clang-format: Many more files

After this commit, polly is clang-format clean. This can be tested with
'ninja polly-check-format'. Updates to clang-format may change this, but the
differences will hopefully be both small and general improvements to the
formatting.

We currently have some not very nice formatting for a couple of items, DEBUG()
stmts for example. I believe the benefit of being clang-format clean outweights
the not perfect layout of this code.

llvm-svn: 177796
diff --git a/polly/lib/ScheduleOptimizer.cpp b/polly/lib/ScheduleOptimizer.cpp
index 266ec90..1063977 100644
--- a/polly/lib/ScheduleOptimizer.cpp
+++ b/polly/lib/ScheduleOptimizer.cpp
@@ -39,13 +39,10 @@
 using namespace llvm;
 using namespace polly;
 
-namespace polly {
-  bool DisablePollyTiling;
-}
-static cl::opt<bool, true>
-DisableTiling("polly-no-tiling",
-	      cl::desc("Disable tiling in the scheduler"), cl::Hidden,
-              cl::location(polly::DisablePollyTiling), cl::init(false));
+namespace polly { bool DisablePollyTiling; }
+static cl::opt<bool, true> DisableTiling(
+    "polly-no-tiling", cl::desc("Disable tiling in the scheduler"), cl::Hidden,
+    cl::location(polly::DisablePollyTiling), cl::init(false));
 
 static cl::opt<std::string>
 OptimizeDeps("polly-opt-optimize-only",
@@ -54,8 +51,8 @@
 
 static cl::opt<std::string>
 SimplifyDeps("polly-opt-simplify-deps",
-             cl::desc("Dependences should be simplified (yes/no)"),
-             cl::Hidden, cl::init("yes"));
+             cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden,
+             cl::init("yes"));
 
 static cl::opt<int>
 MaxConstantTerm("polly-opt-max-constant-term",
@@ -67,140 +64,133 @@
                cl::desc("The maximal coefficient allowed (-1 is unlimited)"),
                cl::Hidden, cl::init(20));
 
-static cl::opt<std::string>
-FusionStrategy("polly-opt-fusion",
-               cl::desc("The fusion strategy to choose (min/max)"),
-               cl::Hidden, cl::init("min"));
+static cl::opt<std::string> FusionStrategy(
+    "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
+    cl::Hidden, cl::init("min"));
 
-static cl::opt<std::string>
-MaximizeBandDepth("polly-opt-maximize-bands",
-                cl::desc("Maximize the band depth (yes/no)"),
-                cl::Hidden, cl::init("yes"));
+static cl::opt<std::string> MaximizeBandDepth(
+    "polly-opt-maximize-bands", cl::desc("Maximize the band depth (yes/no)"),
+    cl::Hidden, cl::init("yes"));
 
 namespace {
 
-  class IslScheduleOptimizer : public ScopPass {
+class IslScheduleOptimizer : public ScopPass {
 
-  public:
-    static char ID;
-    explicit IslScheduleOptimizer() : ScopPass(ID) {
-      LastSchedule = NULL;
-    }
+public:
+  static char ID;
+  explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = NULL; }
 
-    ~IslScheduleOptimizer() {
-      isl_schedule_free(LastSchedule);
-    }
+  ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
 
-    virtual bool runOnScop(Scop &S);
-    void printScop(llvm::raw_ostream &OS) const;
-    void getAnalysisUsage(AnalysisUsage &AU) const;
+  virtual bool runOnScop(Scop &S);
+  void printScop(llvm::raw_ostream &OS) const;
+  void getAnalysisUsage(AnalysisUsage &AU) const;
 
-  private:
-    isl_schedule *LastSchedule;
+private:
+  isl_schedule *LastSchedule;
 
-    static void extendScattering(Scop &S, unsigned NewDimensions);
+  static void extendScattering(Scop &S, unsigned NewDimensions);
 
-    /// @brief Create a map that describes a n-dimensonal tiling.
-    ///
-    /// getTileMap creates a map from a n-dimensional scattering space into an
-    /// 2*n-dimensional scattering space. The map describes a rectangular
-    /// tiling.
-    ///
-    /// Example:
-    ///   scheduleDimensions = 2, parameterDimensions = 1, tileSize = 32
-    ///
-    ///   tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
-    ///                        t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
-    ///                        t1 % 32 = 0 and t1 <= s1 < t1 + 32}
-    ///
-    ///  Before tiling:
-    ///
-    ///  for (i = 0; i < N; i++)
-    ///    for (j = 0; j < M; j++)
-    ///	S(i,j)
-    ///
-    ///  After tiling:
-    ///
-    ///  for (t_i = 0; t_i < N; i+=32)
-    ///    for (t_j = 0; t_j < M; j+=32)
-    ///	for (i = t_i; i < min(t_i + 32, N); i++)  | Unknown that N % 32 = 0
-    ///	  for (j = t_j; j < t_j + 32; j++)        |   Known that M % 32 = 0
-    ///	    S(i,j)
-    ///
-    static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
-                                     isl_space *SpaceModel, int tileSize = 32);
+  /// @brief Create a map that describes a n-dimensonal tiling.
+  ///
+  /// getTileMap creates a map from a n-dimensional scattering space into an
+  /// 2*n-dimensional scattering space. The map describes a rectangular
+  /// tiling.
+  ///
+  /// Example:
+  ///   scheduleDimensions = 2, parameterDimensions = 1, tileSize = 32
+  ///
+  ///   tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
+  ///                        t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
+  ///                        t1 % 32 = 0 and t1 <= s1 < t1 + 32}
+  ///
+  ///  Before tiling:
+  ///
+  ///  for (i = 0; i < N; i++)
+  ///    for (j = 0; j < M; j++)
+  ///	S(i,j)
+  ///
+  ///  After tiling:
+  ///
+  ///  for (t_i = 0; t_i < N; i+=32)
+  ///    for (t_j = 0; t_j < M; j+=32)
+  ///	for (i = t_i; i < min(t_i + 32, N); i++)  | Unknown that N % 32 = 0
+  ///	  for (j = t_j; j < t_j + 32; j++)        |   Known that M % 32 = 0
+  ///	    S(i,j)
+  ///
+  static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
+                                   isl_space *SpaceModel, int tileSize = 32);
 
-    /// @brief Get the schedule for this band.
-    ///
-    /// Polly applies transformations like tiling on top of the isl calculated
-    /// value.  This can influence the number of scheduling dimension. The
-    /// number of schedule dimensions is returned in the parameter 'Dimension'.
-    static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
+  /// @brief Get the schedule for this band.
+  ///
+  /// Polly applies transformations like tiling on top of the isl calculated
+  /// value.  This can influence the number of scheduling dimension. The
+  /// number of schedule dimensions is returned in the parameter 'Dimension'.
+  static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
 
-    /// @brief Create a map that pre-vectorizes one scheduling dimension.
-    ///
-    /// getPrevectorMap creates a map that maps each input dimension to the same
-    /// output dimension, except for the dimension DimToVectorize.
-    /// DimToVectorize is strip mined by 'VectorWidth' and the newly created
-    /// point loop of DimToVectorize is moved to the innermost level.
-    ///
-    /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
-    ///
-    /// | Before transformation
-    /// |
-    /// | A[i,j] -> [i,j]
-    /// |
-    /// | for (i = 0; i < 128; i++)
-    /// |    for (j = 0; j < 128; j++)
-    /// |      A(i,j);
-    ///
-    ///   Prevector map:
-    ///   [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
-    ///
-    /// | After transformation:
-    /// |
-    /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
-    /// |
-    /// | for (it = 0; it < 128; it+=4)
-    /// |    for (j = 0; j < 128; j++)
-    /// |      for (ip = max(0,it); ip < min(128, it + 3); ip++)
-    /// |        A(ip,j);
-    ///
-    /// The goal of this transformation is to create a trivially vectorizable
-    /// loop.  This means a parallel loop at the innermost level that has a
-    /// constant number of iterations corresponding to the target vector width.
-    ///
-    /// This transformation creates a loop at the innermost level. The loop has
-    /// a constant number of iterations, if the number of loop iterations at
-    /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
-    /// currently constant and not yet target specific. This function does not
-    /// reason about parallelism.
-    static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
-				    int ScheduleDimensions,
-                                    int VectorWidth = 4);
+  /// @brief Create a map that pre-vectorizes one scheduling dimension.
+  ///
+  /// getPrevectorMap creates a map that maps each input dimension to the same
+  /// output dimension, except for the dimension DimToVectorize.
+  /// DimToVectorize is strip mined by 'VectorWidth' and the newly created
+  /// point loop of DimToVectorize is moved to the innermost level.
+  ///
+  /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
+  ///
+  /// | Before transformation
+  /// |
+  /// | A[i,j] -> [i,j]
+  /// |
+  /// | for (i = 0; i < 128; i++)
+  /// |    for (j = 0; j < 128; j++)
+  /// |      A(i,j);
+  ///
+  ///   Prevector map:
+  ///   [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
+  ///
+  /// | After transformation:
+  /// |
+  /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
+  /// |
+  /// | for (it = 0; it < 128; it+=4)
+  /// |    for (j = 0; j < 128; j++)
+  /// |      for (ip = max(0,it); ip < min(128, it + 3); ip++)
+  /// |        A(ip,j);
+  ///
+  /// The goal of this transformation is to create a trivially vectorizable
+  /// loop.  This means a parallel loop at the innermost level that has a
+  /// constant number of iterations corresponding to the target vector width.
+  ///
+  /// This transformation creates a loop at the innermost level. The loop has
+  /// a constant number of iterations, if the number of loop iterations at
+  /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
+  /// currently constant and not yet target specific. This function does not
+  /// reason about parallelism.
+  static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
+                                  int ScheduleDimensions, int VectorWidth = 4);
 
-    /// @brief Get the scheduling map for a list of bands.
-    ///
-    /// Walk recursively the forest of bands to combine the schedules of the
-    /// individual bands to the overall schedule. In case tiling is requested,
-    /// the individual bands are tiled.
-    static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
+  /// @brief Get the scheduling map for a list of bands.
+  ///
+  /// Walk recursively the forest of bands to combine the schedules of the
+  /// individual bands to the overall schedule. In case tiling is requested,
+  /// the individual bands are tiled.
+  static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
 
-    static isl_union_map *getScheduleMap(isl_schedule *Schedule);
+  static isl_union_map *getScheduleMap(isl_schedule *Schedule);
 
-    bool doFinalization() {
-      isl_schedule_free(LastSchedule);
-      LastSchedule = NULL;
-      return true;
-    }
-  };
+  bool doFinalization() {
+    isl_schedule_free(LastSchedule);
+    LastSchedule = NULL;
+    return true;
+  }
+};
 
 }
 
 char IslScheduleOptimizer::ID = 0;
 
 static int getSingleMap(__isl_take isl_map *map, void *user) {
-  isl_map **singleMap = (isl_map **) user;
+  isl_map **singleMap = (isl_map **)user;
   *singleMap = map;
 
   return 0;
@@ -222,17 +212,14 @@
     for (unsigned i = OldDimensions; i < NewDimensions; i++)
       Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
 
-
     Map = isl_map_align_params(Map, S.getParamSpace());
     New = isl_map_apply_range(Stmt->getScattering(), Map);
     Stmt->setScattering(New);
   }
 }
 
-isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
-                                                int scheduleDimensions,
-				                isl_space *SpaceModel,
-                                                int tileSize) {
+isl_basic_map *IslScheduleOptimizer::getTileMap(
+    isl_ctx *ctx, int scheduleDimensions, isl_space *SpaceModel, int tileSize) {
   // We construct
   //
   // tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
@@ -240,8 +227,8 @@
   //	                  s1 = a1 * 32 and s1 = p1 and t1 <= p1 < t1 + 32}
   //
   // and project out the auxilary dimensions a0 and a1.
-  isl_space *Space = isl_space_alloc(ctx, 0, scheduleDimensions,
-                                     scheduleDimensions * 3);
+  isl_space *Space =
+      isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
   isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
 
   isl_local_space *LocalSpace = isl_local_space_from_space(Space);
@@ -285,15 +272,14 @@
   // The auxilary dimensions are transformed into existentially quantified ones.
   // This reduces the number of visible scattering dimensions and allows Cloog
   // to produces better code.
-  tileMap = isl_basic_map_project_out(tileMap, isl_dim_out,
-				      2 * scheduleDimensions,
-				      scheduleDimensions);
+  tileMap = isl_basic_map_project_out(
+      tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
   isl_local_space_free(LocalSpace);
   return tileMap;
 }
 
-isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
-                                                        int *Dimensions) {
+isl_union_map *
+IslScheduleOptimizer::getScheduleForBand(isl_band *Band, int *Dimensions) {
   isl_union_map *PartialSchedule;
   isl_ctx *ctx;
   isl_space *Space;
@@ -321,10 +307,8 @@
   return isl_union_map_apply_range(PartialSchedule, TileUMap);
 }
 
-isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx,
-                                               int DimToVectorize,
-				               int ScheduleDimensions,
-				               int VectorWidth) {
+isl_map *IslScheduleOptimizer::getPrevectorMap(
+    isl_ctx *ctx, int DimToVectorize, int ScheduleDimensions, int VectorWidth) {
   isl_space *Space;
   isl_local_space *LocalSpace, *LocalSpaceRange;
   isl_set *Modulo;
@@ -335,7 +319,7 @@
   int TileDimension;  /* it */
   isl_int VectorWidthMP;
 
-  assert (0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
+  assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
 
   Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
   TilingMap = isl_map_universe(isl_space_copy(Space));
@@ -385,8 +369,8 @@
   return TilingMap;
 }
 
-isl_union_map *IslScheduleOptimizer::getScheduleForBandList(
-  isl_band_list *BandList) {
+isl_union_map *
+IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
   int NumBands;
   isl_union_map *Schedule;
   isl_ctx *ctx;
@@ -411,24 +395,24 @@
 
       Children = isl_band_get_children(Band);
       SuffixSchedule = getScheduleForBandList(Children);
-      PartialSchedule = isl_union_map_flat_range_product(PartialSchedule,
-							 SuffixSchedule);
+      PartialSchedule =
+          isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
       isl_band_list_free(Children);
     } else if (PollyVectorizerChoice != VECTORIZER_NONE) {
-      for (int j = 0;  j < isl_band_n_member(Band); j++) {
-	if (isl_band_member_is_zero_distance(Band, j)) {
+      for (int j = 0; j < isl_band_n_member(Band); j++) {
+        if (isl_band_member_is_zero_distance(Band, j)) {
           isl_map *TileMap;
           isl_union_map *TileUMap;
 
-	  TileMap = getPrevectorMap(ctx, ScheduleDimensions - j - 1,
+          TileMap = getPrevectorMap(ctx, ScheduleDimensions - j - 1,
                                     ScheduleDimensions);
-	  TileUMap = isl_union_map_from_map(TileMap);
-          TileUMap = isl_union_map_align_params(TileUMap,
-                                                isl_space_copy(Space));
-	  PartialSchedule = isl_union_map_apply_range(PartialSchedule,
-						      TileUMap);
-	  break;
-	}
+          TileUMap = isl_union_map_from_map(TileMap);
+          TileUMap =
+              isl_union_map_align_params(TileUMap, isl_space_copy(Space));
+          PartialSchedule =
+              isl_union_map_apply_range(PartialSchedule, TileUMap);
+          break;
+        }
       }
     }
 
@@ -455,20 +439,20 @@
   LastSchedule = NULL;
 
   // Build input data.
-  int ValidityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR
-                      | Dependences::TYPE_WAW;
+  int ValidityKinds =
+      Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
   int ProximityKinds;
 
   if (OptimizeDeps == "all")
-    ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR
-                     | Dependences::TYPE_WAW;
+    ProximityKinds =
+        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
   else if (OptimizeDeps == "raw")
     ProximityKinds = Dependences::TYPE_RAW;
   else {
     errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
-        << " Falling back to optimizing all dependences.\n";
-    ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR
-                     | Dependences::TYPE_WAW;
+           << " Falling back to optimizing all dependences.\n";
+    ProximityKinds =
+        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
   }
 
   isl_union_set *Domain = S.getDomains();
@@ -489,8 +473,8 @@
   if (SimplifyDeps == "yes") {
     Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
     Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
-    Proximity = isl_union_map_gist_domain(Proximity,
-                                          isl_union_set_copy(Domain));
+    Proximity =
+        isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
     Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
   } else if (SimplifyDeps != "no") {
     errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
@@ -535,7 +519,7 @@
 
   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
   isl_schedule *Schedule;
-  Schedule  = isl_union_set_compute_schedule(Domain, Validity, Proximity);
+  Schedule = isl_union_set_compute_schedule(Domain, Validity, Proximity);
   isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
 
   // In cases the scheduler is not able to optimize the code, we just do not
@@ -543,8 +527,7 @@
   if (!Schedule)
     return false;
 
-  DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule);
-        dbgs() << ";\n");
+  DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n");
 
   isl_union_map *ScheduleMap = getScheduleMap(Schedule);
 
@@ -553,7 +536,7 @@
     isl_set *Domain = Stmt->getDomain();
     isl_union_map *StmtBand;
     StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap),
-					      isl_union_set_from_set(Domain));
+                                              isl_union_set_from_set(Domain));
     isl_map *StmtSchedule;
     isl_union_map_foreach_map(StmtBand, getSingleMap, &StmtSchedule);
     Stmt->setScattering(StmtSchedule);
@@ -596,13 +579,13 @@
   AU.addRequired<Dependences>();
 }
 
-INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
-                      "Polly - Optimize schedule of SCoP", false, false)
-INITIALIZE_PASS_DEPENDENCY(Dependences)
-INITIALIZE_PASS_DEPENDENCY(ScopInfo)
-INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
-                      "Polly - Optimize schedule of SCoP", false, false)
-
-Pass* polly::createIslScheduleOptimizerPass() {
+Pass *polly::createIslScheduleOptimizerPass() {
   return new IslScheduleOptimizer();
 }
+
+INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
+                      "Polly - Optimize schedule of SCoP", false, false);
+INITIALIZE_PASS_DEPENDENCY(Dependences);
+INITIALIZE_PASS_DEPENDENCY(ScopInfo);
+INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
+                    "Polly - Optimize schedule of SCoP", false, false)