blob: b69ec5dd132145ca14456f38a2237b1d4b9f5fe4 [file] [log] [blame]
//===-- SymbolFileNativePDB.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolFileNativePDB.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/StreamBuffer.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ClangASTImporter.h"
#include "lldb/Symbol/ClangExternalASTSourceCommon.h"
#include "lldb/Symbol/ClangUtil.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/LineTable.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Symbol/VariableList.h"
#include "llvm/DebugInfo/CodeView/CVRecord.h"
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
#include "llvm/DebugInfo/CodeView/DebugLinesSubsection.h"
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/DebugInfo/CodeView/RecordName.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
#include "llvm/DebugInfo/PDB/Native/GlobalsStream.h"
#include "llvm/DebugInfo/PDB/Native/InfoStream.h"
#include "llvm/DebugInfo/PDB/Native/ModuleDebugStream.h"
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
#include "llvm/DebugInfo/PDB/Native/SymbolStream.h"
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
#include "llvm/DebugInfo/PDB/PDBTypes.h"
#include "llvm/Demangle/MicrosoftDemangle.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "PdbSymUid.h"
#include "PdbUtil.h"
#include "UdtRecordCompleter.h"
using namespace lldb;
using namespace lldb_private;
using namespace npdb;
using namespace llvm::codeview;
using namespace llvm::pdb;
static lldb::LanguageType TranslateLanguage(PDB_Lang lang) {
switch (lang) {
case PDB_Lang::Cpp:
return lldb::LanguageType::eLanguageTypeC_plus_plus;
case PDB_Lang::C:
return lldb::LanguageType::eLanguageTypeC;
default:
return lldb::LanguageType::eLanguageTypeUnknown;
}
}
static std::unique_ptr<PDBFile> loadPDBFile(std::string PdbPath,
llvm::BumpPtrAllocator &Allocator) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ErrorOrBuffer =
llvm::MemoryBuffer::getFile(PdbPath, /*FileSize=*/-1,
/*RequiresNullTerminator=*/false);
if (!ErrorOrBuffer)
return nullptr;
std::unique_ptr<llvm::MemoryBuffer> Buffer = std::move(*ErrorOrBuffer);
llvm::StringRef Path = Buffer->getBufferIdentifier();
auto Stream = llvm::make_unique<llvm::MemoryBufferByteStream>(
std::move(Buffer), llvm::support::little);
auto File = llvm::make_unique<PDBFile>(Path, std::move(Stream), Allocator);
if (auto EC = File->parseFileHeaders()) {
llvm::consumeError(std::move(EC));
return nullptr;
}
if (auto EC = File->parseStreamData()) {
llvm::consumeError(std::move(EC));
return nullptr;
}
return File;
}
static std::unique_ptr<PDBFile>
loadMatchingPDBFile(std::string exe_path, llvm::BumpPtrAllocator &allocator) {
// Try to find a matching PDB for an EXE.
using namespace llvm::object;
auto expected_binary = createBinary(exe_path);
// If the file isn't a PE/COFF executable, fail.
if (!expected_binary) {
llvm::consumeError(expected_binary.takeError());
return nullptr;
}
OwningBinary<Binary> binary = std::move(*expected_binary);
auto *obj = llvm::dyn_cast<llvm::object::COFFObjectFile>(binary.getBinary());
if (!obj)
return nullptr;
const llvm::codeview::DebugInfo *pdb_info = nullptr;
// If it doesn't have a debug directory, fail.
llvm::StringRef pdb_file;
auto ec = obj->getDebugPDBInfo(pdb_info, pdb_file);
if (ec)
return nullptr;
// if the file doesn't exist, is not a pdb, or doesn't have a matching guid,
// fail.
llvm::file_magic magic;
ec = llvm::identify_magic(pdb_file, magic);
if (ec || magic != llvm::file_magic::pdb)
return nullptr;
std::unique_ptr<PDBFile> pdb = loadPDBFile(pdb_file, allocator);
if (!pdb)
return nullptr;
auto expected_info = pdb->getPDBInfoStream();
if (!expected_info) {
llvm::consumeError(expected_info.takeError());
return nullptr;
}
llvm::codeview::GUID guid;
memcpy(&guid, pdb_info->PDB70.Signature, 16);
if (expected_info->getGuid() != guid)
return nullptr;
return pdb;
}
static bool IsFunctionPrologue(const CompilandIndexItem &cci,
lldb::addr_t addr) {
// FIXME: Implement this.
return false;
}
static bool IsFunctionEpilogue(const CompilandIndexItem &cci,
lldb::addr_t addr) {
// FIXME: Implement this.
return false;
}
static clang::MSInheritanceAttr::Spelling
GetMSInheritance(LazyRandomTypeCollection &tpi, const ClassRecord &record) {
if (record.DerivationList == TypeIndex::None())
return clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance;
CVType bases = tpi.getType(record.DerivationList);
ArgListRecord base_list;
cantFail(TypeDeserializer::deserializeAs<ArgListRecord>(bases, base_list));
if (base_list.ArgIndices.empty())
return clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance;
int base_count = 0;
for (TypeIndex ti : base_list.ArgIndices) {
CVType base = tpi.getType(ti);
if (base.kind() == LF_VBCLASS || base.kind() == LF_IVBCLASS)
return clang::MSInheritanceAttr::Spelling::Keyword_virtual_inheritance;
++base_count;
}
if (base_count > 1)
return clang::MSInheritanceAttr::Keyword_multiple_inheritance;
return clang::MSInheritanceAttr::Keyword_single_inheritance;
}
static lldb::BasicType GetCompilerTypeForSimpleKind(SimpleTypeKind kind) {
switch (kind) {
case SimpleTypeKind::Boolean128:
case SimpleTypeKind::Boolean16:
case SimpleTypeKind::Boolean32:
case SimpleTypeKind::Boolean64:
case SimpleTypeKind::Boolean8:
return lldb::eBasicTypeBool;
case SimpleTypeKind::Byte:
case SimpleTypeKind::UnsignedCharacter:
return lldb::eBasicTypeUnsignedChar;
case SimpleTypeKind::NarrowCharacter:
return lldb::eBasicTypeChar;
case SimpleTypeKind::SignedCharacter:
case SimpleTypeKind::SByte:
return lldb::eBasicTypeSignedChar;
case SimpleTypeKind::Character16:
return lldb::eBasicTypeChar16;
case SimpleTypeKind::Character32:
return lldb::eBasicTypeChar32;
case SimpleTypeKind::Complex80:
return lldb::eBasicTypeLongDoubleComplex;
case SimpleTypeKind::Complex64:
return lldb::eBasicTypeDoubleComplex;
case SimpleTypeKind::Complex32:
return lldb::eBasicTypeFloatComplex;
case SimpleTypeKind::Float128:
case SimpleTypeKind::Float80:
return lldb::eBasicTypeLongDouble;
case SimpleTypeKind::Float64:
return lldb::eBasicTypeDouble;
case SimpleTypeKind::Float32:
return lldb::eBasicTypeFloat;
case SimpleTypeKind::Float16:
return lldb::eBasicTypeHalf;
case SimpleTypeKind::Int128:
return lldb::eBasicTypeInt128;
case SimpleTypeKind::Int64:
case SimpleTypeKind::Int64Quad:
return lldb::eBasicTypeLongLong;
case SimpleTypeKind::Int32:
return lldb::eBasicTypeInt;
case SimpleTypeKind::Int16:
case SimpleTypeKind::Int16Short:
return lldb::eBasicTypeShort;
case SimpleTypeKind::UInt128:
return lldb::eBasicTypeUnsignedInt128;
case SimpleTypeKind::UInt64:
case SimpleTypeKind::UInt64Quad:
return lldb::eBasicTypeUnsignedLongLong;
case SimpleTypeKind::HResult:
case SimpleTypeKind::UInt32:
return lldb::eBasicTypeUnsignedInt;
case SimpleTypeKind::UInt16:
case SimpleTypeKind::UInt16Short:
return lldb::eBasicTypeUnsignedShort;
case SimpleTypeKind::Int32Long:
return lldb::eBasicTypeLong;
case SimpleTypeKind::UInt32Long:
return lldb::eBasicTypeUnsignedLong;
case SimpleTypeKind::Void:
return lldb::eBasicTypeVoid;
case SimpleTypeKind::WideCharacter:
return lldb::eBasicTypeWChar;
default:
return lldb::eBasicTypeInvalid;
}
}
static bool IsSimpleTypeSignedInteger(SimpleTypeKind kind) {
switch (kind) {
case SimpleTypeKind::Int128:
case SimpleTypeKind::Int64:
case SimpleTypeKind::Int64Quad:
case SimpleTypeKind::Int32:
case SimpleTypeKind::Int32Long:
case SimpleTypeKind::Int16:
case SimpleTypeKind::Int16Short:
case SimpleTypeKind::Float128:
case SimpleTypeKind::Float80:
case SimpleTypeKind::Float64:
case SimpleTypeKind::Float32:
case SimpleTypeKind::Float16:
case SimpleTypeKind::NarrowCharacter:
case SimpleTypeKind::SignedCharacter:
case SimpleTypeKind::SByte:
return true;
default:
return false;
}
}
static size_t GetTypeSizeForSimpleKind(SimpleTypeKind kind) {
switch (kind) {
case SimpleTypeKind::Boolean128:
case SimpleTypeKind::Int128:
case SimpleTypeKind::UInt128:
case SimpleTypeKind::Float128:
return 16;
case SimpleTypeKind::Complex80:
case SimpleTypeKind::Float80:
return 10;
case SimpleTypeKind::Boolean64:
case SimpleTypeKind::Complex64:
case SimpleTypeKind::UInt64:
case SimpleTypeKind::UInt64Quad:
case SimpleTypeKind::Float64:
case SimpleTypeKind::Int64:
case SimpleTypeKind::Int64Quad:
return 8;
case SimpleTypeKind::Boolean32:
case SimpleTypeKind::Character32:
case SimpleTypeKind::Complex32:
case SimpleTypeKind::Float32:
case SimpleTypeKind::Int32:
case SimpleTypeKind::Int32Long:
case SimpleTypeKind::UInt32Long:
case SimpleTypeKind::HResult:
case SimpleTypeKind::UInt32:
return 4;
case SimpleTypeKind::Boolean16:
case SimpleTypeKind::Character16:
case SimpleTypeKind::Float16:
case SimpleTypeKind::Int16:
case SimpleTypeKind::Int16Short:
case SimpleTypeKind::UInt16:
case SimpleTypeKind::UInt16Short:
case SimpleTypeKind::WideCharacter:
return 2;
case SimpleTypeKind::Boolean8:
case SimpleTypeKind::Byte:
case SimpleTypeKind::UnsignedCharacter:
case SimpleTypeKind::NarrowCharacter:
case SimpleTypeKind::SignedCharacter:
case SimpleTypeKind::SByte:
return 1;
case SimpleTypeKind::Void:
default:
return 0;
}
}
std::pair<size_t, bool> GetIntegralTypeInfo(TypeIndex ti, TpiStream &tpi) {
if (ti.isSimple()) {
SimpleTypeKind stk = ti.getSimpleKind();
return {GetTypeSizeForSimpleKind(stk), IsSimpleTypeSignedInteger(stk)};
}
CVType cvt = tpi.getType(ti);
switch (cvt.kind()) {
case LF_MODIFIER: {
ModifierRecord mfr;
llvm::cantFail(TypeDeserializer::deserializeAs<ModifierRecord>(cvt, mfr));
return GetIntegralTypeInfo(mfr.ModifiedType, tpi);
}
case LF_POINTER: {
PointerRecord pr;
llvm::cantFail(TypeDeserializer::deserializeAs<PointerRecord>(cvt, pr));
return GetIntegralTypeInfo(pr.ReferentType, tpi);
}
case LF_ENUM: {
EnumRecord er;
llvm::cantFail(TypeDeserializer::deserializeAs<EnumRecord>(cvt, er));
return GetIntegralTypeInfo(er.UnderlyingType, tpi);
}
default:
assert(false && "Type is not integral!");
return {0, false};
}
}
static llvm::StringRef GetSimpleTypeName(SimpleTypeKind kind) {
switch (kind) {
case SimpleTypeKind::Boolean128:
case SimpleTypeKind::Boolean16:
case SimpleTypeKind::Boolean32:
case SimpleTypeKind::Boolean64:
case SimpleTypeKind::Boolean8:
return "bool";
case SimpleTypeKind::Byte:
case SimpleTypeKind::UnsignedCharacter:
return "unsigned char";
case SimpleTypeKind::NarrowCharacter:
return "char";
case SimpleTypeKind::SignedCharacter:
case SimpleTypeKind::SByte:
return "signed char";
case SimpleTypeKind::Character16:
return "char16_t";
case SimpleTypeKind::Character32:
return "char32_t";
case SimpleTypeKind::Complex80:
case SimpleTypeKind::Complex64:
case SimpleTypeKind::Complex32:
return "complex";
case SimpleTypeKind::Float128:
case SimpleTypeKind::Float80:
return "long double";
case SimpleTypeKind::Float64:
return "double";
case SimpleTypeKind::Float32:
return "float";
case SimpleTypeKind::Float16:
return "single";
case SimpleTypeKind::Int128:
return "__int128";
case SimpleTypeKind::Int64:
case SimpleTypeKind::Int64Quad:
return "int64_t";
case SimpleTypeKind::Int32:
return "int";
case SimpleTypeKind::Int16:
return "short";
case SimpleTypeKind::UInt128:
return "unsigned __int128";
case SimpleTypeKind::UInt64:
case SimpleTypeKind::UInt64Quad:
return "uint64_t";
case SimpleTypeKind::HResult:
return "HRESULT";
case SimpleTypeKind::UInt32:
return "unsigned";
case SimpleTypeKind::UInt16:
case SimpleTypeKind::UInt16Short:
return "unsigned short";
case SimpleTypeKind::Int32Long:
return "long";
case SimpleTypeKind::UInt32Long:
return "unsigned long";
case SimpleTypeKind::Void:
return "void";
case SimpleTypeKind::WideCharacter:
return "wchar_t";
default:
return "";
}
}
static bool IsClassRecord(TypeLeafKind kind) {
switch (kind) {
case LF_STRUCTURE:
case LF_CLASS:
case LF_INTERFACE:
return true;
default:
return false;
}
}
static PDB_SymType GetPdbSymType(TpiStream &tpi, TypeIndex ti) {
if (ti.isSimple()) {
if (ti.getSimpleMode() == SimpleTypeMode::Direct)
return PDB_SymType::BuiltinType;
return PDB_SymType::PointerType;
}
CVType cvt = tpi.getType(ti);
TypeLeafKind kind = cvt.kind();
if (kind != LF_MODIFIER)
return CVTypeToPDBType(kind);
// If this is an LF_MODIFIER, look through it to get the kind that it
// modifies. Note that it's not possible to have an LF_MODIFIER that
// modifies another LF_MODIFIER, although this would handle that anyway.
return GetPdbSymType(tpi, LookThroughModifierRecord(cvt));
}
static bool IsCVarArgsFunction(llvm::ArrayRef<TypeIndex> args) {
if (args.empty())
return false;
return args.back() == TypeIndex::None();
}
static clang::TagTypeKind TranslateUdtKind(const TagRecord &cr) {
switch (cr.Kind) {
case TypeRecordKind::Class:
return clang::TTK_Class;
case TypeRecordKind::Struct:
return clang::TTK_Struct;
case TypeRecordKind::Union:
return clang::TTK_Union;
case TypeRecordKind::Interface:
return clang::TTK_Interface;
case TypeRecordKind::Enum:
return clang::TTK_Enum;
default:
lldbassert(false && "Invalid tag record kind!");
return clang::TTK_Struct;
}
}
static llvm::Optional<clang::CallingConv>
TranslateCallingConvention(llvm::codeview::CallingConvention conv) {
using CC = llvm::codeview::CallingConvention;
switch (conv) {
case CC::NearC:
case CC::FarC:
return clang::CallingConv::CC_C;
case CC::NearPascal:
case CC::FarPascal:
return clang::CallingConv::CC_X86Pascal;
case CC::NearFast:
case CC::FarFast:
return clang::CallingConv::CC_X86FastCall;
case CC::NearStdCall:
case CC::FarStdCall:
return clang::CallingConv::CC_X86StdCall;
case CC::ThisCall:
return clang::CallingConv::CC_X86ThisCall;
case CC::NearVector:
return clang::CallingConv::CC_X86VectorCall;
default:
return llvm::None;
}
}
void SymbolFileNativePDB::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance,
DebuggerInitialize);
}
void SymbolFileNativePDB::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
void SymbolFileNativePDB::DebuggerInitialize(Debugger &debugger) {}
ConstString SymbolFileNativePDB::GetPluginNameStatic() {
static ConstString g_name("native-pdb");
return g_name;
}
const char *SymbolFileNativePDB::GetPluginDescriptionStatic() {
return "Microsoft PDB debug symbol cross-platform file reader.";
}
SymbolFile *SymbolFileNativePDB::CreateInstance(ObjectFile *obj_file) {
return new SymbolFileNativePDB(obj_file);
}
SymbolFileNativePDB::SymbolFileNativePDB(ObjectFile *object_file)
: SymbolFile(object_file) {}
SymbolFileNativePDB::~SymbolFileNativePDB() {}
uint32_t SymbolFileNativePDB::CalculateAbilities() {
uint32_t abilities = 0;
if (!m_obj_file)
return 0;
if (!m_index) {
// Lazily load and match the PDB file, but only do this once.
std::unique_ptr<PDBFile> file_up =
loadMatchingPDBFile(m_obj_file->GetFileSpec().GetPath(), m_allocator);
if (!file_up) {
auto module_sp = m_obj_file->GetModule();
if (!module_sp)
return 0;
// See if any symbol file is specified through `--symfile` option.
FileSpec symfile = module_sp->GetSymbolFileFileSpec();
if (!symfile)
return 0;
file_up = loadPDBFile(symfile.GetPath(), m_allocator);
}
if (!file_up)
return 0;
auto expected_index = PdbIndex::create(std::move(file_up));
if (!expected_index) {
llvm::consumeError(expected_index.takeError());
return 0;
}
m_index = std::move(*expected_index);
}
if (!m_index)
return 0;
// We don't especially have to be precise here. We only distinguish between
// stripped and not stripped.
abilities = kAllAbilities;
if (m_index->dbi().isStripped())
abilities &= ~(Blocks | LocalVariables);
return abilities;
}
void SymbolFileNativePDB::InitializeObject() {
m_obj_load_address = m_obj_file->GetFileOffset();
m_index->SetLoadAddress(m_obj_load_address);
m_index->ParseSectionContribs();
TypeSystem *ts = GetTypeSystemForLanguage(eLanguageTypeC_plus_plus);
m_clang = llvm::dyn_cast_or_null<ClangASTContext>(ts);
m_importer = llvm::make_unique<ClangASTImporter>();
PreprocessTpiStream();
lldbassert(m_clang);
}
static llvm::Optional<CVTagRecord>
GetNestedTagRecord(const NestedTypeRecord &Record, const CVTagRecord &parent,
TpiStream &tpi) {
// An LF_NESTTYPE is essentially a nested typedef / using declaration, but it
// is also used to indicate the primary definition of a nested class. That is
// to say, if you have:
// struct A {
// struct B {};
// using C = B;
// };
// Then in the debug info, this will appear as:
// LF_STRUCTURE `A::B` [type index = N]
// LF_STRUCTURE `A`
// LF_NESTTYPE [name = `B`, index = N]
// LF_NESTTYPE [name = `C`, index = N]
// In order to accurately reconstruct the decl context hierarchy, we need to
// know which ones are actual definitions and which ones are just aliases.
// If it's a simple type, then this is something like `using foo = int`.
if (Record.Type.isSimple())
return llvm::None;
CVType cvt = tpi.getType(Record.Type);
if (!IsTagRecord(cvt))
return llvm::None;
// If it's an inner definition, then treat whatever name we have here as a
// single component of a mangled name. So we can inject it into the parent's
// mangled name to see if it matches.
CVTagRecord child = CVTagRecord::create(cvt);
std::string qname = parent.asTag().getUniqueName();
if (qname.size() < 4 || child.asTag().getUniqueName().size() < 4)
return llvm::None;
// qname[3] is the tag type identifier (struct, class, union, etc). Since the
// inner tag type is not necessarily the same as the outer tag type, re-write
// it to match the inner tag type.
qname[3] = child.asTag().getUniqueName()[3];
std::string piece = Record.Name;
piece.push_back('@');
qname.insert(4, std::move(piece));
if (qname != child.asTag().UniqueName)
return llvm::None;
return std::move(child);
}
void SymbolFileNativePDB::PreprocessTpiStream() {
LazyRandomTypeCollection &types = m_index->tpi().typeCollection();
for (auto ti = types.getFirst(); ti; ti = types.getNext(*ti)) {
CVType type = types.getType(*ti);
if (!IsTagRecord(type))
continue;
CVTagRecord tag = CVTagRecord::create(type);
// We're looking for LF_NESTTYPE records in the field list, so ignore
// forward references (no field list), and anything without a nested class
// (since there won't be any LF_NESTTYPE records).
if (tag.asTag().isForwardRef() || !tag.asTag().containsNestedClass())
continue;
struct ProcessTpiStream : public TypeVisitorCallbacks {
ProcessTpiStream(PdbIndex &index, TypeIndex parent,
const CVTagRecord &parent_cvt,
llvm::DenseMap<TypeIndex, TypeIndex> &parents)
: index(index), parents(parents), parent(parent),
parent_cvt(parent_cvt) {}
PdbIndex &index;
llvm::DenseMap<TypeIndex, TypeIndex> &parents;
TypeIndex parent;
const CVTagRecord &parent_cvt;
llvm::Error visitKnownMember(CVMemberRecord &CVR,
NestedTypeRecord &Record) override {
llvm::Optional<CVTagRecord> tag =
GetNestedTagRecord(Record, parent_cvt, index.tpi());
if (!tag)
return llvm::ErrorSuccess();
parents[Record.Type] = parent;
if (!tag->asTag().isForwardRef())
return llvm::ErrorSuccess();
llvm::Expected<TypeIndex> full_decl =
index.tpi().findFullDeclForForwardRef(Record.Type);
if (!full_decl) {
llvm::consumeError(full_decl.takeError());
return llvm::ErrorSuccess();
}
parents[*full_decl] = parent;
return llvm::ErrorSuccess();
}
};
CVType field_list = m_index->tpi().getType(tag.asTag().FieldList);
ProcessTpiStream process(*m_index, *ti, tag, m_parent_types);
llvm::Error error = visitMemberRecordStream(field_list.data(), process);
if (error)
llvm::consumeError(std::move(error));
}
}
uint32_t SymbolFileNativePDB::GetNumCompileUnits() {
const DbiModuleList &modules = m_index->dbi().modules();
uint32_t count = modules.getModuleCount();
if (count == 0)
return count;
// The linker can inject an additional "dummy" compilation unit into the
// PDB. Ignore this special compile unit for our purposes, if it is there.
// It is always the last one.
DbiModuleDescriptor last = modules.getModuleDescriptor(count - 1);
if (last.getModuleName() == "* Linker *")
--count;
return count;
}
lldb::FunctionSP SymbolFileNativePDB::CreateFunction(PdbCompilandSymId func_id,
const SymbolContext &sc) {
const CompilandIndexItem *cci =
m_index->compilands().GetCompiland(func_id.modi);
lldbassert(cci);
CVSymbol sym_record = cci->m_debug_stream.readSymbolAtOffset(func_id.offset);
lldbassert(sym_record.kind() == S_LPROC32 || sym_record.kind() == S_GPROC32);
SegmentOffsetLength sol = GetSegmentOffsetAndLength(sym_record);
auto file_vm_addr = m_index->MakeVirtualAddress(sol.so);
if (file_vm_addr == LLDB_INVALID_ADDRESS || file_vm_addr == 0)
return nullptr;
AddressRange func_range(file_vm_addr, sol.length,
sc.module_sp->GetSectionList());
if (!func_range.GetBaseAddress().IsValid())
return nullptr;
Type *func_type = nullptr;
// FIXME: Resolve types and mangled names.
PdbTypeSymId sig_id{TypeIndex::None(), false};
Mangled mangled(getSymbolName(sym_record));
FunctionSP func_sp = std::make_shared<Function>(
sc.comp_unit, toOpaqueUid(func_id), toOpaqueUid(sig_id), mangled,
func_type, func_range);
sc.comp_unit->AddFunction(func_sp);
return func_sp;
}
CompUnitSP
SymbolFileNativePDB::CreateCompileUnit(const CompilandIndexItem &cci) {
lldb::LanguageType lang =
cci.m_compile_opts ? TranslateLanguage(cci.m_compile_opts->getLanguage())
: lldb::eLanguageTypeUnknown;
LazyBool optimized = eLazyBoolNo;
if (cci.m_compile_opts && cci.m_compile_opts->hasOptimizations())
optimized = eLazyBoolYes;
llvm::StringRef source_file_name =
m_index->compilands().GetMainSourceFile(cci);
FileSpec fs(source_file_name);
CompUnitSP cu_sp =
std::make_shared<CompileUnit>(m_obj_file->GetModule(), nullptr, fs,
toOpaqueUid(cci.m_id), lang, optimized);
m_obj_file->GetModule()->GetSymbolVendor()->SetCompileUnitAtIndex(
cci.m_id.modi, cu_sp);
return cu_sp;
}
lldb::TypeSP SymbolFileNativePDB::CreateModifierType(PdbTypeSymId type_id,
const ModifierRecord &mr) {
TpiStream &stream = m_index->tpi();
TypeSP t = GetOrCreateType(mr.ModifiedType);
CompilerType ct = t->GetForwardCompilerType();
if ((mr.Modifiers & ModifierOptions::Const) != ModifierOptions::None)
ct = ct.AddConstModifier();
if ((mr.Modifiers & ModifierOptions::Volatile) != ModifierOptions::None)
ct = ct.AddVolatileModifier();
std::string name;
if (mr.ModifiedType.isSimple())
name = GetSimpleTypeName(mr.ModifiedType.getSimpleKind());
else
name = computeTypeName(stream.typeCollection(), mr.ModifiedType);
Declaration decl;
return std::make_shared<Type>(toOpaqueUid(type_id), m_clang->GetSymbolFile(),
ConstString(name), t->GetByteSize(), nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
ct, Type::eResolveStateFull);
}
lldb::TypeSP SymbolFileNativePDB::CreatePointerType(
PdbTypeSymId type_id, const llvm::codeview::PointerRecord &pr) {
TypeSP pointee = GetOrCreateType(pr.ReferentType);
if (!pointee)
return nullptr;
CompilerType pointee_ct = pointee->GetForwardCompilerType();
lldbassert(pointee_ct);
Declaration decl;
if (pr.isPointerToMember()) {
MemberPointerInfo mpi = pr.getMemberInfo();
TypeSP class_type = GetOrCreateType(mpi.ContainingType);
CompilerType ct = ClangASTContext::CreateMemberPointerType(
class_type->GetLayoutCompilerType(), pointee_ct);
return std::make_shared<Type>(
toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(),
pr.getSize(), nullptr, LLDB_INVALID_UID, Type::eEncodingIsUID, decl, ct,
Type::eResolveStateFull);
}
CompilerType pointer_ct = pointee_ct;
if (pr.getMode() == PointerMode::LValueReference)
pointer_ct = pointer_ct.GetLValueReferenceType();
else if (pr.getMode() == PointerMode::RValueReference)
pointer_ct = pointer_ct.GetRValueReferenceType();
else
pointer_ct = pointer_ct.GetPointerType();
if ((pr.getOptions() & PointerOptions::Const) != PointerOptions::None)
pointer_ct = pointer_ct.AddConstModifier();
if ((pr.getOptions() & PointerOptions::Volatile) != PointerOptions::None)
pointer_ct = pointer_ct.AddVolatileModifier();
if ((pr.getOptions() & PointerOptions::Restrict) != PointerOptions::None)
pointer_ct = pointer_ct.AddRestrictModifier();
return std::make_shared<Type>(toOpaqueUid(type_id), m_clang->GetSymbolFile(),
ConstString(), pr.getSize(), nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
pointer_ct, Type::eResolveStateFull);
}
lldb::TypeSP SymbolFileNativePDB::CreateSimpleType(TypeIndex ti) {
uint64_t uid = toOpaqueUid(PdbTypeSymId{ti, false});
if (ti == TypeIndex::NullptrT()) {
CompilerType ct = m_clang->GetBasicType(eBasicTypeNullPtr);
Declaration decl;
return std::make_shared<Type>(
uid, this, ConstString("std::nullptr_t"), 0, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, ct, Type::eResolveStateFull);
}
if (ti.getSimpleMode() != SimpleTypeMode::Direct) {
TypeSP direct_sp = GetOrCreateType(ti.makeDirect());
CompilerType ct = direct_sp->GetFullCompilerType();
ct = ct.GetPointerType();
uint32_t pointer_size = 0;
switch (ti.getSimpleMode()) {
case SimpleTypeMode::FarPointer32:
case SimpleTypeMode::NearPointer32:
pointer_size = 4;
break;
case SimpleTypeMode::NearPointer64:
pointer_size = 8;
break;
default:
// 128-bit and 16-bit pointers unsupported.
return nullptr;
}
Declaration decl;
return std::make_shared<Type>(uid, m_clang->GetSymbolFile(), ConstString(),
pointer_size, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, ct,
Type::eResolveStateFull);
}
if (ti.getSimpleKind() == SimpleTypeKind::NotTranslated)
return nullptr;
lldb::BasicType bt = GetCompilerTypeForSimpleKind(ti.getSimpleKind());
if (bt == lldb::eBasicTypeInvalid)
return nullptr;
CompilerType ct = m_clang->GetBasicType(bt);
size_t size = GetTypeSizeForSimpleKind(ti.getSimpleKind());
llvm::StringRef type_name = GetSimpleTypeName(ti.getSimpleKind());
Declaration decl;
return std::make_shared<Type>(uid, m_clang->GetSymbolFile(),
ConstString(type_name), size, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
ct, Type::eResolveStateFull);
}
static std::string RenderDemanglerNode(llvm::ms_demangle::Node *n) {
OutputStream OS;
initializeOutputStream(nullptr, nullptr, OS, 1024);
n->output(OS, llvm::ms_demangle::OF_Default);
OS << '\0';
return {OS.getBuffer()};
}
static bool
AnyScopesHaveTemplateParams(llvm::ArrayRef<llvm::ms_demangle::Node *> scopes) {
for (llvm::ms_demangle::Node *n : scopes) {
auto *idn = static_cast<llvm::ms_demangle::IdentifierNode *>(n);
if (idn->TemplateParams)
return true;
}
return false;
}
std::pair<clang::DeclContext *, std::string>
SymbolFileNativePDB::CreateDeclInfoForType(const TagRecord &record,
TypeIndex ti) {
llvm::ms_demangle::Demangler demangler;
StringView sv(record.UniqueName.begin(), record.UniqueName.size());
llvm::ms_demangle::TagTypeNode *ttn = demangler.parseTagUniqueName(sv);
llvm::ms_demangle::IdentifierNode *idn =
ttn->QualifiedName->getUnqualifiedIdentifier();
std::string uname = RenderDemanglerNode(idn);
llvm::ms_demangle::NodeArrayNode *name_components =
ttn->QualifiedName->Components;
llvm::ArrayRef<llvm::ms_demangle::Node *> scopes(name_components->Nodes,
name_components->Count - 1);
clang::DeclContext *context = m_clang->GetTranslationUnitDecl();
// If this type doesn't have a parent type in the debug info, then the best we
// can do is to say that it's either a series of namespaces (if the scope is
// non-empty), or the translation unit (if the scope is empty).
auto parent_iter = m_parent_types.find(ti);
if (parent_iter == m_parent_types.end()) {
if (scopes.empty())
return {context, uname};
// If there is no parent in the debug info, but some of the scopes have
// template params, then this is a case of bad debug info. See, for
// example, llvm.org/pr39607. We don't want to create an ambiguity between
// a NamespaceDecl and a CXXRecordDecl, so instead we create a class at
// global scope with the fully qualified name.
if (AnyScopesHaveTemplateParams(scopes))
return {context, record.Name};
for (llvm::ms_demangle::Node *scope : scopes) {
auto *nii = static_cast<llvm::ms_demangle::NamedIdentifierNode *>(scope);
std::string str = RenderDemanglerNode(nii);
context = m_clang->GetUniqueNamespaceDeclaration(str.c_str(), context);
}
return {context, uname};
}
// Otherwise, all we need to do is get the parent type of this type and
// recurse into our lazy type creation / AST reconstruction logic to get an
// LLDB TypeSP for the parent. This will cause the AST to automatically get
// the right DeclContext created for any parent.
TypeSP parent = GetOrCreateType(parent_iter->second);
if (!parent)
return {context, uname};
CompilerType parent_ct = parent->GetForwardCompilerType();
clang::QualType qt = ClangUtil::GetCanonicalQualType(parent_ct);
context = clang::TagDecl::castToDeclContext(qt->getAsTagDecl());
return {context, uname};
}
lldb::TypeSP SymbolFileNativePDB::CreateClassStructUnion(
PdbTypeSymId type_id, const llvm::codeview::TagRecord &record, size_t size,
clang::TagTypeKind ttk, clang::MSInheritanceAttr::Spelling inheritance) {
clang::DeclContext *decl_context = nullptr;
std::string uname;
std::tie(decl_context, uname) = CreateDeclInfoForType(record, type_id.index);
lldb::AccessType access =
(ttk == clang::TTK_Class) ? lldb::eAccessPrivate : lldb::eAccessPublic;
ClangASTMetadata metadata;
metadata.SetUserID(toOpaqueUid(type_id));
metadata.SetIsDynamicCXXType(false);
CompilerType ct =
m_clang->CreateRecordType(decl_context, access, uname.c_str(), ttk,
lldb::eLanguageTypeC_plus_plus, &metadata);
lldbassert(ct.IsValid());
clang::CXXRecordDecl *record_decl =
m_clang->GetAsCXXRecordDecl(ct.GetOpaqueQualType());
lldbassert(record_decl);
clang::MSInheritanceAttr *attr = clang::MSInheritanceAttr::CreateImplicit(
*m_clang->getASTContext(), inheritance);
record_decl->addAttr(attr);
ClangASTContext::StartTagDeclarationDefinition(ct);
// Even if it's possible, don't complete it at this point. Just mark it
// forward resolved, and if/when LLDB needs the full definition, it can
// ask us.
ClangASTContext::SetHasExternalStorage(ct.GetOpaqueQualType(), true);
// FIXME: Search IPI stream for LF_UDT_MOD_SRC_LINE.
Declaration decl;
return std::make_shared<Type>(toOpaqueUid(type_id), m_clang->GetSymbolFile(),
ConstString(uname), size, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
ct, Type::eResolveStateForward);
}
lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id,
const ClassRecord &cr) {
clang::TagTypeKind ttk = TranslateUdtKind(cr);
clang::MSInheritanceAttr::Spelling inheritance =
GetMSInheritance(m_index->tpi().typeCollection(), cr);
return CreateClassStructUnion(type_id, cr, cr.getSize(), ttk, inheritance);
}
lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id,
const UnionRecord &ur) {
return CreateClassStructUnion(
type_id, ur, ur.getSize(), clang::TTK_Union,
clang::MSInheritanceAttr::Spelling::Keyword_single_inheritance);
}
lldb::TypeSP SymbolFileNativePDB::CreateTagType(PdbTypeSymId type_id,
const EnumRecord &er) {
clang::DeclContext *decl_context = nullptr;
std::string uname;
std::tie(decl_context, uname) = CreateDeclInfoForType(er, type_id.index);
Declaration decl;
TypeSP underlying_type = GetOrCreateType(er.UnderlyingType);
CompilerType enum_ct = m_clang->CreateEnumerationType(
uname.c_str(), decl_context, decl, underlying_type->GetFullCompilerType(),
er.isScoped());
ClangASTContext::StartTagDeclarationDefinition(enum_ct);
ClangASTContext::SetHasExternalStorage(enum_ct.GetOpaqueQualType(), true);
// We're just going to forward resolve this for now. We'll complete
// it only if the user requests.
return std::make_shared<lldb_private::Type>(
toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(uname),
underlying_type->GetByteSize(), nullptr, LLDB_INVALID_UID,
lldb_private::Type::eEncodingIsUID, decl, enum_ct,
lldb_private::Type::eResolveStateForward);
}
TypeSP SymbolFileNativePDB::CreateArrayType(PdbTypeSymId type_id,
const ArrayRecord &ar) {
TypeSP element_type = GetOrCreateType(ar.ElementType);
uint64_t element_count = ar.Size / element_type->GetByteSize();
CompilerType element_ct = element_type->GetFullCompilerType();
CompilerType array_ct =
m_clang->CreateArrayType(element_ct, element_count, false);
Declaration decl;
TypeSP array_sp = std::make_shared<lldb_private::Type>(
toOpaqueUid(type_id), m_clang->GetSymbolFile(), ConstString(), ar.Size,
nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl,
array_ct, lldb_private::Type::eResolveStateFull);
array_sp->SetEncodingType(element_type.get());
return array_sp;
}
TypeSP SymbolFileNativePDB::CreateProcedureType(PdbTypeSymId type_id,
const ProcedureRecord &pr) {
TpiStream &stream = m_index->tpi();
CVType args_cvt = stream.getType(pr.ArgumentList);
ArgListRecord args;
llvm::cantFail(
TypeDeserializer::deserializeAs<ArgListRecord>(args_cvt, args));
llvm::ArrayRef<TypeIndex> arg_indices = llvm::makeArrayRef(args.ArgIndices);
bool is_variadic = IsCVarArgsFunction(arg_indices);
if (is_variadic)
arg_indices = arg_indices.drop_back();
std::vector<CompilerType> arg_list;
arg_list.reserve(arg_list.size());
for (TypeIndex arg_index : arg_indices) {
TypeSP arg_sp = GetOrCreateType(arg_index);
if (!arg_sp)
return nullptr;
arg_list.push_back(arg_sp->GetFullCompilerType());
}
TypeSP return_type_sp = GetOrCreateType(pr.ReturnType);
if (!return_type_sp)
return nullptr;
llvm::Optional<clang::CallingConv> cc =
TranslateCallingConvention(pr.CallConv);
if (!cc)
return nullptr;
CompilerType return_ct = return_type_sp->GetFullCompilerType();
CompilerType func_sig_ast_type = m_clang->CreateFunctionType(
return_ct, arg_list.data(), arg_list.size(), is_variadic, 0, *cc);
Declaration decl;
return std::make_shared<lldb_private::Type>(
toOpaqueUid(type_id), this, ConstString(), 0, nullptr, LLDB_INVALID_UID,
lldb_private::Type::eEncodingIsUID, decl, func_sig_ast_type,
lldb_private::Type::eResolveStateFull);
}
TypeSP SymbolFileNativePDB::CreateType(PdbTypeSymId type_id) {
if (type_id.index.isSimple())
return CreateSimpleType(type_id.index);
TpiStream &stream = type_id.is_ipi ? m_index->ipi() : m_index->tpi();
CVType cvt = stream.getType(type_id.index);
if (cvt.kind() == LF_MODIFIER) {
ModifierRecord modifier;
llvm::cantFail(
TypeDeserializer::deserializeAs<ModifierRecord>(cvt, modifier));
return CreateModifierType(type_id, modifier);
}
if (cvt.kind() == LF_POINTER) {
PointerRecord pointer;
llvm::cantFail(
TypeDeserializer::deserializeAs<PointerRecord>(cvt, pointer));
return CreatePointerType(type_id, pointer);
}
if (IsClassRecord(cvt.kind())) {
ClassRecord cr;
llvm::cantFail(TypeDeserializer::deserializeAs<ClassRecord>(cvt, cr));
return CreateTagType(type_id, cr);
}
if (cvt.kind() == LF_ENUM) {
EnumRecord er;
llvm::cantFail(TypeDeserializer::deserializeAs<EnumRecord>(cvt, er));
return CreateTagType(type_id, er);
}
if (cvt.kind() == LF_UNION) {
UnionRecord ur;
llvm::cantFail(TypeDeserializer::deserializeAs<UnionRecord>(cvt, ur));
return CreateTagType(type_id, ur);
}
if (cvt.kind() == LF_ARRAY) {
ArrayRecord ar;
llvm::cantFail(TypeDeserializer::deserializeAs<ArrayRecord>(cvt, ar));
return CreateArrayType(type_id, ar);
}
if (cvt.kind() == LF_PROCEDURE) {
ProcedureRecord pr;
llvm::cantFail(TypeDeserializer::deserializeAs<ProcedureRecord>(cvt, pr));
return CreateProcedureType(type_id, pr);
}
return nullptr;
}
TypeSP SymbolFileNativePDB::CreateAndCacheType(PdbTypeSymId type_id) {
// If they search for a UDT which is a forward ref, try and resolve the full
// decl and just map the forward ref uid to the full decl record.
llvm::Optional<PdbTypeSymId> full_decl_uid;
if (IsForwardRefUdt(type_id, m_index->tpi())) {
auto expected_full_ti =
m_index->tpi().findFullDeclForForwardRef(type_id.index);
if (!expected_full_ti)
llvm::consumeError(expected_full_ti.takeError());
else if (*expected_full_ti != type_id.index) {
full_decl_uid = PdbTypeSymId{*expected_full_ti, false};
// It's possible that a lookup would occur for the full decl causing it
// to be cached, then a second lookup would occur for the forward decl.
// We don't want to create a second full decl, so make sure the full
// decl hasn't already been cached.
auto full_iter = m_types.find(toOpaqueUid(*full_decl_uid));
if (full_iter != m_types.end()) {
TypeSP result = full_iter->second;
// Map the forward decl to the TypeSP for the full decl so we can take
// the fast path next time.
m_types[toOpaqueUid(type_id)] = result;
return result;
}
}
}
PdbTypeSymId best_decl_id = full_decl_uid ? *full_decl_uid : type_id;
TypeSP result = CreateType(best_decl_id);
if (!result)
return nullptr;
uint64_t best_uid = toOpaqueUid(best_decl_id);
m_types[best_uid] = result;
// If we had both a forward decl and a full decl, make both point to the new
// type.
if (full_decl_uid)
m_types[toOpaqueUid(type_id)] = result;
if (IsTagRecord(best_decl_id, m_index->tpi())) {
clang::TagDecl *record_decl =
m_clang->GetAsTagDecl(result->GetForwardCompilerType());
lldbassert(record_decl);
TypeIndex ti(type_id.index);
m_uid_to_decl[best_uid] = record_decl;
m_decl_to_status[record_decl] =
DeclStatus(best_uid, Type::eResolveStateForward);
}
return result;
}
TypeSP SymbolFileNativePDB::GetOrCreateType(PdbTypeSymId type_id) {
// We can't use try_emplace / overwrite here because the process of creating
// a type could create nested types, which could invalidate iterators. So
// we have to do a 2-phase lookup / insert.
auto iter = m_types.find(toOpaqueUid(type_id));
if (iter != m_types.end())
return iter->second;
return CreateAndCacheType(type_id);
}
static DWARFExpression
MakeConstantLocationExpression(TypeIndex underlying_ti, TpiStream &tpi,
const ConstantSym &constant, ModuleSP module) {
const ArchSpec &architecture = module->GetArchitecture();
uint32_t address_size = architecture.GetAddressByteSize();
size_t size = 0;
bool is_signed = false;
std::tie(size, is_signed) = GetIntegralTypeInfo(underlying_ti, tpi);
union {
llvm::support::little64_t I;
llvm::support::ulittle64_t U;
} Value;
std::shared_ptr<DataBufferHeap> buffer = std::make_shared<DataBufferHeap>();
buffer->SetByteSize(size);
llvm::ArrayRef<uint8_t> bytes;
if (is_signed) {
Value.I = constant.Value.getSExtValue();
} else {
Value.U = constant.Value.getZExtValue();
}
bytes = llvm::makeArrayRef(reinterpret_cast<const uint8_t *>(&Value), 8)
.take_front(size);
buffer->CopyData(bytes.data(), size);
DataExtractor extractor(buffer, lldb::eByteOrderLittle, address_size);
DWARFExpression result(nullptr, extractor, nullptr, 0, size);
return result;
}
static DWARFExpression MakeGlobalLocationExpression(uint16_t section,
uint32_t offset,
ModuleSP module) {
assert(section > 0);
assert(module);
const ArchSpec &architecture = module->GetArchitecture();
ByteOrder byte_order = architecture.GetByteOrder();
uint32_t address_size = architecture.GetAddressByteSize();
uint32_t byte_size = architecture.GetDataByteSize();
assert(byte_order != eByteOrderInvalid && address_size != 0);
RegisterKind register_kind = eRegisterKindDWARF;
StreamBuffer<32> stream(Stream::eBinary, address_size, byte_order);
stream.PutHex8(DW_OP_addr);
SectionList *section_list = module->GetSectionList();
assert(section_list);
// Section indices in PDB are 1-based, but in DWARF they are 0-based, so we
// need to subtract 1.
uint32_t section_idx = section - 1;
if (section_idx >= section_list->GetSize())
return DWARFExpression(nullptr);
auto section_ptr = section_list->GetSectionAtIndex(section_idx);
if (!section_ptr)
return DWARFExpression(nullptr);
stream.PutMaxHex64(section_ptr->GetFileAddress() + offset, address_size,
byte_order);
DataBufferSP buffer =
std::make_shared<DataBufferHeap>(stream.GetData(), stream.GetSize());
DataExtractor extractor(buffer, byte_order, address_size, byte_size);
DWARFExpression result(module, extractor, nullptr, 0, buffer->GetByteSize());
result.SetRegisterKind(register_kind);
return result;
}
VariableSP SymbolFileNativePDB::CreateGlobalVariable(PdbGlobalSymId var_id) {
CVSymbol sym = m_index->symrecords().readRecord(var_id.offset);
if (sym.kind() == S_CONSTANT)
return CreateConstantSymbol(var_id, sym);
lldb::ValueType scope = eValueTypeInvalid;
TypeIndex ti;
llvm::StringRef name;
lldb::addr_t addr = 0;
uint16_t section = 0;
uint32_t offset = 0;
bool is_external = false;
switch (sym.kind()) {
case S_GDATA32:
is_external = true;
LLVM_FALLTHROUGH;
case S_LDATA32: {
DataSym ds(sym.kind());
llvm::cantFail(SymbolDeserializer::deserializeAs<DataSym>(sym, ds));
ti = ds.Type;
scope = (sym.kind() == S_GDATA32) ? eValueTypeVariableGlobal
: eValueTypeVariableStatic;
name = ds.Name;
section = ds.Segment;
offset = ds.DataOffset;
addr = m_index->MakeVirtualAddress(ds.Segment, ds.DataOffset);
break;
}
case S_GTHREAD32:
is_external = true;
LLVM_FALLTHROUGH;
case S_LTHREAD32: {
ThreadLocalDataSym tlds(sym.kind());
llvm::cantFail(
SymbolDeserializer::deserializeAs<ThreadLocalDataSym>(sym, tlds));
ti = tlds.Type;
name = tlds.Name;
section = tlds.Segment;
offset = tlds.DataOffset;
addr = m_index->MakeVirtualAddress(tlds.Segment, tlds.DataOffset);
scope = eValueTypeVariableThreadLocal;
break;
}
default:
llvm_unreachable("unreachable!");
}
CompUnitSP comp_unit;
llvm::Optional<uint16_t> modi = m_index->GetModuleIndexForVa(addr);
if (modi) {
CompilandIndexItem &cci = m_index->compilands().GetOrCreateCompiland(*modi);
comp_unit = GetOrCreateCompileUnit(cci);
}
Declaration decl;
PdbTypeSymId tid{ti, false};
SymbolFileTypeSP type_sp =
std::make_shared<SymbolFileType>(*this, toOpaqueUid(tid));
Variable::RangeList ranges;
DWARFExpression location = MakeGlobalLocationExpression(
section, offset, GetObjectFile()->GetModule());
std::string global_name("::");
global_name += name;
VariableSP var_sp = std::make_shared<Variable>(
toOpaqueUid(var_id), name.str().c_str(), global_name.c_str(), type_sp,
scope, comp_unit.get(), ranges, &decl, location, is_external, false,
false);
var_sp->SetLocationIsConstantValueData(false);
return var_sp;
}
lldb::VariableSP
SymbolFileNativePDB::CreateConstantSymbol(PdbGlobalSymId var_id,
const CVSymbol &cvs) {
TpiStream &tpi = m_index->tpi();
ConstantSym constant(cvs.kind());
llvm::cantFail(SymbolDeserializer::deserializeAs<ConstantSym>(cvs, constant));
std::string global_name("::");
global_name += constant.Name;
PdbTypeSymId tid{constant.Type, false};
SymbolFileTypeSP type_sp =
std::make_shared<SymbolFileType>(*this, toOpaqueUid(tid));
Declaration decl;
Variable::RangeList ranges;
ModuleSP module = GetObjectFile()->GetModule();
DWARFExpression location =
MakeConstantLocationExpression(constant.Type, tpi, constant, module);
VariableSP var_sp = std::make_shared<Variable>(
toOpaqueUid(var_id), constant.Name.str().c_str(), global_name.c_str(),
type_sp, eValueTypeVariableGlobal, module.get(), ranges, &decl, location,
false, false, false);
var_sp->SetLocationIsConstantValueData(true);
return var_sp;
}
VariableSP
SymbolFileNativePDB::GetOrCreateGlobalVariable(PdbGlobalSymId var_id) {
auto emplace_result = m_global_vars.try_emplace(toOpaqueUid(var_id), nullptr);
if (emplace_result.second)
emplace_result.first->second = CreateGlobalVariable(var_id);
return emplace_result.first->second;
}
lldb::TypeSP SymbolFileNativePDB::GetOrCreateType(TypeIndex ti) {
return GetOrCreateType(PdbTypeSymId{ti, false});
}
FunctionSP SymbolFileNativePDB::GetOrCreateFunction(PdbCompilandSymId func_id,
const SymbolContext &sc) {
auto emplace_result = m_functions.try_emplace(toOpaqueUid(func_id), nullptr);
if (emplace_result.second)
emplace_result.first->second = CreateFunction(func_id, sc);
lldbassert(emplace_result.first->second);
return emplace_result.first->second;
}
CompUnitSP
SymbolFileNativePDB::GetOrCreateCompileUnit(const CompilandIndexItem &cci) {
auto emplace_result =
m_compilands.try_emplace(toOpaqueUid(cci.m_id), nullptr);
if (emplace_result.second)
emplace_result.first->second = CreateCompileUnit(cci);
lldbassert(emplace_result.first->second);
return emplace_result.first->second;
}
lldb::CompUnitSP SymbolFileNativePDB::ParseCompileUnitAtIndex(uint32_t index) {
if (index >= GetNumCompileUnits())
return CompUnitSP();
lldbassert(index < UINT16_MAX);
if (index >= UINT16_MAX)
return nullptr;
CompilandIndexItem &item = m_index->compilands().GetOrCreateCompiland(index);
return GetOrCreateCompileUnit(item);
}
lldb::LanguageType
SymbolFileNativePDB::ParseCompileUnitLanguage(const SymbolContext &sc) {
// What fields should I expect to be filled out on the SymbolContext? Is it
// safe to assume that `sc.comp_unit` is valid?
if (!sc.comp_unit)
return lldb::eLanguageTypeUnknown;
PdbSymUid uid(sc.comp_unit->GetID());
lldbassert(uid.kind() == PdbSymUidKind::Compiland);
CompilandIndexItem *item =
m_index->compilands().GetCompiland(uid.asCompiland().modi);
lldbassert(item);
if (!item->m_compile_opts)
return lldb::eLanguageTypeUnknown;
return TranslateLanguage(item->m_compile_opts->getLanguage());
}
size_t SymbolFileNativePDB::ParseCompileUnitFunctions(const SymbolContext &sc) {
lldbassert(sc.comp_unit);
return false;
}
static bool NeedsResolvedCompileUnit(uint32_t resolve_scope) {
// If any of these flags are set, we need to resolve the compile unit.
uint32_t flags = eSymbolContextCompUnit;
flags |= eSymbolContextVariable;
flags |= eSymbolContextFunction;
flags |= eSymbolContextBlock;
flags |= eSymbolContextLineEntry;
return (resolve_scope & flags) != 0;
}
uint32_t SymbolFileNativePDB::ResolveSymbolContext(
const Address &addr, SymbolContextItem resolve_scope, SymbolContext &sc) {
uint32_t resolved_flags = 0;
lldb::addr_t file_addr = addr.GetFileAddress();
if (NeedsResolvedCompileUnit(resolve_scope)) {
llvm::Optional<uint16_t> modi = m_index->GetModuleIndexForVa(file_addr);
if (!modi)
return 0;
CompilandIndexItem *cci = m_index->compilands().GetCompiland(*modi);
if (!cci)
return 0;
sc.comp_unit = GetOrCreateCompileUnit(*cci).get();
resolved_flags |= eSymbolContextCompUnit;
}
if (resolve_scope & eSymbolContextFunction) {
lldbassert(sc.comp_unit);
std::vector<SymbolAndUid> matches = m_index->FindSymbolsByVa(file_addr);
for (const auto &match : matches) {
if (match.uid.kind() != PdbSymUidKind::CompilandSym)
continue;
PdbCompilandSymId csid = match.uid.asCompilandSym();
CVSymbol cvs = m_index->ReadSymbolRecord(csid);
if (CVSymToPDBSym(cvs.kind()) != PDB_SymType::Function)
continue;
sc.function = GetOrCreateFunction(csid, sc).get();
}
resolved_flags |= eSymbolContextFunction;
}
if (resolve_scope & eSymbolContextLineEntry) {
lldbassert(sc.comp_unit);
if (auto *line_table = sc.comp_unit->GetLineTable()) {
if (line_table->FindLineEntryByAddress(addr, sc.line_entry))
resolved_flags |= eSymbolContextLineEntry;
}
}
return resolved_flags;
}
static void AppendLineEntryToSequence(LineTable &table, LineSequence &sequence,
const CompilandIndexItem &cci,
lldb::addr_t base_addr,
uint32_t file_number,
const LineFragmentHeader &block,
const LineNumberEntry &cur) {
LineInfo cur_info(cur.Flags);
if (cur_info.isAlwaysStepInto() || cur_info.isNeverStepInto())
return;
uint64_t addr = base_addr + cur.Offset;
bool is_statement = cur_info.isStatement();
bool is_prologue = IsFunctionPrologue(cci, addr);
bool is_epilogue = IsFunctionEpilogue(cci, addr);
uint32_t lno = cur_info.getStartLine();
table.AppendLineEntryToSequence(&sequence, addr, lno, 0, file_number,
is_statement, false, is_prologue, is_epilogue,
false);
}
static void TerminateLineSequence(LineTable &table,
const LineFragmentHeader &block,
lldb::addr_t base_addr, uint32_t file_number,
uint32_t last_line,
std::unique_ptr<LineSequence> seq) {
// The end is always a terminal entry, so insert it regardless.
table.AppendLineEntryToSequence(seq.get(), base_addr + block.CodeSize,
last_line, 0, file_number, false, false,
false, false, true);
table.InsertSequence(seq.release());
}
bool SymbolFileNativePDB::ParseCompileUnitLineTable(const SymbolContext &sc) {
// Unfortunately LLDB is set up to parse the entire compile unit line table
// all at once, even if all it really needs is line info for a specific
// function. In the future it would be nice if it could set the sc.m_function
// member, and we could only get the line info for the function in question.
lldbassert(sc.comp_unit);
PdbSymUid cu_id(sc.comp_unit->GetID());
lldbassert(cu_id.kind() == PdbSymUidKind::Compiland);
CompilandIndexItem *cci =
m_index->compilands().GetCompiland(cu_id.asCompiland().modi);
lldbassert(cci);
auto line_table = llvm::make_unique<LineTable>(sc.comp_unit);
// This is basically a copy of the .debug$S subsections from all original COFF
// object files merged together with address relocations applied. We are
// looking for all DEBUG_S_LINES subsections.
for (const DebugSubsectionRecord &dssr :
cci->m_debug_stream.getSubsectionsArray()) {
if (dssr.kind() != DebugSubsectionKind::Lines)
continue;
DebugLinesSubsectionRef lines;
llvm::BinaryStreamReader reader(dssr.getRecordData());
if (auto EC = lines.initialize(reader)) {
llvm::consumeError(std::move(EC));
return false;
}
const LineFragmentHeader *lfh = lines.header();
uint64_t virtual_addr =
m_index->MakeVirtualAddress(lfh->RelocSegment, lfh->RelocOffset);
const auto &checksums = cci->m_strings.checksums().getArray();
const auto &strings = cci->m_strings.strings();
for (const LineColumnEntry &group : lines) {
// Indices in this structure are actually offsets of records in the
// DEBUG_S_FILECHECKSUMS subsection. Those entries then have an index
// into the global PDB string table.
auto iter = checksums.at(group.NameIndex);
if (iter == checksums.end())
continue;
llvm::Expected<llvm::StringRef> efn =
strings.getString(iter->FileNameOffset);
if (!efn) {
llvm::consumeError(efn.takeError());
continue;
}
// LLDB wants the index of the file in the list of support files.
auto fn_iter = llvm::find(cci->m_file_list, *efn);
lldbassert(fn_iter != cci->m_file_list.end());
uint32_t file_index = std::distance(cci->m_file_list.begin(), fn_iter);
std::unique_ptr<LineSequence> sequence(
line_table->CreateLineSequenceContainer());
lldbassert(!group.LineNumbers.empty());
for (const LineNumberEntry &entry : group.LineNumbers) {
AppendLineEntryToSequence(*line_table, *sequence, *cci, virtual_addr,
file_index, *lfh, entry);
}
LineInfo last_line(group.LineNumbers.back().Flags);
TerminateLineSequence(*line_table, *lfh, virtual_addr, file_index,
last_line.getEndLine(), std::move(sequence));
}
}
if (line_table->GetSize() == 0)
return false;
sc.comp_unit->SetLineTable(line_table.release());
return true;
}
bool SymbolFileNativePDB::ParseCompileUnitDebugMacros(const SymbolContext &sc) {
// PDB doesn't contain information about macros
return false;
}
bool SymbolFileNativePDB::ParseCompileUnitSupportFiles(
const SymbolContext &sc, FileSpecList &support_files) {
lldbassert(sc.comp_unit);
PdbSymUid cu_id(sc.comp_unit->GetID());
lldbassert(cu_id.kind() == PdbSymUidKind::Compiland);
CompilandIndexItem *cci =
m_index->compilands().GetCompiland(cu_id.asCompiland().modi);
lldbassert(cci);
for (llvm::StringRef f : cci->m_file_list) {
FileSpec::Style style =
f.startswith("/") ? FileSpec::Style::posix : FileSpec::Style::windows;
FileSpec spec(f, style);
support_files.Append(spec);
}
return true;
}
bool SymbolFileNativePDB::ParseImportedModules(
const SymbolContext &sc, std::vector<ConstString> &imported_modules) {
// PDB does not yet support module debug info
return false;
}
size_t SymbolFileNativePDB::ParseFunctionBlocks(const SymbolContext &sc) {
lldbassert(sc.comp_unit && sc.function);
return 0;
}
void SymbolFileNativePDB::DumpClangAST(Stream &s) {
if (!m_clang)
return;
m_clang->Dump(s);
}
uint32_t SymbolFileNativePDB::FindGlobalVariables(
const ConstString &name, const CompilerDeclContext *parent_decl_ctx,
uint32_t max_matches, VariableList &variables) {
using SymbolAndOffset = std::pair<uint32_t, llvm::codeview::CVSymbol>;
std::vector<SymbolAndOffset> results = m_index->globals().findRecordsByName(
name.GetStringRef(), m_index->symrecords());
for (const SymbolAndOffset &result : results) {
VariableSP var;
switch (result.second.kind()) {
case SymbolKind::S_GDATA32:
case SymbolKind::S_LDATA32:
case SymbolKind::S_GTHREAD32:
case SymbolKind::S_LTHREAD32:
case SymbolKind::S_CONSTANT: {
PdbGlobalSymId global{result.first, false};
var = GetOrCreateGlobalVariable(global);
variables.AddVariable(var);
break;
}
default:
continue;
}
}
return variables.GetSize();
}
uint32_t SymbolFileNativePDB::FindFunctions(
const ConstString &name, const CompilerDeclContext *parent_decl_ctx,
FunctionNameType name_type_mask, bool include_inlines, bool append,
SymbolContextList &sc_list) {
// For now we only support lookup by method name.
if (!(name_type_mask & eFunctionNameTypeMethod))
return 0;
using SymbolAndOffset = std::pair<uint32_t, llvm::codeview::CVSymbol>;
std::vector<SymbolAndOffset> matches = m_index->globals().findRecordsByName(
name.GetStringRef(), m_index->symrecords());
for (const SymbolAndOffset &match : matches) {
if (match.second.kind() != S_PROCREF && match.second.kind() != S_LPROCREF)
continue;
ProcRefSym proc(match.second.kind());
cantFail(SymbolDeserializer::deserializeAs<ProcRefSym>(match.second, proc));
if (!IsValidRecord(proc))
continue;
CompilandIndexItem &cci =
m_index->compilands().GetOrCreateCompiland(proc.modi());
SymbolContext sc;
sc.comp_unit = GetOrCreateCompileUnit(cci).get();
sc.module_sp = sc.comp_unit->GetModule();
PdbCompilandSymId func_id{proc.modi(), proc.SymOffset};
sc.function = GetOrCreateFunction(func_id, sc).get();
sc_list.Append(sc);
}
return sc_list.GetSize();
}
uint32_t SymbolFileNativePDB::FindFunctions(const RegularExpression &regex,
bool include_inlines, bool append,
SymbolContextList &sc_list) {
return 0;
}
uint32_t SymbolFileNativePDB::FindTypes(
const SymbolContext &sc, const ConstString &name,
const CompilerDeclContext *parent_decl_ctx, bool append,
uint32_t max_matches, llvm::DenseSet<SymbolFile *> &searched_symbol_files,
TypeMap &types) {
if (!append)
types.Clear();
if (!name)
return 0;
searched_symbol_files.clear();
searched_symbol_files.insert(this);
// There is an assumption 'name' is not a regex
size_t match_count = FindTypesByName(name.GetStringRef(), max_matches, types);
return match_count;
}
size_t
SymbolFileNativePDB::FindTypes(const std::vector<CompilerContext> &context,
bool append, TypeMap &types) {
return 0;
}
size_t SymbolFileNativePDB::FindTypesByName(llvm::StringRef name,
uint32_t max_matches,
TypeMap &types) {
size_t match_count = 0;
std::vector<TypeIndex> matches = m_index->tpi().findRecordsByName(name);
if (max_matches > 0 && max_matches < matches.size())
matches.resize(max_matches);
for (TypeIndex ti : matches) {
TypeSP type = GetOrCreateType(ti);
if (!type)
continue;
types.Insert(type);
++match_count;
}
return match_count;
}
size_t SymbolFileNativePDB::ParseTypes(const SymbolContext &sc) { return 0; }
Type *SymbolFileNativePDB::ResolveTypeUID(lldb::user_id_t type_uid) {
auto iter = m_types.find(type_uid);
// lldb should not be passing us non-sensical type uids. the only way it
// could have a type uid in the first place is if we handed it out, in which
// case we should know about the type. However, that doesn't mean we've
// instantiated it yet. We can vend out a UID for a future type. So if the
// type doesn't exist, let's instantiate it now.
if (iter != m_types.end())
return &*iter->second;
PdbSymUid uid(type_uid);
lldbassert(uid.kind() == PdbSymUidKind::Type);
PdbTypeSymId type_id = uid.asTypeSym();
if (type_id.index.isNoneType())
return nullptr;
TypeSP type_sp = CreateAndCacheType(type_id);
return &*type_sp;
}
llvm::Optional<SymbolFile::ArrayInfo>
SymbolFileNativePDB::GetDynamicArrayInfoForUID(
lldb::user_id_t type_uid, const lldb_private::ExecutionContext *exe_ctx) {
return llvm::None;
}
bool SymbolFileNativePDB::CompleteType(CompilerType &compiler_type) {
// If this is not in our map, it's an error.
clang::TagDecl *tag_decl = m_clang->GetAsTagDecl(compiler_type);
lldbassert(tag_decl);
auto status_iter = m_decl_to_status.find(tag_decl);
lldbassert(status_iter != m_decl_to_status.end());
// If it's already complete, just return.
DeclStatus &status = status_iter->second;
if (status.status == Type::eResolveStateFull)
return true;
PdbTypeSymId type_id = PdbSymUid(status.uid).asTypeSym();
lldbassert(IsTagRecord(type_id, m_index->tpi()));
ClangASTContext::SetHasExternalStorage(compiler_type.GetOpaqueQualType(),
false);
// In CreateAndCacheType, we already go out of our way to resolve forward
// ref UDTs to full decls, and the uids we vend out always refer to full
// decls if a full decl exists in the debug info. So if we don't have a full
// decl here, it means one doesn't exist in the debug info, and we can't
// complete the type.
CVType cvt = m_index->tpi().getType(TypeIndex(type_id.index));
if (IsForwardRefUdt(cvt))
return false;
auto types_iter = m_types.find(status.uid);
lldbassert(types_iter != m_types.end());
if (cvt.kind() == LF_MODIFIER) {
TypeIndex unmodified_type = LookThroughModifierRecord(cvt);
cvt = m_index->tpi().getType(unmodified_type);
// LF_MODIFIERS usually point to forward decls, so this is the one case
// where we won't have been able to resolve a forward decl to a full decl
// earlier on. So we need to do that now.
if (IsForwardRefUdt(cvt)) {
llvm::Expected<TypeIndex> expected_full_ti =
m_index->tpi().findFullDeclForForwardRef(unmodified_type);
if (!expected_full_ti) {
llvm::consumeError(expected_full_ti.takeError());
return false;
}
cvt = m_index->tpi().getType(*expected_full_ti);
lldbassert(!IsForwardRefUdt(cvt));
unmodified_type = *expected_full_ti;
}
type_id = PdbTypeSymId{unmodified_type, false};
}
TypeIndex field_list_ti = GetFieldListIndex(cvt);
CVType field_list_cvt = m_index->tpi().getType(field_list_ti);
if (field_list_cvt.kind() != LF_FIELDLIST)
return false;
// Visit all members of this class, then perform any finalization necessary
// to complete the class.
UdtRecordCompleter completer(type_id, compiler_type, *tag_decl, *this);
auto error =
llvm::codeview::visitMemberRecordStream(field_list_cvt.data(), completer);
completer.complete();
status.status = Type::eResolveStateFull;
if (!error)
return true;
llvm::consumeError(std::move(error));
return false;
}
size_t SymbolFileNativePDB::GetTypes(lldb_private::SymbolContextScope *sc_scope,
TypeClass type_mask,
lldb_private::TypeList &type_list) {
return 0;
}
CompilerDeclContext
SymbolFileNativePDB::FindNamespace(const SymbolContext &sc,
const ConstString &name,
const CompilerDeclContext *parent_decl_ctx) {
return {};
}
TypeSystem *
SymbolFileNativePDB::GetTypeSystemForLanguage(lldb::LanguageType language) {
auto type_system =
m_obj_file->GetModule()->GetTypeSystemForLanguage(language);
if (type_system)
type_system->SetSymbolFile(this);
return type_system;
}
ConstString SymbolFileNativePDB::GetPluginName() {
static ConstString g_name("pdb");
return g_name;
}
uint32_t SymbolFileNativePDB::GetPluginVersion() { return 1; }