[LoopSimplify] Factor the logic to form dedicated exits into a utility.
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.
I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.
This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.
I also had to ditch a statistic, but it doesn't seem terribly valuable.
Differential Revision: https://reviews.llvm.org/D34049
llvm-svn: 306081
diff --git a/llvm/lib/Transforms/Utils/LoopUtils.cpp b/llvm/lib/Transforms/Utils/LoopUtils.cpp
index 412f612..be151a3 100644
--- a/llvm/lib/Transforms/Utils/LoopUtils.cpp
+++ b/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -29,6 +29,7 @@
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -923,6 +924,67 @@
return true;
}
+bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
+ bool PreserveLCSSA) {
+ bool Changed = false;
+
+ // We re-use a vector for the in-loop predecesosrs.
+ SmallVector<BasicBlock *, 4> InLoopPredecessors;
+
+ auto RewriteExit = [&](BasicBlock *BB) {
+ // See if there are any non-loop predecessors of this exit block and
+ // keep track of the in-loop predecessors.
+ bool IsDedicatedExit = true;
+ for (auto *PredBB : predecessors(BB))
+ if (L->contains(PredBB)) {
+ if (isa<IndirectBrInst>(PredBB->getTerminator()))
+ // We cannot rewrite exiting edges from an indirectbr.
+ return false;
+
+ InLoopPredecessors.push_back(PredBB);
+ } else {
+ IsDedicatedExit = false;
+ }
+
+ // Nothing to do if this is already a dedicated exit.
+ if (IsDedicatedExit) {
+ InLoopPredecessors.clear();
+ return false;
+ }
+
+ assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
+ auto *NewExitBB = SplitBlockPredecessors(
+ BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
+
+ if (!NewExitBB)
+ DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
+ << *L << "\n");
+ else
+ DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
+ << NewExitBB->getName() << "\n");
+ InLoopPredecessors.clear();
+ return true;
+ };
+
+ // Walk the exit blocks directly rather than building up a data structure for
+ // them, but only visit each one once.
+ SmallPtrSet<BasicBlock *, 4> Visited;
+ for (auto *BB : L->blocks())
+ for (auto *SuccBB : successors(BB)) {
+ // We're looking for exit blocks so skip in-loop successors.
+ if (L->contains(SuccBB))
+ continue;
+
+ // Visit each exit block exactly once.
+ if (!Visited.insert(SuccBB).second)
+ continue;
+
+ Changed |= RewriteExit(SuccBB);
+ }
+
+ return Changed;
+}
+
/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;