Roll gotools to 47f2109c.

At the same time, perform a number of simplifications:

- Rename go.tools directory to gotools.

- Import only the go directory; all required Go analysis code and
  its dependencies have now been moved to this directory.

llvm-svn: 225825
diff --git a/llgo/third_party/gotools/go/pointer/analysis.go b/llgo/third_party/gotools/go/pointer/analysis.go
new file mode 100644
index 0000000..c8e9e13
--- /dev/null
+++ b/llgo/third_party/gotools/go/pointer/analysis.go
@@ -0,0 +1,447 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package pointer
+
+// This file defines the main datatypes and Analyze function of the pointer analysis.
+
+import (
+	"fmt"
+	"go/token"
+	"io"
+	"os"
+	"reflect"
+	"runtime"
+	"runtime/debug"
+	"sort"
+
+	"llvm.org/llgo/third_party/gotools/go/callgraph"
+	"llvm.org/llgo/third_party/gotools/go/ssa"
+	"llvm.org/llgo/third_party/gotools/go/types"
+	"llvm.org/llgo/third_party/gotools/go/types/typeutil"
+)
+
+const (
+	// optimization options; enable all when committing
+	optRenumber = true // enable renumbering optimization (makes logs hard to read)
+	optHVN      = true // enable pointer equivalence via Hash-Value Numbering
+
+	// debugging options; disable all when committing
+	debugHVN           = false // enable assertions in HVN
+	debugHVNVerbose    = false // enable extra HVN logging
+	debugHVNCrossCheck = false // run solver with/without HVN and compare (caveats below)
+	debugTimers        = false // show running time of each phase
+)
+
+// object.flags bitmask values.
+const (
+	otTagged   = 1 << iota // type-tagged object
+	otIndirect             // type-tagged object with indirect payload
+	otFunction             // function object
+)
+
+// An object represents a contiguous block of memory to which some
+// (generalized) pointer may point.
+//
+// (Note: most variables called 'obj' are not *objects but nodeids
+// such that a.nodes[obj].obj != nil.)
+//
+type object struct {
+	// flags is a bitset of the node type (ot*) flags defined above.
+	flags uint32
+
+	// Number of following nodes belonging to the same "object"
+	// allocation.  Zero for all other nodes.
+	size uint32
+
+	// data describes this object; it has one of these types:
+	//
+	// ssa.Value	for an object allocated by an SSA operation.
+	// types.Type	for an rtype instance object or *rtype-tagged object.
+	// string	for an instrinsic object, e.g. the array behind os.Args.
+	// nil		for an object allocated by an instrinsic.
+	//		(cgn provides the identity of the intrinsic.)
+	data interface{}
+
+	// The call-graph node (=context) in which this object was allocated.
+	// May be nil for global objects: Global, Const, some Functions.
+	cgn *cgnode
+}
+
+// nodeid denotes a node.
+// It is an index within analysis.nodes.
+// We use small integers, not *node pointers, for many reasons:
+// - they are smaller on 64-bit systems.
+// - sets of them can be represented compactly in bitvectors or BDDs.
+// - order matters; a field offset can be computed by simple addition.
+type nodeid uint32
+
+// A node is an equivalence class of memory locations.
+// Nodes may be pointers, pointed-to locations, neither, or both.
+//
+// Nodes that are pointed-to locations ("labels") have an enclosing
+// object (see analysis.enclosingObject).
+//
+type node struct {
+	// If non-nil, this node is the start of an object
+	// (addressable memory location).
+	// The following obj.size nodes implicitly belong to the object;
+	// they locate their object by scanning back.
+	obj *object
+
+	// The type of the field denoted by this node.  Non-aggregate,
+	// unless this is an tagged.T node (i.e. the thing
+	// pointed to by an interface) in which case typ is that type.
+	typ types.Type
+
+	// subelement indicates which directly embedded subelement of
+	// an object of aggregate type (struct, tuple, array) this is.
+	subelement *fieldInfo // e.g. ".a.b[*].c"
+
+	// Solver state for the canonical node of this pointer-
+	// equivalence class.  Each node is created with its own state
+	// but they become shared after HVN.
+	solve *solverState
+}
+
+// An analysis instance holds the state of a single pointer analysis problem.
+type analysis struct {
+	config      *Config                     // the client's control/observer interface
+	prog        *ssa.Program                // the program being analyzed
+	log         io.Writer                   // log stream; nil to disable
+	panicNode   nodeid                      // sink for panic, source for recover
+	nodes       []*node                     // indexed by nodeid
+	flattenMemo map[types.Type][]*fieldInfo // memoization of flatten()
+	trackTypes  map[types.Type]bool         // memoization of shouldTrack()
+	constraints []constraint                // set of constraints
+	cgnodes     []*cgnode                   // all cgnodes
+	genq        []*cgnode                   // queue of functions to generate constraints for
+	intrinsics  map[*ssa.Function]intrinsic // non-nil values are summaries for intrinsic fns
+	globalval   map[ssa.Value]nodeid        // node for each global ssa.Value
+	globalobj   map[ssa.Value]nodeid        // maps v to sole member of pts(v), if singleton
+	localval    map[ssa.Value]nodeid        // node for each local ssa.Value
+	localobj    map[ssa.Value]nodeid        // maps v to sole member of pts(v), if singleton
+	atFuncs     map[*ssa.Function]bool      // address-taken functions (for presolver)
+	mapValues   []nodeid                    // values of makemap objects (indirect in HVN)
+	work        nodeset                     // solver's worklist
+	result      *Result                     // results of the analysis
+	track       track                       // pointerlike types whose aliasing we track
+	deltaSpace  []int                       // working space for iterating over PTS deltas
+
+	// Reflection & intrinsics:
+	hasher              typeutil.Hasher // cache of type hashes
+	reflectValueObj     types.Object    // type symbol for reflect.Value (if present)
+	reflectValueCall    *ssa.Function   // (reflect.Value).Call
+	reflectRtypeObj     types.Object    // *types.TypeName for reflect.rtype (if present)
+	reflectRtypePtr     *types.Pointer  // *reflect.rtype
+	reflectType         *types.Named    // reflect.Type
+	rtypes              typeutil.Map    // nodeid of canonical *rtype-tagged object for type T
+	reflectZeros        typeutil.Map    // nodeid of canonical T-tagged object for zero value
+	runtimeSetFinalizer *ssa.Function   // runtime.SetFinalizer
+}
+
+// enclosingObj returns the first node of the addressable memory
+// object that encloses node id.  Panic ensues if that node does not
+// belong to any object.
+func (a *analysis) enclosingObj(id nodeid) nodeid {
+	// Find previous node with obj != nil.
+	for i := id; i >= 0; i-- {
+		n := a.nodes[i]
+		if obj := n.obj; obj != nil {
+			if i+nodeid(obj.size) <= id {
+				break // out of bounds
+			}
+			return i
+		}
+	}
+	panic("node has no enclosing object")
+}
+
+// labelFor returns the Label for node id.
+// Panic ensues if that node is not addressable.
+func (a *analysis) labelFor(id nodeid) *Label {
+	return &Label{
+		obj:        a.nodes[a.enclosingObj(id)].obj,
+		subelement: a.nodes[id].subelement,
+	}
+}
+
+func (a *analysis) warnf(pos token.Pos, format string, args ...interface{}) {
+	msg := fmt.Sprintf(format, args...)
+	if a.log != nil {
+		fmt.Fprintf(a.log, "%s: warning: %s\n", a.prog.Fset.Position(pos), msg)
+	}
+	a.result.Warnings = append(a.result.Warnings, Warning{pos, msg})
+}
+
+// computeTrackBits sets a.track to the necessary 'track' bits for the pointer queries.
+func (a *analysis) computeTrackBits() {
+	var queryTypes []types.Type
+	for v := range a.config.Queries {
+		queryTypes = append(queryTypes, v.Type())
+	}
+	for v := range a.config.IndirectQueries {
+		queryTypes = append(queryTypes, mustDeref(v.Type()))
+	}
+	for _, t := range queryTypes {
+		switch t.Underlying().(type) {
+		case *types.Chan:
+			a.track |= trackChan
+		case *types.Map:
+			a.track |= trackMap
+		case *types.Pointer:
+			a.track |= trackPtr
+		case *types.Slice:
+			a.track |= trackSlice
+		case *types.Interface:
+			a.track = trackAll
+			return
+		}
+		if rVObj := a.reflectValueObj; rVObj != nil && types.Identical(t, rVObj.Type()) {
+			a.track = trackAll
+			return
+		}
+	}
+}
+
+// Analyze runs the pointer analysis with the scope and options
+// specified by config, and returns the (synthetic) root of the callgraph.
+//
+// Pointer analysis of a transitively closed well-typed program should
+// always succeed.  An error can occur only due to an internal bug.
+//
+func Analyze(config *Config) (result *Result, err error) {
+	if config.Mains == nil {
+		return nil, fmt.Errorf("no main/test packages to analyze (check $GOROOT/$GOPATH)")
+	}
+	defer func() {
+		if p := recover(); p != nil {
+			err = fmt.Errorf("internal error in pointer analysis: %v (please report this bug)", p)
+			fmt.Fprintln(os.Stderr, "Internal panic in pointer analysis:")
+			debug.PrintStack()
+		}
+	}()
+
+	a := &analysis{
+		config:      config,
+		log:         config.Log,
+		prog:        config.prog(),
+		globalval:   make(map[ssa.Value]nodeid),
+		globalobj:   make(map[ssa.Value]nodeid),
+		flattenMemo: make(map[types.Type][]*fieldInfo),
+		trackTypes:  make(map[types.Type]bool),
+		atFuncs:     make(map[*ssa.Function]bool),
+		hasher:      typeutil.MakeHasher(),
+		intrinsics:  make(map[*ssa.Function]intrinsic),
+		result: &Result{
+			Queries:         make(map[ssa.Value]Pointer),
+			IndirectQueries: make(map[ssa.Value]Pointer),
+		},
+		deltaSpace: make([]int, 0, 100),
+	}
+
+	if false {
+		a.log = os.Stderr // for debugging crashes; extremely verbose
+	}
+
+	if a.log != nil {
+		fmt.Fprintln(a.log, "==== Starting analysis")
+	}
+
+	// Pointer analysis requires a complete program for soundness.
+	// Check to prevent accidental misconfiguration.
+	for _, pkg := range a.prog.AllPackages() {
+		// (This only checks that the package scope is complete,
+		// not that func bodies exist, but it's a good signal.)
+		if !pkg.Object.Complete() {
+			return nil, fmt.Errorf(`pointer analysis requires a complete program yet package %q was incomplete (set loader.Config.SourceImports during loading)`, pkg.Object.Path())
+		}
+	}
+
+	if reflect := a.prog.ImportedPackage("reflect"); reflect != nil {
+		rV := reflect.Object.Scope().Lookup("Value")
+		a.reflectValueObj = rV
+		a.reflectValueCall = a.prog.LookupMethod(rV.Type(), nil, "Call")
+		a.reflectType = reflect.Object.Scope().Lookup("Type").Type().(*types.Named)
+		a.reflectRtypeObj = reflect.Object.Scope().Lookup("rtype")
+		a.reflectRtypePtr = types.NewPointer(a.reflectRtypeObj.Type())
+
+		// Override flattening of reflect.Value, treating it like a basic type.
+		tReflectValue := a.reflectValueObj.Type()
+		a.flattenMemo[tReflectValue] = []*fieldInfo{{typ: tReflectValue}}
+
+		// Override shouldTrack of reflect.Value and *reflect.rtype.
+		// Always track pointers of these types.
+		a.trackTypes[tReflectValue] = true
+		a.trackTypes[a.reflectRtypePtr] = true
+
+		a.rtypes.SetHasher(a.hasher)
+		a.reflectZeros.SetHasher(a.hasher)
+	}
+	if runtime := a.prog.ImportedPackage("runtime"); runtime != nil {
+		a.runtimeSetFinalizer = runtime.Func("SetFinalizer")
+	}
+	a.computeTrackBits()
+
+	a.generate()
+	a.showCounts()
+
+	if optRenumber {
+		a.renumber()
+	}
+
+	N := len(a.nodes) // excludes solver-created nodes
+
+	if optHVN {
+		if debugHVNCrossCheck {
+			// Cross-check: run the solver once without
+			// optimization, once with, and compare the
+			// solutions.
+			savedConstraints := a.constraints
+
+			a.solve()
+			a.dumpSolution("A.pts", N)
+
+			// Restore.
+			a.constraints = savedConstraints
+			for _, n := range a.nodes {
+				n.solve = new(solverState)
+			}
+			a.nodes = a.nodes[:N]
+
+			// rtypes is effectively part of the solver state.
+			a.rtypes = typeutil.Map{}
+			a.rtypes.SetHasher(a.hasher)
+		}
+
+		a.hvn()
+	}
+
+	if debugHVNCrossCheck {
+		runtime.GC()
+		runtime.GC()
+	}
+
+	a.solve()
+
+	// Compare solutions.
+	if optHVN && debugHVNCrossCheck {
+		a.dumpSolution("B.pts", N)
+
+		if !diff("A.pts", "B.pts") {
+			return nil, fmt.Errorf("internal error: optimization changed solution")
+		}
+	}
+
+	// Create callgraph.Nodes in deterministic order.
+	if cg := a.result.CallGraph; cg != nil {
+		for _, caller := range a.cgnodes {
+			cg.CreateNode(caller.fn)
+		}
+	}
+
+	// Add dynamic edges to call graph.
+	var space [100]int
+	for _, caller := range a.cgnodes {
+		for _, site := range caller.sites {
+			for _, callee := range a.nodes[site.targets].solve.pts.AppendTo(space[:0]) {
+				a.callEdge(caller, site, nodeid(callee))
+			}
+		}
+	}
+
+	return a.result, nil
+}
+
+// callEdge is called for each edge in the callgraph.
+// calleeid is the callee's object node (has otFunction flag).
+//
+func (a *analysis) callEdge(caller *cgnode, site *callsite, calleeid nodeid) {
+	obj := a.nodes[calleeid].obj
+	if obj.flags&otFunction == 0 {
+		panic(fmt.Sprintf("callEdge %s -> n%d: not a function object", site, calleeid))
+	}
+	callee := obj.cgn
+
+	if cg := a.result.CallGraph; cg != nil {
+		// TODO(adonovan): opt: I would expect duplicate edges
+		// (to wrappers) to arise due to the elimination of
+		// context information, but I haven't observed any.
+		// Understand this better.
+		callgraph.AddEdge(cg.CreateNode(caller.fn), site.instr, cg.CreateNode(callee.fn))
+	}
+
+	if a.log != nil {
+		fmt.Fprintf(a.log, "\tcall edge %s -> %s\n", site, callee)
+	}
+
+	// Warn about calls to non-intrinsic external functions.
+	// TODO(adonovan): de-dup these messages.
+	if fn := callee.fn; fn.Blocks == nil && a.findIntrinsic(fn) == nil {
+		a.warnf(site.pos(), "unsound call to unknown intrinsic: %s", fn)
+		a.warnf(fn.Pos(), " (declared here)")
+	}
+}
+
+// dumpSolution writes the PTS solution to the specified file.
+//
+// It only dumps the nodes that existed before solving.  The order in
+// which solver-created nodes are created depends on pre-solver
+// optimization, so we can't include them in the cross-check.
+//
+func (a *analysis) dumpSolution(filename string, N int) {
+	f, err := os.Create(filename)
+	if err != nil {
+		panic(err)
+	}
+	for id, n := range a.nodes[:N] {
+		if _, err := fmt.Fprintf(f, "pts(n%d) = {", id); err != nil {
+			panic(err)
+		}
+		var sep string
+		for _, l := range n.solve.pts.AppendTo(a.deltaSpace) {
+			if l >= N {
+				break
+			}
+			fmt.Fprintf(f, "%s%d", sep, l)
+			sep = " "
+		}
+		fmt.Fprintf(f, "} : %s\n", n.typ)
+	}
+	if err := f.Close(); err != nil {
+		panic(err)
+	}
+}
+
+// showCounts logs the size of the constraint system.  A typical
+// optimized distribution is 65% copy, 13% load, 11% addr, 5%
+// offsetAddr, 4% store, 2% others.
+//
+func (a *analysis) showCounts() {
+	if a.log != nil {
+		counts := make(map[reflect.Type]int)
+		for _, c := range a.constraints {
+			counts[reflect.TypeOf(c)]++
+		}
+		fmt.Fprintf(a.log, "# constraints:\t%d\n", len(a.constraints))
+		var lines []string
+		for t, n := range counts {
+			line := fmt.Sprintf("%7d  (%2d%%)\t%s", n, 100*n/len(a.constraints), t)
+			lines = append(lines, line)
+		}
+		sort.Sort(sort.Reverse(sort.StringSlice(lines)))
+		for _, line := range lines {
+			fmt.Fprintf(a.log, "\t%s\n", line)
+		}
+
+		fmt.Fprintf(a.log, "# nodes:\t%d\n", len(a.nodes))
+
+		// Show number of pointer equivalence classes.
+		m := make(map[*solverState]bool)
+		for _, n := range a.nodes {
+			m[n.solve] = true
+		}
+		fmt.Fprintf(a.log, "# ptsets:\t%d\n", len(m))
+	}
+}