NFC:  Rename (PDB) RawSession to NativeSession

This eliminates one overload on the term Raw.

Differential Revision: https://reviews.llvm.org/D29098

llvm-svn: 293104
diff --git a/llvm/lib/DebugInfo/PDB/Native/HashTable.cpp b/llvm/lib/DebugInfo/PDB/Native/HashTable.cpp
new file mode 100644
index 0000000..b3fe6fa
--- /dev/null
+++ b/llvm/lib/DebugInfo/PDB/Native/HashTable.cpp
@@ -0,0 +1,302 @@
+//===- HashTable.cpp - PDB Hash Table ---------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/DebugInfo/PDB/Native/HashTable.h"
+
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/DebugInfo/PDB/Native/RawError.h"
+
+#include <assert.h>
+
+using namespace llvm;
+using namespace llvm::pdb;
+
+HashTable::HashTable() : HashTable(8) {}
+
+HashTable::HashTable(uint32_t Capacity) { Buckets.resize(Capacity); }
+
+Error HashTable::load(msf::StreamReader &Stream) {
+  const Header *H;
+  if (auto EC = Stream.readObject(H))
+    return EC;
+  if (H->Capacity == 0)
+    return make_error<RawError>(raw_error_code::corrupt_file,
+                                "Invalid Hash Table Capacity");
+  if (H->Size > maxLoad(H->Capacity))
+    return make_error<RawError>(raw_error_code::corrupt_file,
+                                "Invalid Hash Table Size");
+
+  Buckets.resize(H->Capacity);
+
+  if (auto EC = readSparseBitVector(Stream, Present))
+    return EC;
+  if (Present.count() != H->Size)
+    return make_error<RawError>(raw_error_code::corrupt_file,
+                                "Present bit vector does not match size!");
+
+  if (auto EC = readSparseBitVector(Stream, Deleted))
+    return EC;
+  if (Present.intersects(Deleted))
+    return make_error<RawError>(raw_error_code::corrupt_file,
+                                "Present bit vector interesects deleted!");
+
+  for (uint32_t P : Present) {
+    if (auto EC = Stream.readInteger(Buckets[P].first))
+      return EC;
+    if (auto EC = Stream.readInteger(Buckets[P].second))
+      return EC;
+  }
+
+  return Error::success();
+}
+
+uint32_t HashTable::calculateSerializedLength() const {
+  uint32_t Size = sizeof(Header);
+
+  int NumBitsP = Present.find_last() + 1;
+  int NumBitsD = Deleted.find_last() + 1;
+
+  // Present bit set number of words, followed by that many actual words.
+  Size += sizeof(uint32_t);
+  Size += alignTo(NumBitsP, sizeof(uint32_t));
+
+  // Deleted bit set number of words, followed by that many actual words.
+  Size += sizeof(uint32_t);
+  Size += alignTo(NumBitsD, sizeof(uint32_t));
+
+  // One (Key, Value) pair for each entry Present.
+  Size += 2 * sizeof(uint32_t) * size();
+
+  return Size;
+}
+
+Error HashTable::commit(msf::StreamWriter &Writer) const {
+  Header H;
+  H.Size = size();
+  H.Capacity = capacity();
+  if (auto EC = Writer.writeObject(H))
+    return EC;
+
+  if (auto EC = writeSparseBitVector(Writer, Present))
+    return EC;
+
+  if (auto EC = writeSparseBitVector(Writer, Deleted))
+    return EC;
+
+  for (const auto &Entry : *this) {
+    if (auto EC = Writer.writeInteger(Entry.first))
+      return EC;
+    if (auto EC = Writer.writeInteger(Entry.second))
+      return EC;
+  }
+  return Error::success();
+}
+
+void HashTable::clear() {
+  Buckets.resize(8);
+  Present.clear();
+  Deleted.clear();
+}
+
+uint32_t HashTable::capacity() const { return Buckets.size(); }
+uint32_t HashTable::size() const { return Present.count(); }
+
+HashTableIterator HashTable::begin() const { return HashTableIterator(*this); }
+HashTableIterator HashTable::end() const {
+  return HashTableIterator(*this, 0, true);
+}
+
+HashTableIterator HashTable::find(uint32_t K) {
+  uint32_t H = K % capacity();
+  uint32_t I = H;
+  Optional<uint32_t> FirstUnused;
+  do {
+    if (isPresent(I)) {
+      if (Buckets[I].first == K)
+        return HashTableIterator(*this, I, false);
+    } else {
+      if (!FirstUnused)
+        FirstUnused = I;
+      // Insertion occurs via linear probing from the slot hint, and will be
+      // inserted at the first empty / deleted location.  Therefore, if we are
+      // probing and find a location that is neither present nor deleted, then
+      // nothing must have EVER been inserted at this location, and thus it is
+      // not possible for a matching value to occur later.
+      if (!isDeleted(I))
+        break;
+    }
+    I = (I + 1) % capacity();
+  } while (I != H);
+
+  // The only way FirstUnused would not be set is if every single entry in the
+  // table were Present.  But this would violate the load factor constraints
+  // that we impose, so it should never happen.
+  assert(FirstUnused);
+  return HashTableIterator(*this, *FirstUnused, true);
+}
+
+void HashTable::set(uint32_t K, uint32_t V) {
+  auto Entry = find(K);
+  if (Entry != end()) {
+    assert(isPresent(Entry.index()));
+    assert(Buckets[Entry.index()].first == K);
+    // We're updating, no need to do anything special.
+    Buckets[Entry.index()].second = V;
+    return;
+  }
+
+  auto &B = Buckets[Entry.index()];
+  assert(!isPresent(Entry.index()));
+  assert(Entry.isEnd());
+  B.first = K;
+  B.second = V;
+  Present.set(Entry.index());
+  Deleted.reset(Entry.index());
+
+  grow();
+
+  assert(find(K) != end());
+}
+
+void HashTable::remove(uint32_t K) {
+  auto Iter = find(K);
+  // It wasn't here to begin with, just exit.
+  if (Iter == end())
+    return;
+
+  assert(Present.test(Iter.index()));
+  assert(!Deleted.test(Iter.index()));
+  Deleted.set(Iter.index());
+  Present.reset(Iter.index());
+}
+
+uint32_t HashTable::get(uint32_t K) {
+  auto I = find(K);
+  assert(I != end());
+  return (*I).second;
+}
+
+uint32_t HashTable::maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }
+
+void HashTable::grow() {
+  uint32_t S = size();
+  if (S < maxLoad(capacity()))
+    return;
+  assert(capacity() != UINT32_MAX && "Can't grow Hash table!");
+
+  uint32_t NewCapacity =
+      (capacity() <= INT32_MAX) ? capacity() * 2 : UINT32_MAX;
+
+  // Growing requires rebuilding the table and re-hashing every item.  Make a
+  // copy with a larger capacity, insert everything into the copy, then swap
+  // it in.
+  HashTable NewMap(NewCapacity);
+  for (auto I : Present) {
+    NewMap.set(Buckets[I].first, Buckets[I].second);
+  }
+
+  Buckets.swap(NewMap.Buckets);
+  std::swap(Present, NewMap.Present);
+  std::swap(Deleted, NewMap.Deleted);
+  assert(capacity() == NewCapacity);
+  assert(size() == S);
+}
+
+Error HashTable::readSparseBitVector(msf::StreamReader &Stream,
+                                     SparseBitVector<> &V) {
+  uint32_t NumWords;
+  if (auto EC = Stream.readInteger(NumWords))
+    return joinErrors(
+        std::move(EC),
+        make_error<RawError>(raw_error_code::corrupt_file,
+                             "Expected hash table number of words"));
+
+  for (uint32_t I = 0; I != NumWords; ++I) {
+    uint32_t Word;
+    if (auto EC = Stream.readInteger(Word))
+      return joinErrors(std::move(EC),
+                        make_error<RawError>(raw_error_code::corrupt_file,
+                                             "Expected hash table word"));
+    for (unsigned Idx = 0; Idx < 32; ++Idx)
+      if (Word & (1U << Idx))
+        V.set((I * 32) + Idx);
+  }
+  return Error::success();
+}
+
+Error HashTable::writeSparseBitVector(msf::StreamWriter &Writer,
+                                      SparseBitVector<> &Vec) {
+  int ReqBits = Vec.find_last() + 1;
+  uint32_t NumWords = alignTo(ReqBits, sizeof(uint32_t)) / sizeof(uint32_t);
+  if (auto EC = Writer.writeInteger(NumWords))
+    return joinErrors(
+        std::move(EC),
+        make_error<RawError>(raw_error_code::corrupt_file,
+                             "Could not write linear map number of words"));
+
+  uint32_t Idx = 0;
+  for (uint32_t I = 0; I != NumWords; ++I) {
+    uint32_t Word = 0;
+    for (uint32_t WordIdx = 0; WordIdx < 32; ++WordIdx, ++Idx) {
+      if (Vec.test(Idx))
+        Word |= (1 << WordIdx);
+    }
+    if (auto EC = Writer.writeInteger(Word))
+      return joinErrors(std::move(EC), make_error<RawError>(
+                                           raw_error_code::corrupt_file,
+                                           "Could not write linear map word"));
+  }
+  return Error::success();
+}
+
+HashTableIterator::HashTableIterator(const HashTable &Map, uint32_t Index,
+                                     bool IsEnd)
+    : Map(&Map), Index(Index), IsEnd(IsEnd) {}
+
+HashTableIterator::HashTableIterator(const HashTable &Map) : Map(&Map) {
+  int I = Map.Present.find_first();
+  if (I == -1) {
+    Index = 0;
+    IsEnd = true;
+  } else {
+    Index = static_cast<uint32_t>(I);
+    IsEnd = false;
+  }
+}
+
+HashTableIterator &HashTableIterator::operator=(const HashTableIterator &R) {
+  Map = R.Map;
+  return *this;
+}
+
+bool HashTableIterator::operator==(const HashTableIterator &R) const {
+  if (IsEnd && R.IsEnd)
+    return true;
+  if (IsEnd != R.IsEnd)
+    return false;
+
+  return (Map == R.Map) && (Index == R.Index);
+}
+
+const std::pair<uint32_t, uint32_t> &HashTableIterator::operator*() const {
+  assert(Map->Present.test(Index));
+  return Map->Buckets[Index];
+}
+
+HashTableIterator &HashTableIterator::operator++() {
+  while (Index < Map->Buckets.size()) {
+    ++Index;
+    if (Map->Present.test(Index))
+      return *this;
+  }
+
+  IsEnd = true;
+  return *this;
+}