|  | //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::LegalizeVectors method. | 
|  | // | 
|  | // The vector legalizer looks for vector operations which might need to be | 
|  | // scalarized and legalizes them. This is a separate step from Legalize because | 
|  | // scalarizing can introduce illegal types.  For example, suppose we have an | 
|  | // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition | 
|  | // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the | 
|  | // operation, which introduces nodes with the illegal type i64 which must be | 
|  | // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; | 
|  | // the operation must be unrolled, which introduces nodes with the illegal | 
|  | // type i8 which must be promoted. | 
|  | // | 
|  | // This does not legalize vector manipulations like ISD::BUILD_VECTOR, | 
|  | // or operations that happen to take a vector which are custom-lowered; | 
|  | // the legalization for such operations never produces nodes | 
|  | // with illegal types, so it's okay to put off legalizing them until | 
|  | // SelectionDAG::Legalize runs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | class VectorLegalizer { | 
|  | SelectionDAG& DAG; | 
|  | const TargetLowering &TLI; | 
|  | bool Changed; // Keep track of whether anything changed | 
|  |  | 
|  | /// For nodes that are of legal width, and that have more than one use, this | 
|  | /// map indicates what regularized operand to use.  This allows us to avoid | 
|  | /// legalizing the same thing more than once. | 
|  | SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; | 
|  |  | 
|  | /// \brief Adds a node to the translation cache. | 
|  | void AddLegalizedOperand(SDValue From, SDValue To) { | 
|  | LegalizedNodes.insert(std::make_pair(From, To)); | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | if (From != To) | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  |  | 
|  | /// \brief Legalizes the given node. | 
|  | SDValue LegalizeOp(SDValue Op); | 
|  |  | 
|  | /// \brief Assuming the node is legal, "legalize" the results. | 
|  | SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); | 
|  |  | 
|  | /// \brief Implements unrolling a VSETCC. | 
|  | SDValue UnrollVSETCC(SDValue Op); | 
|  |  | 
|  | /// \brief Implement expand-based legalization of vector operations. | 
|  | /// | 
|  | /// This is just a high-level routine to dispatch to specific code paths for | 
|  | /// operations to legalize them. | 
|  | SDValue Expand(SDValue Op); | 
|  |  | 
|  | /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if | 
|  | /// FSUB isn't legal. | 
|  | /// | 
|  | /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if | 
|  | /// SINT_TO_FLOAT and SHR on vectors isn't legal. | 
|  | SDValue ExpandUINT_TO_FLOAT(SDValue Op); | 
|  |  | 
|  | /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. | 
|  | SDValue ExpandSEXTINREG(SDValue Op); | 
|  |  | 
|  | /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and bitcasts to the proper | 
|  | /// type. The contents of the bits in the extended part of each element are | 
|  | /// undef. | 
|  | SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place, bitcasts to the proper | 
|  | /// type, then shifts left and arithmetic shifts right to introduce a sign | 
|  | /// extension. | 
|  | SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and blends zeros into | 
|  | /// the remaining lanes, finally bitcasting to the proper type. | 
|  | SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); | 
|  |  | 
|  | /// \brief Expand bswap of vectors into a shuffle if legal. | 
|  | SDValue ExpandBSWAP(SDValue Op); | 
|  |  | 
|  | /// \brief Implement vselect in terms of XOR, AND, OR when blend is not | 
|  | /// supported by the target. | 
|  | SDValue ExpandVSELECT(SDValue Op); | 
|  | SDValue ExpandSELECT(SDValue Op); | 
|  | SDValue ExpandLoad(SDValue Op); | 
|  | SDValue ExpandStore(SDValue Op); | 
|  | SDValue ExpandFNEG(SDValue Op); | 
|  |  | 
|  | /// \brief Implements vector promotion. | 
|  | /// | 
|  | /// This is essentially just bitcasting the operands to a different type and | 
|  | /// bitcasting the result back to the original type. | 
|  | SDValue Promote(SDValue Op); | 
|  |  | 
|  | /// \brief Implements [SU]INT_TO_FP vector promotion. | 
|  | /// | 
|  | /// This is a [zs]ext of the input operand to the next size up. | 
|  | SDValue PromoteINT_TO_FP(SDValue Op); | 
|  |  | 
|  | /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. | 
|  | /// | 
|  | /// It is promoted to the next size up integer type.  The result is then | 
|  | /// truncated back to the original type. | 
|  | SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); | 
|  |  | 
|  | public: | 
|  | /// \brief Begin legalizer the vector operations in the DAG. | 
|  | bool Run(); | 
|  | VectorLegalizer(SelectionDAG& dag) : | 
|  | DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} | 
|  | }; | 
|  |  | 
|  | bool VectorLegalizer::Run() { | 
|  | // Before we start legalizing vector nodes, check if there are any vectors. | 
|  | bool HasVectors = false; | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { | 
|  | // Check if the values of the nodes contain vectors. We don't need to check | 
|  | // the operands because we are going to check their values at some point. | 
|  | for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); | 
|  | J != E; ++J) | 
|  | HasVectors |= J->isVector(); | 
|  |  | 
|  | // If we found a vector node we can start the legalization. | 
|  | if (HasVectors) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this basic block has no vectors then no need to legalize vectors. | 
|  | if (!HasVectors) | 
|  | return false; | 
|  |  | 
|  | // The legalize process is inherently a bottom-up recursive process (users | 
|  | // legalize their uses before themselves).  Given infinite stack space, we | 
|  | // could just start legalizing on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, compute an ordering of the nodes where each | 
|  | // node is only legalized after all of its operands are legalized. | 
|  | DAG.AssignTopologicalOrder(); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) | 
|  | LegalizeOp(SDValue(I, 0)); | 
|  |  | 
|  | // Finally, it's possible the root changed.  Get the new root. | 
|  | SDValue OldRoot = DAG.getRoot(); | 
|  | assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); | 
|  | DAG.setRoot(LegalizedNodes[OldRoot]); | 
|  |  | 
|  | LegalizedNodes.clear(); | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { | 
|  | // Generic legalization: just pass the operand through. | 
|  | for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) | 
|  | AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); | 
|  | return Result.getValue(Op.getResNo()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::LegalizeOp(SDValue Op) { | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); | 
|  | if (I != LegalizedNodes.end()) return I->second; | 
|  |  | 
|  | SDNode* Node = Op.getNode(); | 
|  |  | 
|  | // Legalize the operands | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) | 
|  | Ops.push_back(LegalizeOp(Node->getOperand(i))); | 
|  |  | 
|  | SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::LOAD) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) | 
|  | switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), | 
|  | LD->getMemoryVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case TargetLowering::Custom: | 
|  | if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { | 
|  | if (Lowered == Result) | 
|  | return TranslateLegalizeResults(Op, Lowered); | 
|  | Changed = true; | 
|  | if (Lowered->getNumValues() != Op->getNumValues()) { | 
|  | // This expanded to something other than the load. Assume the | 
|  | // lowering code took care of any chain values, and just handle the | 
|  | // returned value. | 
|  | assert(Result.getValue(1).use_empty() && | 
|  | "There are still live users of the old chain!"); | 
|  | return LegalizeOp(Lowered); | 
|  | } else { | 
|  | return TranslateLegalizeResults(Op, Lowered); | 
|  | } | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Changed = true; | 
|  | return LegalizeOp(ExpandLoad(Op)); | 
|  | } | 
|  | } else if (Op.getOpcode() == ISD::STORE) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  | MVT ValVT = ST->getValue().getSimpleValueType(); | 
|  | if (StVT.isVector() && ST->isTruncatingStore()) | 
|  | switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Legal: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Lowered = TLI.LowerOperation(Result, DAG); | 
|  | Changed = Lowered != Result; | 
|  | return TranslateLegalizeResults(Op, Lowered); | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Changed = true; | 
|  | return LegalizeOp(ExpandStore(Op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool HasVectorValue = false; | 
|  | for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); | 
|  | J != E; | 
|  | ++J) | 
|  | HasVectorValue |= J->isVector(); | 
|  | if (!HasVectorValue) | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  |  | 
|  | EVT QueryType; | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | return TranslateLegalizeResults(Op, Result); | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | case ISD::BSWAP: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTPOP: | 
|  | case ISD::SELECT: | 
|  | case ISD::VSELECT: | 
|  | case ISD::SELECT_CC: | 
|  | case ISD::SETCC: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FCOPYSIGN: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FMA: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | QueryType = Node->getValueType(0); | 
|  | break; | 
|  | case ISD::FP_ROUND_INREG: | 
|  | QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  | break; | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | QueryType = Node->getOperand(0).getValueType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { | 
|  | case TargetLowering::Promote: | 
|  | Result = Promote(Op); | 
|  | Changed = true; | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | break; | 
|  | case TargetLowering::Custom: { | 
|  | SDValue Tmp1 = TLI.LowerOperation(Op, DAG); | 
|  | if (Tmp1.getNode()) { | 
|  | Result = Tmp1; | 
|  | break; | 
|  | } | 
|  | // FALL THROUGH | 
|  | } | 
|  | case TargetLowering::Expand: | 
|  | Result = Expand(Op); | 
|  | } | 
|  |  | 
|  | // Make sure that the generated code is itself legal. | 
|  | if (Result != Op) { | 
|  | Result = LegalizeOp(Result); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | AddLegalizedOperand(Op, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::Promote(SDValue Op) { | 
|  | // For a few operations there is a specific concept for promotion based on | 
|  | // the operand's type. | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | // "Promote" the operation by extending the operand. | 
|  | return PromoteINT_TO_FP(Op); | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | // Promote the operation by extending the operand. | 
|  | return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); | 
|  | } | 
|  |  | 
|  | // There are currently two cases of vector promotion: | 
|  | // 1) Bitcasting a vector of integers to a different type to a vector of the | 
|  | //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. | 
|  | // 2) Extending a vector of floats to a vector of the same number of larger | 
|  | //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. | 
|  | MVT VT = Op.getSimpleValueType(); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "Can't promote a vector with multiple results!"); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 4> Operands(Op.getNumOperands()); | 
|  |  | 
|  | for (unsigned j = 0; j != Op.getNumOperands(); ++j) { | 
|  | if (Op.getOperand(j).getValueType().isVector()) | 
|  | if (Op.getOperand(j) | 
|  | .getValueType() | 
|  | .getVectorElementType() | 
|  | .isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) | 
|  | Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = Op.getOperand(j); | 
|  | } | 
|  |  | 
|  | Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands); | 
|  | if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || | 
|  | (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) | 
|  | return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0)); | 
|  | else | 
|  | return DAG.getNode(ISD::BITCAST, dl, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { | 
|  | // INT_TO_FP operations may require the input operand be promoted even | 
|  | // when the type is otherwise legal. | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "Can't promote a vector with multiple results!"); | 
|  |  | 
|  | // Normal getTypeToPromoteTo() doesn't work here, as that will promote | 
|  | // by widening the vector w/ the same element width and twice the number | 
|  | // of elements. We want the other way around, the same number of elements, | 
|  | // each twice the width. | 
|  | // | 
|  | // Increase the bitwidth of the element to the next pow-of-two | 
|  | // (which is greater than 8 bits). | 
|  |  | 
|  | EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); | 
|  | assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 4> Operands(Op.getNumOperands()); | 
|  |  | 
|  | unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : | 
|  | ISD::SIGN_EXTEND; | 
|  | for (unsigned j = 0; j != Op.getNumOperands(); ++j) { | 
|  | if (Op.getOperand(j).getValueType().isVector()) | 
|  | Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); | 
|  | else | 
|  | Operands[j] = Op.getOperand(j); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); | 
|  | } | 
|  |  | 
|  | // For FP_TO_INT we promote the result type to a vector type with wider | 
|  | // elements and then truncate the result.  This is different from the default | 
|  | // PromoteVector which uses bitcast to promote thus assumning that the | 
|  | // promoted vector type has the same overall size. | 
|  | SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "Can't promote a vector with multiple results!"); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | EVT NewVT; | 
|  | unsigned NewOpc; | 
|  | while (1) { | 
|  | NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); | 
|  | assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { | 
|  | NewOpc = ISD::FP_TO_SINT; | 
|  | break; | 
|  | } | 
|  | if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { | 
|  | NewOpc = ISD::FP_TO_UINT; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDLoc loc(Op); | 
|  | SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); | 
|  | return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandLoad(SDValue Op) { | 
|  | SDLoc dl(Op); | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePTR = LD->getBasePtr(); | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Vals; | 
|  | SmallVector<SDValue, 8> LoadChains; | 
|  | unsigned NumElem = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | EVT SrcEltVT = SrcVT.getScalarType(); | 
|  | EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); | 
|  |  | 
|  | if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { | 
|  | // When elements in a vector is not byte-addressable, we cannot directly | 
|  | // load each element by advancing pointer, which could only address bytes. | 
|  | // Instead, we load all significant words, mask bits off, and concatenate | 
|  | // them to form each element. Finally, they are extended to destination | 
|  | // scalar type to build the destination vector. | 
|  | EVT WideVT = TLI.getPointerTy(); | 
|  |  | 
|  | assert(WideVT.isRound() && | 
|  | "Could not handle the sophisticated case when the widest integer is" | 
|  | " not power of 2."); | 
|  | assert(WideVT.bitsGE(SrcEltVT) && | 
|  | "Type is not legalized?"); | 
|  |  | 
|  | unsigned WideBytes = WideVT.getStoreSize(); | 
|  | unsigned Offset = 0; | 
|  | unsigned RemainingBytes = SrcVT.getStoreSize(); | 
|  | SmallVector<SDValue, 8> LoadVals; | 
|  |  | 
|  | while (RemainingBytes > 0) { | 
|  | SDValue ScalarLoad; | 
|  | unsigned LoadBytes = WideBytes; | 
|  |  | 
|  | if (RemainingBytes >= LoadBytes) { | 
|  | ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Offset), | 
|  | LD->isVolatile(), LD->isNonTemporal(), | 
|  | LD->isInvariant(), | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getAAInfo()); | 
|  | } else { | 
|  | EVT LoadVT = WideVT; | 
|  | while (RemainingBytes < LoadBytes) { | 
|  | LoadBytes >>= 1; // Reduce the load size by half. | 
|  | LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); | 
|  | } | 
|  | ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Offset), | 
|  | LoadVT, LD->isVolatile(), | 
|  | LD->isNonTemporal(), LD->isInvariant(), | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getAAInfo()); | 
|  | } | 
|  |  | 
|  | RemainingBytes -= LoadBytes; | 
|  | Offset += LoadBytes; | 
|  | BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, | 
|  | DAG.getConstant(LoadBytes, BasePTR.getValueType())); | 
|  |  | 
|  | LoadVals.push_back(ScalarLoad.getValue(0)); | 
|  | LoadChains.push_back(ScalarLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Extract bits, pack and extend/trunc them into destination type. | 
|  | unsigned SrcEltBits = SrcEltVT.getSizeInBits(); | 
|  | SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT); | 
|  |  | 
|  | unsigned BitOffset = 0; | 
|  | unsigned WideIdx = 0; | 
|  | unsigned WideBits = WideVT.getSizeInBits(); | 
|  |  | 
|  | for (unsigned Idx = 0; Idx != NumElem; ++Idx) { | 
|  | SDValue Lo, Hi, ShAmt; | 
|  |  | 
|  | if (BitOffset < WideBits) { | 
|  | ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT)); | 
|  | Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); | 
|  | Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); | 
|  | } | 
|  |  | 
|  | BitOffset += SrcEltBits; | 
|  | if (BitOffset >= WideBits) { | 
|  | WideIdx++; | 
|  | BitOffset -= WideBits; | 
|  | if (BitOffset > 0) { | 
|  | ShAmt = DAG.getConstant(SrcEltBits - BitOffset, | 
|  | TLI.getShiftAmountTy(WideVT)); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); | 
|  | Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Hi.getNode()) | 
|  | Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); | 
|  |  | 
|  | switch (ExtType) { | 
|  | default: llvm_unreachable("Unknown extended-load op!"); | 
|  | case ISD::EXTLOAD: | 
|  | Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | case ISD::ZEXTLOAD: | 
|  | Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | case ISD::SEXTLOAD: | 
|  | ShAmt = DAG.getConstant(WideBits - SrcEltBits, | 
|  | TLI.getShiftAmountTy(WideVT)); | 
|  | Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); | 
|  | Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); | 
|  | Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); | 
|  | break; | 
|  | } | 
|  | Vals.push_back(Lo); | 
|  | } | 
|  | } else { | 
|  | unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; | 
|  |  | 
|  | for (unsigned Idx=0; Idx<NumElem; Idx++) { | 
|  | SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, | 
|  | Op.getNode()->getValueType(0).getScalarType(), | 
|  | Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), | 
|  | SrcVT.getScalarType(), | 
|  | LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), | 
|  | MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); | 
|  |  | 
|  | BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, | 
|  | DAG.getConstant(Stride, BasePTR.getValueType())); | 
|  |  | 
|  | Vals.push_back(ScalarLoad.getValue(0)); | 
|  | LoadChains.push_back(ScalarLoad.getValue(1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); | 
|  | SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, | 
|  | Op.getNode()->getValueType(0), Vals); | 
|  |  | 
|  | AddLegalizedOperand(Op.getValue(0), Value); | 
|  | AddLegalizedOperand(Op.getValue(1), NewChain); | 
|  |  | 
|  | return (Op.getResNo() ? NewChain : Value); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandStore(SDValue Op) { | 
|  | SDLoc dl(Op); | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue BasePTR = ST->getBasePtr(); | 
|  | SDValue Value = ST->getValue(); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  |  | 
|  | unsigned Alignment = ST->getAlignment(); | 
|  | bool isVolatile = ST->isVolatile(); | 
|  | bool isNonTemporal = ST->isNonTemporal(); | 
|  | AAMDNodes AAInfo = ST->getAAInfo(); | 
|  |  | 
|  | unsigned NumElem = StVT.getVectorNumElements(); | 
|  | // The type of the data we want to save | 
|  | EVT RegVT = Value.getValueType(); | 
|  | EVT RegSclVT = RegVT.getScalarType(); | 
|  | // The type of data as saved in memory. | 
|  | EVT MemSclVT = StVT.getScalarType(); | 
|  |  | 
|  | // Cast floats into integers | 
|  | unsigned ScalarSize = MemSclVT.getSizeInBits(); | 
|  |  | 
|  | // Round odd types to the next pow of two. | 
|  | if (!isPowerOf2_32(ScalarSize)) | 
|  | ScalarSize = NextPowerOf2(ScalarSize); | 
|  |  | 
|  | // Store Stride in bytes | 
|  | unsigned Stride = ScalarSize/8; | 
|  | // Extract each of the elements from the original vector | 
|  | // and save them into memory individually. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | for (unsigned Idx = 0; Idx < NumElem; Idx++) { | 
|  | SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy())); | 
|  |  | 
|  | // This scalar TruncStore may be illegal, but we legalize it later. | 
|  | SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, | 
|  | ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, | 
|  | isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), | 
|  | AAInfo); | 
|  |  | 
|  | BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, | 
|  | DAG.getConstant(Stride, BasePTR.getValueType())); | 
|  |  | 
|  | Stores.push_back(Store); | 
|  | } | 
|  | SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  | AddLegalizedOperand(Op, TF); | 
|  | return TF; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::Expand(SDValue Op) { | 
|  | switch (Op->getOpcode()) { | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | return ExpandSEXTINREG(Op); | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | return ExpandANY_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | return ExpandSIGN_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | return ExpandZERO_EXTEND_VECTOR_INREG(Op); | 
|  | case ISD::BSWAP: | 
|  | return ExpandBSWAP(Op); | 
|  | case ISD::VSELECT: | 
|  | return ExpandVSELECT(Op); | 
|  | case ISD::SELECT: | 
|  | return ExpandSELECT(Op); | 
|  | case ISD::UINT_TO_FP: | 
|  | return ExpandUINT_TO_FLOAT(Op); | 
|  | case ISD::FNEG: | 
|  | return ExpandFNEG(Op); | 
|  | case ISD::SETCC: | 
|  | return UnrollVSETCC(Op); | 
|  | default: | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { | 
|  | // Lower a select instruction where the condition is a scalar and the | 
|  | // operands are vectors. Lower this select to VSELECT and implement it | 
|  | // using XOR AND OR. The selector bit is broadcasted. | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue Mask = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  |  | 
|  | assert(VT.isVector() && !Mask.getValueType().isVector() | 
|  | && Op1.getValueType() == Op2.getValueType() && "Invalid type"); | 
|  |  | 
|  | unsigned NumElem = VT.getVectorNumElements(); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | // Also, we need to be able to construct a splat vector using BUILD_VECTOR. | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // Generate a mask operand. | 
|  | EVT MaskTy = VT.changeVectorElementTypeToInteger(); | 
|  |  | 
|  | // What is the size of each element in the vector mask. | 
|  | EVT BitTy = MaskTy.getScalarType(); | 
|  |  | 
|  | Mask = DAG.getSelect(DL, BitTy, Mask, | 
|  | DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy), | 
|  | DAG.getConstant(0, BitTy)); | 
|  |  | 
|  | // Broadcast the mask so that the entire vector is all-one or all zero. | 
|  | SmallVector<SDValue, 8> Ops(NumElem, Mask); | 
|  | Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); | 
|  |  | 
|  | SDValue AllOnes = DAG.getConstant( | 
|  | APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy); | 
|  | SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Make sure that the SRA and SHL instructions are available. | 
|  | if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); | 
|  |  | 
|  | unsigned BW = VT.getScalarType().getSizeInBits(); | 
|  | unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); | 
|  | SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT); | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector anyext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, with other lanes left undef. | 
|  | SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // Build a base mask of undef shuffles. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | ShuffleMask.resize(NumSrcElements, -1); | 
|  |  | 
|  | // Place the extended lanes into the correct locations. | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = i; | 
|  |  | 
|  | return DAG.getNode( | 
|  | ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // First build an any-extend node which can be legalized above when we | 
|  | // recurse through it. | 
|  | Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); | 
|  |  | 
|  | // Now we need sign extend. Do this by shifting the elements. Even if these | 
|  | // aren't legal operations, they have a better chance of being legalized | 
|  | // without full scalarization than the sign extension does. | 
|  | unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); | 
|  | unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); | 
|  | SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, | 
|  | DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), | 
|  | ShiftAmount); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector zext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, a blend of zero into the high bits, | 
|  | // and a bitcast to the wider element type. | 
|  | SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // Build up a zero vector to blend into this one. | 
|  | EVT SrcScalarVT = SrcVT.getScalarType(); | 
|  | SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT); | 
|  | SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); | 
|  | SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); | 
|  |  | 
|  | // Shuffle the incoming lanes into the correct position, and pull all other | 
|  | // lanes from the zero vector. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | ShuffleMask.reserve(NumSrcElements); | 
|  | for (int i = 0; i < NumSrcElements; ++i) | 
|  | ShuffleMask.push_back(i); | 
|  |  | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Generate a byte wise shuffle mask for the BSWAP. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; | 
|  | for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) | 
|  | for (int J = ScalarSizeInBytes - 1; J >= 0; --J) | 
|  | ShuffleMask.push_back((I * ScalarSizeInBytes) + J); | 
|  |  | 
|  | EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); | 
|  |  | 
|  | // Only emit a shuffle if the mask is legal. | 
|  | if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); | 
|  | Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), | 
|  | ShuffleMask.data()); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { | 
|  | // Implement VSELECT in terms of XOR, AND, OR | 
|  | // on platforms which do not support blend natively. | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | SDValue Mask = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  |  | 
|  | EVT VT = Mask.getValueType(); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | // This operation also isn't safe with AND, OR, XOR when the boolean | 
|  | // type is 0/1 as we need an all ones vector constant to mask with. | 
|  | // FIXME: Sign extend 1 to all ones if thats legal on the target. | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || | 
|  | TLI.getBooleanContents(Op1.getValueType()) != | 
|  | TargetLowering::ZeroOrNegativeOneBooleanContent) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // If the mask and the type are different sizes, unroll the vector op. This | 
|  | // can occur when getSetCCResultType returns something that is different in | 
|  | // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. | 
|  | if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); | 
|  |  | 
|  | SDValue AllOnes = DAG.getConstant( | 
|  | APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); | 
|  | SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDLoc DL(Op); | 
|  |  | 
|  | // Make sure that the SINT_TO_FP and SRL instructions are available. | 
|  | if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  |  | 
|  | EVT SVT = VT.getScalarType(); | 
|  | assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && | 
|  | "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); | 
|  |  | 
|  | unsigned BW = SVT.getSizeInBits(); | 
|  | SDValue HalfWord = DAG.getConstant(BW/2, VT); | 
|  |  | 
|  | // Constants to clear the upper part of the word. | 
|  | // Notice that we can also use SHL+SHR, but using a constant is slightly | 
|  | // faster on x86. | 
|  | uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; | 
|  | SDValue HalfWordMask = DAG.getConstant(HWMask, VT); | 
|  |  | 
|  | // Two to the power of half-word-size. | 
|  | SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); | 
|  |  | 
|  | // Clear upper part of LO, lower HI | 
|  | SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); | 
|  | SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); | 
|  |  | 
|  | // Convert hi and lo to floats | 
|  | // Convert the hi part back to the upper values | 
|  | SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); | 
|  | fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); | 
|  | SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); | 
|  |  | 
|  | // Add the two halves | 
|  | return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); | 
|  | } | 
|  |  | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { | 
|  | SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | Zero, Op.getOperand(0)); | 
|  | } | 
|  | return DAG.UnrollVectorOp(Op.getNode()); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { | 
|  | EVT VT = Op.getValueType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); | 
|  | EVT TmpEltVT = LHS.getValueType().getVectorElementType(); | 
|  | SDLoc dl(Op); | 
|  | SmallVector<SDValue, 8> Ops(NumElems); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, | 
|  | DAG.getConstant(i, TLI.getVectorIdxTy())); | 
|  | SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, | 
|  | DAG.getConstant(i, TLI.getVectorIdxTy())); | 
|  | Ops[i] = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT), | 
|  | LHSElem, RHSElem, CC); | 
|  | Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], | 
|  | DAG.getConstant(APInt::getAllOnesValue | 
|  | (EltVT.getSizeInBits()), EltVT), | 
|  | DAG.getConstant(0, EltVT)); | 
|  | } | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | bool SelectionDAG::LegalizeVectors() { | 
|  | return VectorLegalizer(*this).Run(); | 
|  | } |