uses the opposite order from that in the pair
-      // connection map, then we need to flip the types.
-      DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
-        ConnectedPairs.find(ValuePair(H, L));
-      if (HL != ConnectedPairs.end())
-        for (std::vector<ValuePair>::iterator T = HL->second.begin(),
-             TE = HL->second.end(); T != TE; ++T) {
-          VPPair Q(HL->first, *T);
-          DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
-          assert(R != PairConnectionTypes.end() &&
-                 "Cannot find pair connection type");
-          if (R->second == PairConnectionDirect)
-            R->second = PairConnectionSwap;
-          else if (R->second == PairConnectionSwap)
-            R->second = PairConnectionDirect;
-        }
-
-      bool LBeforeH = !FlipPairOrder;
-      unsigned NumOperands = I->getNumOperands();
-      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
-      getReplacementInputsForPair(Context, L, H, ReplacedOperands,
-                                  LBeforeH);
-
-      // Make a copy of the original operation, change its type to the vector
-      // type and replace its operands with the vector operands.
-      Instruction *K = L->clone();
-      if (L->hasName())
-        K->takeName(L);
-      else if (H->hasName())
-        K->takeName(H);
-
-      if (auto CS = CallSite(K)) {
-        SmallVector<Type *, 3> Tys;
-        FunctionType *Old = CS.getFunctionType();
-        unsigned NumOld = Old->getNumParams();
-        assert(NumOld <= ReplacedOperands.size());
-        for (unsigned i = 0; i != NumOld; ++i)
-          Tys.push_back(ReplacedOperands[i]->getType());
-        CS.mutateFunctionType(
-            FunctionType::get(getVecTypeForPair(L->getType(), H->getType()),
-                              Tys, Old->isVarArg()));
-      } else if (!isa<StoreInst>(K))
-        K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
-
-      unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
-                             LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
-                             LLVMContext::MD_invariant_group};
-      combineMetadata(K, H, KnownIDs);
-      K->andIRFlags(H);
-
-      for (unsigned o = 0; o < NumOperands; ++o)
-        K->setOperand(o, ReplacedOperands[o]);
-
-      K->insertAfter(J);
-
-      // Instruction insertion point:
-      Instruction *InsertionPt = K;
-      Instruction *K1 = nullptr, *K2 = nullptr;
-      replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
-
-      // The use dag of the first original instruction must be moved to after
-      // the location of the second instruction. The entire use dag of the
-      // first instruction is disjoint from the input dag of the second
-      // (by definition), and so commutes with it.
-
-      moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
-
-      if (!isa<StoreInst>(I)) {
-        L->replaceAllUsesWith(K1);
-        H->replaceAllUsesWith(K2);
-      }
-
-      // Instructions that may read from memory may be in the load move set.
-      // Once an instruction is fused, we no longer need its move set, and so
-      // the values of the map never need to be updated. However, when a load
-      // is fused, we need to merge the entries from both instructions in the
-      // pair in case those instructions were in the move set of some other
-      // yet-to-be-fused pair. The loads in question are the keys of the map.
-      if (I->mayReadFromMemory()) {
-        std::vector<ValuePair> NewSetMembers;
-        DenseMap<Value *, std::vector<Value *> >::iterator II =
-          LoadMoveSet.find(I);
-        if (II != LoadMoveSet.end())
-          for (std::vector<Value *>::iterator N = II->second.begin(),
-               NE = II->second.end(); N != NE; ++N)
-            NewSetMembers.push_back(ValuePair(K, *N));
-        DenseMap<Value *, std::vector<Value *> >::iterator JJ =
-          LoadMoveSet.find(J);
-        if (JJ != LoadMoveSet.end())
-          for (std::vector<Value *>::iterator N = JJ->second.begin(),
-               NE = JJ->second.end(); N != NE; ++N)
-            NewSetMembers.push_back(ValuePair(K, *N));
-        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
-             AE = NewSetMembers.end(); A != AE; ++A) {
-          LoadMoveSet[A->first].push_back(A->second);
-          LoadMoveSetPairs.insert(*A);
-        }
-      }
-
-      // Before removing I, set the iterator to the next instruction.
-      PI = std::next(BasicBlock::iterator(I));
-      if (cast<Instruction>(PI) == J)
-        ++PI;
-
-      SE->forgetValue(I);
-      SE->forgetValue(J);
-      I->eraseFromParent();
-      J->eraseFromParent();
-
-      DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
-                                               BB << "\n");
-    }
-
-    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
-  }
-}
-
-char BBVectorize::ID = 0;
-static const char bb_vectorize_name[] = "Basic-Block Vectorization";
-INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
-INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
-
-BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
-  return new BBVectorize(C);
-}
-
-bool
-llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
-  BBVectorize BBVectorizer(P, *BB.getParent(), C);
-  return BBVectorizer.vectorizeBB(BB);
-}
-
-//===----------------------------------------------------------------------===//
-VectorizeConfig::VectorizeConfig() {
-  VectorBits = ::VectorBits;
-  VectorizeBools = !::NoBools;
-  VectorizeInts = !::NoInts;
-  VectorizeFloats = !::NoFloats;
-  VectorizePointers = !::NoPointers;
-  VectorizeCasts = !::NoCasts;
-  VectorizeMath = !::NoMath;
-  VectorizeBitManipulations = !::NoBitManipulation;
-  VectorizeFMA = !::NoFMA;
-  VectorizeSelect = !::NoSelect;
-  VectorizeCmp = !::NoCmp;
-  VectorizeGEP = !::NoGEP;
-  VectorizeMemOps = !::NoMemOps;
-  AlignedOnly = ::AlignedOnly;
-  ReqChainDepth= ::ReqChainDepth;
-  SearchLimit = ::SearchLimit;
-  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
-  SplatBreaksChain = ::SplatBreaksChain;
-  MaxInsts = ::MaxInsts;
-  MaxPairs = ::MaxPairs;
-  MaxIter = ::MaxIter;
-  Pow2LenOnly = ::Pow2LenOnly;
-  NoMemOpBoost = ::NoMemOpBoost;
-  FastDep = ::FastDep;
-}
diff --git a/llvm/lib/Transforms/Vectorize/CMakeLists.txt b/llvm/lib/Transforms/Vectorize/CMakeLists.txt
index 395f440..1aea73c 100644
--- a/llvm/lib/Transforms/Vectorize/CMakeLists.txt
+++ b/llvm/lib/Transforms/Vectorize/CMakeLists.txt
@@ -1,5 +1,4 @@
 add_llvm_library(LLVMVectorize
-  BBVectorize.cpp
   LoadStoreVectorizer.cpp
   LoopVectorize.cpp
   SLPVectorizer.cpp
diff --git a/llvm/lib/Transforms/Vectorize/Vectorize.cpp b/llvm/lib/Transforms/Vectorize/Vectorize.cpp
index a219283..fb2f509 100644
--- a/llvm/lib/Transforms/Vectorize/Vectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/Vectorize.cpp
@@ -26,7 +26,6 @@
 /// initializeVectorizationPasses - Initialize all passes linked into the
 /// Vectorization library.
 void llvm::initializeVectorization(PassRegistry &Registry) {
-  initializeBBVectorizePass(Registry);
   initializeLoopVectorizePass(Registry);
   initializeSLPVectorizerPass(Registry);
   initializeLoadStoreVectorizerPass(Registry);
@@ -36,8 +35,8 @@
   initializeVectorization(*unwrap(R));
 }
 
+// DEPRECATED: Remove after the LLVM 5 release.
 void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) {
-  unwrap(PM)->add(createBBVectorizePass());
 }
 
 void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) {