|  | //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Expr nodes with complex types as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include <algorithm> | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Complex Expression Emitter | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | typedef CodeGenFunction::ComplexPairTy ComplexPairTy; | 
|  |  | 
|  | /// Return the complex type that we are meant to emit. | 
|  | static const ComplexType *getComplexType(QualType type) { | 
|  | type = type.getCanonicalType(); | 
|  | if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { | 
|  | return comp; | 
|  | } else { | 
|  | return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace  { | 
|  | class ComplexExprEmitter | 
|  | : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { | 
|  | CodeGenFunction &CGF; | 
|  | CGBuilderTy &Builder; | 
|  | bool IgnoreReal; | 
|  | bool IgnoreImag; | 
|  | public: | 
|  | ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) | 
|  | : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { | 
|  | } | 
|  |  | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                               Utilities | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | bool TestAndClearIgnoreReal() { | 
|  | bool I = IgnoreReal; | 
|  | IgnoreReal = false; | 
|  | return I; | 
|  | } | 
|  | bool TestAndClearIgnoreImag() { | 
|  | bool I = IgnoreImag; | 
|  | IgnoreImag = false; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | /// EmitLoadOfLValue - Given an expression with complex type that represents a | 
|  | /// value l-value, this method emits the address of the l-value, then loads | 
|  | /// and returns the result. | 
|  | ComplexPairTy EmitLoadOfLValue(const Expr *E) { | 
|  | return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); | 
|  |  | 
|  | /// EmitStoreOfComplex - Store the specified real/imag parts into the | 
|  | /// specified value pointer. | 
|  | void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); | 
|  |  | 
|  | /// Emit a cast from complex value Val to DestType. | 
|  | ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, | 
|  | QualType DestType, SourceLocation Loc); | 
|  | /// Emit a cast from scalar value Val to DestType. | 
|  | ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, | 
|  | QualType DestType, SourceLocation Loc); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | ComplexPairTy Visit(Expr *E) { | 
|  | ApplyDebugLocation DL(CGF, E); | 
|  | return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); | 
|  | } | 
|  |  | 
|  | ComplexPairTy VisitStmt(Stmt *S) { | 
|  | S->dump(CGF.getContext().getSourceManager()); | 
|  | llvm_unreachable("Stmt can't have complex result type!"); | 
|  | } | 
|  | ComplexPairTy VisitExpr(Expr *S); | 
|  | ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} | 
|  | ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { | 
|  | return Visit(GE->getResultExpr()); | 
|  | } | 
|  | ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); | 
|  | ComplexPairTy | 
|  | VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { | 
|  | return Visit(PE->getReplacement()); | 
|  | } | 
|  |  | 
|  | // l-values. | 
|  | ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { | 
|  | if (result.isReference()) | 
|  | return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), | 
|  | E->getExprLoc()); | 
|  |  | 
|  | llvm::Constant *pair = result.getValue(); | 
|  | return ComplexPairTy(pair->getAggregateElement(0U), | 
|  | pair->getAggregateElement(1U)); | 
|  | } | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  | ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  | ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { | 
|  | return CGF.EmitObjCMessageExpr(E).getComplexVal(); | 
|  | } | 
|  | ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } | 
|  | ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } | 
|  | ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { | 
|  | if (E->isGLValue()) | 
|  | return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); | 
|  | return CGF.getOpaqueRValueMapping(E).getComplexVal(); | 
|  | } | 
|  |  | 
|  | ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { | 
|  | return CGF.EmitPseudoObjectRValue(E).getComplexVal(); | 
|  | } | 
|  |  | 
|  | // FIXME: CompoundLiteralExpr | 
|  |  | 
|  | ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); | 
|  | ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { | 
|  | // Unlike for scalars, we don't have to worry about function->ptr demotion | 
|  | // here. | 
|  | return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); | 
|  | } | 
|  | ComplexPairTy VisitCastExpr(CastExpr *E) { | 
|  | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) | 
|  | CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); | 
|  | return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); | 
|  | } | 
|  | ComplexPairTy VisitCallExpr(const CallExpr *E); | 
|  | ComplexPairTy VisitStmtExpr(const StmtExpr *E); | 
|  |  | 
|  | // Operators. | 
|  | ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, | 
|  | bool isInc, bool isPre) { | 
|  | LValue LV = CGF.EmitLValue(E->getSubExpr()); | 
|  | return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); | 
|  | } | 
|  | ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { | 
|  | return VisitPrePostIncDec(E, false, false); | 
|  | } | 
|  | ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { | 
|  | return VisitPrePostIncDec(E, true, false); | 
|  | } | 
|  | ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { | 
|  | return VisitPrePostIncDec(E, false, true); | 
|  | } | 
|  | ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { | 
|  | return VisitPrePostIncDec(E, true, true); | 
|  | } | 
|  | ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } | 
|  | ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  | ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E); | 
|  | ComplexPairTy VisitUnaryNot      (const UnaryOperator *E); | 
|  | // LNot,Real,Imag never return complex. | 
|  | ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  | ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { | 
|  | return Visit(DAE->getExpr()); | 
|  | } | 
|  | ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { | 
|  | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); | 
|  | return Visit(DIE->getExpr()); | 
|  | } | 
|  | ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { | 
|  | CGF.enterFullExpression(E); | 
|  | CodeGenFunction::RunCleanupsScope Scope(CGF); | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  | ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { | 
|  | assert(E->getType()->isAnyComplexType() && "Expected complex type!"); | 
|  | QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); | 
|  | return ComplexPairTy(Null, Null); | 
|  | } | 
|  | ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { | 
|  | assert(E->getType()->isAnyComplexType() && "Expected complex type!"); | 
|  | QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | llvm::Constant *Null = | 
|  | llvm::Constant::getNullValue(CGF.ConvertType(Elem)); | 
|  | return ComplexPairTy(Null, Null); | 
|  | } | 
|  |  | 
|  | struct BinOpInfo { | 
|  | ComplexPairTy LHS; | 
|  | ComplexPairTy RHS; | 
|  | QualType Ty;  // Computation Type. | 
|  | }; | 
|  |  | 
|  | BinOpInfo EmitBinOps(const BinaryOperator *E); | 
|  | LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, | 
|  | ComplexPairTy (ComplexExprEmitter::*Func) | 
|  | (const BinOpInfo &), | 
|  | RValue &Val); | 
|  | ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, | 
|  | ComplexPairTy (ComplexExprEmitter::*Func) | 
|  | (const BinOpInfo &)); | 
|  |  | 
|  | ComplexPairTy EmitBinAdd(const BinOpInfo &Op); | 
|  | ComplexPairTy EmitBinSub(const BinOpInfo &Op); | 
|  | ComplexPairTy EmitBinMul(const BinOpInfo &Op); | 
|  | ComplexPairTy EmitBinDiv(const BinOpInfo &Op); | 
|  |  | 
|  | ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, | 
|  | const BinOpInfo &Op); | 
|  |  | 
|  | ComplexPairTy VisitBinAdd(const BinaryOperator *E) { | 
|  | return EmitBinAdd(EmitBinOps(E)); | 
|  | } | 
|  | ComplexPairTy VisitBinSub(const BinaryOperator *E) { | 
|  | return EmitBinSub(EmitBinOps(E)); | 
|  | } | 
|  | ComplexPairTy VisitBinMul(const BinaryOperator *E) { | 
|  | return EmitBinMul(EmitBinOps(E)); | 
|  | } | 
|  | ComplexPairTy VisitBinDiv(const BinaryOperator *E) { | 
|  | return EmitBinDiv(EmitBinOps(E)); | 
|  | } | 
|  |  | 
|  | // Compound assignments. | 
|  | ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { | 
|  | return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); | 
|  | } | 
|  | ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { | 
|  | return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); | 
|  | } | 
|  | ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { | 
|  | return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); | 
|  | } | 
|  | ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { | 
|  | return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); | 
|  | } | 
|  |  | 
|  | // GCC rejects rem/and/or/xor for integer complex. | 
|  | // Logical and/or always return int, never complex. | 
|  |  | 
|  | // No comparisons produce a complex result. | 
|  |  | 
|  | LValue EmitBinAssignLValue(const BinaryOperator *E, | 
|  | ComplexPairTy &Val); | 
|  | ComplexPairTy VisitBinAssign     (const BinaryOperator *E); | 
|  | ComplexPairTy VisitBinComma      (const BinaryOperator *E); | 
|  |  | 
|  |  | 
|  | ComplexPairTy | 
|  | VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); | 
|  | ComplexPairTy VisitChooseExpr(ChooseExpr *CE); | 
|  |  | 
|  | ComplexPairTy VisitInitListExpr(InitListExpr *E); | 
|  |  | 
|  | ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  |  | 
|  | ComplexPairTy VisitVAArgExpr(VAArgExpr *E); | 
|  |  | 
|  | ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { | 
|  | return CGF.EmitAtomicExpr(E).getComplexVal(); | 
|  | } | 
|  | }; | 
|  | }  // end anonymous namespace. | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Address CodeGenFunction::emitAddrOfRealComponent(Address addr, | 
|  | QualType complexType) { | 
|  | CharUnits offset = CharUnits::Zero(); | 
|  | return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); | 
|  | } | 
|  |  | 
|  | Address CodeGenFunction::emitAddrOfImagComponent(Address addr, | 
|  | QualType complexType) { | 
|  | QualType eltType = complexType->castAs<ComplexType>()->getElementType(); | 
|  | CharUnits offset = getContext().getTypeSizeInChars(eltType); | 
|  | return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); | 
|  | } | 
|  |  | 
|  | /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to | 
|  | /// load the real and imaginary pieces, returning them as Real/Imag. | 
|  | ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, | 
|  | SourceLocation loc) { | 
|  | assert(lvalue.isSimple() && "non-simple complex l-value?"); | 
|  | if (lvalue.getType()->isAtomicType()) | 
|  | return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); | 
|  |  | 
|  | Address SrcPtr = lvalue.getAddress(); | 
|  | bool isVolatile = lvalue.isVolatileQualified(); | 
|  |  | 
|  | llvm::Value *Real = nullptr, *Imag = nullptr; | 
|  |  | 
|  | if (!IgnoreReal || isVolatile) { | 
|  | Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); | 
|  | Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); | 
|  | } | 
|  |  | 
|  | if (!IgnoreImag || isVolatile) { | 
|  | Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); | 
|  | Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); | 
|  | } | 
|  |  | 
|  | return ComplexPairTy(Real, Imag); | 
|  | } | 
|  |  | 
|  | /// EmitStoreOfComplex - Store the specified real/imag parts into the | 
|  | /// specified value pointer. | 
|  | void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, | 
|  | bool isInit) { | 
|  | if (lvalue.getType()->isAtomicType() || | 
|  | (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) | 
|  | return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); | 
|  |  | 
|  | Address Ptr = lvalue.getAddress(); | 
|  | Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); | 
|  | Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); | 
|  |  | 
|  | Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); | 
|  | Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { | 
|  | CGF.ErrorUnsupported(E, "complex expression"); | 
|  | llvm::Type *EltTy = | 
|  | CGF.ConvertType(getComplexType(E->getType())->getElementType()); | 
|  | llvm::Value *U = llvm::UndefValue::get(EltTy); | 
|  | return ComplexPairTy(U, U); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter:: | 
|  | VisitImaginaryLiteral(const ImaginaryLiteral *IL) { | 
|  | llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); | 
|  | return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); | 
|  | } | 
|  |  | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { | 
|  | if (E->getCallReturnType(CGF.getContext())->isReferenceType()) | 
|  | return EmitLoadOfLValue(E); | 
|  |  | 
|  | return CGF.EmitCallExpr(E).getComplexVal(); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { | 
|  | CodeGenFunction::StmtExprEvaluation eval(CGF); | 
|  | Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); | 
|  | assert(RetAlloca.isValid() && "Expected complex return value"); | 
|  | return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | /// Emit a cast from complex value Val to DestType. | 
|  | ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, | 
|  | QualType SrcType, | 
|  | QualType DestType, | 
|  | SourceLocation Loc) { | 
|  | // Get the src/dest element type. | 
|  | SrcType = SrcType->castAs<ComplexType>()->getElementType(); | 
|  | DestType = DestType->castAs<ComplexType>()->getElementType(); | 
|  |  | 
|  | // C99 6.3.1.6: When a value of complex type is converted to another | 
|  | // complex type, both the real and imaginary parts follow the conversion | 
|  | // rules for the corresponding real types. | 
|  | Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); | 
|  | Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, | 
|  | QualType SrcType, | 
|  | QualType DestType, | 
|  | SourceLocation Loc) { | 
|  | // Convert the input element to the element type of the complex. | 
|  | DestType = DestType->castAs<ComplexType>()->getElementType(); | 
|  | Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); | 
|  |  | 
|  | // Return (realval, 0). | 
|  | return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, | 
|  | QualType DestTy) { | 
|  | switch (CK) { | 
|  | case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); | 
|  |  | 
|  | // Atomic to non-atomic casts may be more than a no-op for some platforms and | 
|  | // for some types. | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_NoOp: | 
|  | case CK_LValueToRValue: | 
|  | case CK_UserDefinedConversion: | 
|  | return Visit(Op); | 
|  |  | 
|  | case CK_LValueBitCast: { | 
|  | LValue origLV = CGF.EmitLValue(Op); | 
|  | Address V = origLV.getAddress(); | 
|  | V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); | 
|  | return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); | 
|  | } | 
|  |  | 
|  | case CK_BitCast: | 
|  | case CK_BaseToDerived: | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_NullToPointer: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_ReinterpretMemberPointer: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_ToVoid: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralCast: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_FloatingCast: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_ObjCObjectLValueCast: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | case CK_ZeroToOCLEvent: | 
|  | case CK_AddressSpaceConversion: | 
|  | llvm_unreachable("invalid cast kind for complex value"); | 
|  |  | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), | 
|  | DestTy, Op->getExprLoc()); | 
|  |  | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, | 
|  | Op->getExprLoc()); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown cast resulting in complex value"); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | ComplexPairTy Op = Visit(E->getSubExpr()); | 
|  |  | 
|  | llvm::Value *ResR, *ResI; | 
|  | if (Op.first->getType()->isFloatingPointTy()) { | 
|  | ResR = Builder.CreateFNeg(Op.first,  "neg.r"); | 
|  | ResI = Builder.CreateFNeg(Op.second, "neg.i"); | 
|  | } else { | 
|  | ResR = Builder.CreateNeg(Op.first,  "neg.r"); | 
|  | ResI = Builder.CreateNeg(Op.second, "neg.i"); | 
|  | } | 
|  | return ComplexPairTy(ResR, ResI); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | // ~(a+ib) = a + i*-b | 
|  | ComplexPairTy Op = Visit(E->getSubExpr()); | 
|  | llvm::Value *ResI; | 
|  | if (Op.second->getType()->isFloatingPointTy()) | 
|  | ResI = Builder.CreateFNeg(Op.second, "conj.i"); | 
|  | else | 
|  | ResI = Builder.CreateNeg(Op.second, "conj.i"); | 
|  |  | 
|  | return ComplexPairTy(Op.first, ResI); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { | 
|  | llvm::Value *ResR, *ResI; | 
|  |  | 
|  | if (Op.LHS.first->getType()->isFloatingPointTy()) { | 
|  | ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r"); | 
|  | if (Op.LHS.second && Op.RHS.second) | 
|  | ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); | 
|  | else | 
|  | ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; | 
|  | assert(ResI && "Only one operand may be real!"); | 
|  | } else { | 
|  | ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r"); | 
|  | assert(Op.LHS.second && Op.RHS.second && | 
|  | "Both operands of integer complex operators must be complex!"); | 
|  | ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); | 
|  | } | 
|  | return ComplexPairTy(ResR, ResI); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { | 
|  | llvm::Value *ResR, *ResI; | 
|  | if (Op.LHS.first->getType()->isFloatingPointTy()) { | 
|  | ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); | 
|  | if (Op.LHS.second && Op.RHS.second) | 
|  | ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); | 
|  | else | 
|  | ResI = Op.LHS.second ? Op.LHS.second | 
|  | : Builder.CreateFNeg(Op.RHS.second, "sub.i"); | 
|  | assert(ResI && "Only one operand may be real!"); | 
|  | } else { | 
|  | ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); | 
|  | assert(Op.LHS.second && Op.RHS.second && | 
|  | "Both operands of integer complex operators must be complex!"); | 
|  | ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); | 
|  | } | 
|  | return ComplexPairTy(ResR, ResI); | 
|  | } | 
|  |  | 
|  | /// \brief Emit a libcall for a binary operation on complex types. | 
|  | ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, | 
|  | const BinOpInfo &Op) { | 
|  | CallArgList Args; | 
|  | Args.add(RValue::get(Op.LHS.first), | 
|  | Op.Ty->castAs<ComplexType>()->getElementType()); | 
|  | Args.add(RValue::get(Op.LHS.second), | 
|  | Op.Ty->castAs<ComplexType>()->getElementType()); | 
|  | Args.add(RValue::get(Op.RHS.first), | 
|  | Op.Ty->castAs<ComplexType>()->getElementType()); | 
|  | Args.add(RValue::get(Op.RHS.second), | 
|  | Op.Ty->castAs<ComplexType>()->getElementType()); | 
|  |  | 
|  | // We *must* use the full CG function call building logic here because the | 
|  | // complex type has special ABI handling. We also should not forget about | 
|  | // special calling convention which may be used for compiler builtins. | 
|  |  | 
|  | // We create a function qualified type to state that this call does not have | 
|  | // any exceptions. | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI = EPI.withExceptionSpec( | 
|  | FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); | 
|  | SmallVector<QualType, 4> ArgsQTys( | 
|  | 4, Op.Ty->castAs<ComplexType>()->getElementType()); | 
|  | QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); | 
|  | const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( | 
|  | Args, cast<FunctionType>(FQTy.getTypePtr()), false); | 
|  |  | 
|  | llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); | 
|  | llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); | 
|  | llvm::Instruction *Call; | 
|  |  | 
|  | RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, | 
|  | FQTy->getAs<FunctionProtoType>(), &Call); | 
|  | cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); | 
|  | return Res.getComplexVal(); | 
|  | } | 
|  |  | 
|  | /// \brief Lookup the libcall name for a given floating point type complex | 
|  | /// multiply. | 
|  | static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported floating point type!"); | 
|  | case llvm::Type::HalfTyID: | 
|  | return "__mulhc3"; | 
|  | case llvm::Type::FloatTyID: | 
|  | return "__mulsc3"; | 
|  | case llvm::Type::DoubleTyID: | 
|  | return "__muldc3"; | 
|  | case llvm::Type::PPC_FP128TyID: | 
|  | return "__multc3"; | 
|  | case llvm::Type::X86_FP80TyID: | 
|  | return "__mulxc3"; | 
|  | case llvm::Type::FP128TyID: | 
|  | return "__multc3"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex | 
|  | // typed values. | 
|  | ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { | 
|  | using llvm::Value; | 
|  | Value *ResR, *ResI; | 
|  | llvm::MDBuilder MDHelper(CGF.getLLVMContext()); | 
|  |  | 
|  | if (Op.LHS.first->getType()->isFloatingPointTy()) { | 
|  | // The general formulation is: | 
|  | // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) | 
|  | // | 
|  | // But we can fold away components which would be zero due to a real | 
|  | // operand according to C11 Annex G.5.1p2. | 
|  | // FIXME: C11 also provides for imaginary types which would allow folding | 
|  | // still more of this within the type system. | 
|  |  | 
|  | if (Op.LHS.second && Op.RHS.second) { | 
|  | // If both operands are complex, emit the core math directly, and then | 
|  | // test for NaNs. If we find NaNs in the result, we delegate to a libcall | 
|  | // to carefully re-compute the correct infinity representation if | 
|  | // possible. The expectation is that the presence of NaNs here is | 
|  | // *extremely* rare, and so the cost of the libcall is almost irrelevant. | 
|  | // This is good, because the libcall re-computes the core multiplication | 
|  | // exactly the same as we do here and re-tests for NaNs in order to be | 
|  | // a generic complex*complex libcall. | 
|  |  | 
|  | // First compute the four products. | 
|  | Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); | 
|  | Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); | 
|  | Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); | 
|  | Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); | 
|  |  | 
|  | // The real part is the difference of the first two, the imaginary part is | 
|  | // the sum of the second. | 
|  | ResR = Builder.CreateFSub(AC, BD, "mul_r"); | 
|  | ResI = Builder.CreateFAdd(AD, BC, "mul_i"); | 
|  |  | 
|  | // Emit the test for the real part becoming NaN and create a branch to | 
|  | // handle it. We test for NaN by comparing the number to itself. | 
|  | Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); | 
|  | llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); | 
|  | llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); | 
|  | llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); | 
|  | llvm::BasicBlock *OrigBB = Branch->getParent(); | 
|  |  | 
|  | // Give hint that we very much don't expect to see NaNs. | 
|  | // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp | 
|  | llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); | 
|  | Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); | 
|  |  | 
|  | // Now test the imaginary part and create its branch. | 
|  | CGF.EmitBlock(INaNBB); | 
|  | Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); | 
|  | llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); | 
|  | Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); | 
|  | Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); | 
|  |  | 
|  | // Now emit the libcall on this slowest of the slow paths. | 
|  | CGF.EmitBlock(LibCallBB); | 
|  | Value *LibCallR, *LibCallI; | 
|  | std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( | 
|  | getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); | 
|  | Builder.CreateBr(ContBB); | 
|  |  | 
|  | // Finally continue execution by phi-ing together the different | 
|  | // computation paths. | 
|  | CGF.EmitBlock(ContBB); | 
|  | llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); | 
|  | RealPHI->addIncoming(ResR, OrigBB); | 
|  | RealPHI->addIncoming(ResR, INaNBB); | 
|  | RealPHI->addIncoming(LibCallR, LibCallBB); | 
|  | llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); | 
|  | ImagPHI->addIncoming(ResI, OrigBB); | 
|  | ImagPHI->addIncoming(ResI, INaNBB); | 
|  | ImagPHI->addIncoming(LibCallI, LibCallBB); | 
|  | return ComplexPairTy(RealPHI, ImagPHI); | 
|  | } | 
|  | assert((Op.LHS.second || Op.RHS.second) && | 
|  | "At least one operand must be complex!"); | 
|  |  | 
|  | // If either of the operands is a real rather than a complex, the | 
|  | // imaginary component is ignored when computing the real component of the | 
|  | // result. | 
|  | ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); | 
|  |  | 
|  | ResI = Op.LHS.second | 
|  | ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") | 
|  | : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); | 
|  | } else { | 
|  | assert(Op.LHS.second && Op.RHS.second && | 
|  | "Both operands of integer complex operators must be complex!"); | 
|  | Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); | 
|  | Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); | 
|  | ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); | 
|  |  | 
|  | Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); | 
|  | Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); | 
|  | ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); | 
|  | } | 
|  | return ComplexPairTy(ResR, ResI); | 
|  | } | 
|  |  | 
|  | // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex | 
|  | // typed values. | 
|  | ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { | 
|  | llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; | 
|  | llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; | 
|  |  | 
|  |  | 
|  | llvm::Value *DSTr, *DSTi; | 
|  | if (LHSr->getType()->isFloatingPointTy()) { | 
|  | // If we have a complex operand on the RHS, we delegate to a libcall to | 
|  | // handle all of the complexities and minimize underflow/overflow cases. | 
|  | // | 
|  | // FIXME: We would be able to avoid the libcall in many places if we | 
|  | // supported imaginary types in addition to complex types. | 
|  | if (RHSi) { | 
|  | BinOpInfo LibCallOp = Op; | 
|  | // If LHS was a real, supply a null imaginary part. | 
|  | if (!LHSi) | 
|  | LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); | 
|  |  | 
|  | StringRef LibCallName; | 
|  | switch (LHSr->getType()->getTypeID()) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported floating point type!"); | 
|  | case llvm::Type::HalfTyID: | 
|  | return EmitComplexBinOpLibCall("__divhc3", LibCallOp); | 
|  | case llvm::Type::FloatTyID: | 
|  | return EmitComplexBinOpLibCall("__divsc3", LibCallOp); | 
|  | case llvm::Type::DoubleTyID: | 
|  | return EmitComplexBinOpLibCall("__divdc3", LibCallOp); | 
|  | case llvm::Type::PPC_FP128TyID: | 
|  | return EmitComplexBinOpLibCall("__divtc3", LibCallOp); | 
|  | case llvm::Type::X86_FP80TyID: | 
|  | return EmitComplexBinOpLibCall("__divxc3", LibCallOp); | 
|  | case llvm::Type::FP128TyID: | 
|  | return EmitComplexBinOpLibCall("__divtc3", LibCallOp); | 
|  | } | 
|  | } | 
|  | assert(LHSi && "Can have at most one non-complex operand!"); | 
|  |  | 
|  | DSTr = Builder.CreateFDiv(LHSr, RHSr); | 
|  | DSTi = Builder.CreateFDiv(LHSi, RHSr); | 
|  | } else { | 
|  | assert(Op.LHS.second && Op.RHS.second && | 
|  | "Both operands of integer complex operators must be complex!"); | 
|  | // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) | 
|  | llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c | 
|  | llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d | 
|  | llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd | 
|  |  | 
|  | llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c | 
|  | llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d | 
|  | llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd | 
|  |  | 
|  | llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c | 
|  | llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d | 
|  | llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad | 
|  |  | 
|  | if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { | 
|  | DSTr = Builder.CreateUDiv(Tmp3, Tmp6); | 
|  | DSTi = Builder.CreateUDiv(Tmp9, Tmp6); | 
|  | } else { | 
|  | DSTr = Builder.CreateSDiv(Tmp3, Tmp6); | 
|  | DSTi = Builder.CreateSDiv(Tmp9, Tmp6); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ComplexPairTy(DSTr, DSTi); | 
|  | } | 
|  |  | 
|  | ComplexExprEmitter::BinOpInfo | 
|  | ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | BinOpInfo Ops; | 
|  | if (E->getLHS()->getType()->isRealFloatingType()) | 
|  | Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); | 
|  | else | 
|  | Ops.LHS = Visit(E->getLHS()); | 
|  | if (E->getRHS()->getType()->isRealFloatingType()) | 
|  | Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); | 
|  | else | 
|  | Ops.RHS = Visit(E->getRHS()); | 
|  |  | 
|  | Ops.Ty = E->getType(); | 
|  | return Ops; | 
|  | } | 
|  |  | 
|  |  | 
|  | LValue ComplexExprEmitter:: | 
|  | EmitCompoundAssignLValue(const CompoundAssignOperator *E, | 
|  | ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), | 
|  | RValue &Val) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | QualType LHSTy = E->getLHS()->getType(); | 
|  | if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) | 
|  | LHSTy = AT->getValueType(); | 
|  |  | 
|  | BinOpInfo OpInfo; | 
|  |  | 
|  | // Load the RHS and LHS operands. | 
|  | // __block variables need to have the rhs evaluated first, plus this should | 
|  | // improve codegen a little. | 
|  | OpInfo.Ty = E->getComputationResultType(); | 
|  | QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); | 
|  |  | 
|  | // The RHS should have been converted to the computation type. | 
|  | if (E->getRHS()->getType()->isRealFloatingType()) { | 
|  | assert( | 
|  | CGF.getContext() | 
|  | .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); | 
|  | OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); | 
|  | } else { | 
|  | assert(CGF.getContext() | 
|  | .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); | 
|  | OpInfo.RHS = Visit(E->getRHS()); | 
|  | } | 
|  |  | 
|  | LValue LHS = CGF.EmitLValue(E->getLHS()); | 
|  |  | 
|  | // Load from the l-value and convert it. | 
|  | SourceLocation Loc = E->getExprLoc(); | 
|  | if (LHSTy->isAnyComplexType()) { | 
|  | ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); | 
|  | OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); | 
|  | } else { | 
|  | llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); | 
|  | // For floating point real operands we can directly pass the scalar form | 
|  | // to the binary operator emission and potentially get more efficient code. | 
|  | if (LHSTy->isRealFloatingType()) { | 
|  | if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) | 
|  | LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); | 
|  | OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); | 
|  | } else { | 
|  | OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the binary operator. | 
|  | ComplexPairTy Result = (this->*Func)(OpInfo); | 
|  |  | 
|  | // Truncate the result and store it into the LHS lvalue. | 
|  | if (LHSTy->isAnyComplexType()) { | 
|  | ComplexPairTy ResVal = | 
|  | EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); | 
|  | EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); | 
|  | Val = RValue::getComplex(ResVal); | 
|  | } else { | 
|  | llvm::Value *ResVal = | 
|  | CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); | 
|  | CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); | 
|  | Val = RValue::get(ResVal); | 
|  | } | 
|  |  | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | // Compound assignments. | 
|  | ComplexPairTy ComplexExprEmitter:: | 
|  | EmitCompoundAssign(const CompoundAssignOperator *E, | 
|  | ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ | 
|  | RValue Val; | 
|  | LValue LV = EmitCompoundAssignLValue(E, Func, Val); | 
|  |  | 
|  | // The result of an assignment in C is the assigned r-value. | 
|  | if (!CGF.getLangOpts().CPlusPlus) | 
|  | return Val.getComplexVal(); | 
|  |  | 
|  | // If the lvalue is non-volatile, return the computed value of the assignment. | 
|  | if (!LV.isVolatileQualified()) | 
|  | return Val.getComplexVal(); | 
|  |  | 
|  | return EmitLoadOfLValue(LV, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, | 
|  | ComplexPairTy &Val) { | 
|  | assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), | 
|  | E->getRHS()->getType()) && | 
|  | "Invalid assignment"); | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  |  | 
|  | // Emit the RHS.  __block variables need the RHS evaluated first. | 
|  | Val = Visit(E->getRHS()); | 
|  |  | 
|  | // Compute the address to store into. | 
|  | LValue LHS = CGF.EmitLValue(E->getLHS()); | 
|  |  | 
|  | // Store the result value into the LHS lvalue. | 
|  | EmitStoreOfComplex(Val, LHS, /*isInit*/ false); | 
|  |  | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { | 
|  | ComplexPairTy Val; | 
|  | LValue LV = EmitBinAssignLValue(E, Val); | 
|  |  | 
|  | // The result of an assignment in C is the assigned r-value. | 
|  | if (!CGF.getLangOpts().CPlusPlus) | 
|  | return Val; | 
|  |  | 
|  | // If the lvalue is non-volatile, return the computed value of the assignment. | 
|  | if (!LV.isVolatileQualified()) | 
|  | return Val; | 
|  |  | 
|  | return EmitLoadOfLValue(LV, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { | 
|  | CGF.EmitIgnoredExpr(E->getLHS()); | 
|  | return Visit(E->getRHS()); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter:: | 
|  | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { | 
|  | TestAndClearIgnoreReal(); | 
|  | TestAndClearIgnoreImag(); | 
|  | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); | 
|  | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); | 
|  |  | 
|  | // Bind the common expression if necessary. | 
|  | CodeGenFunction::OpaqueValueMapping binding(CGF, E); | 
|  |  | 
|  |  | 
|  | CodeGenFunction::ConditionalEvaluation eval(CGF); | 
|  | CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, | 
|  | CGF.getProfileCount(E)); | 
|  |  | 
|  | eval.begin(CGF); | 
|  | CGF.EmitBlock(LHSBlock); | 
|  | CGF.incrementProfileCounter(E); | 
|  | ComplexPairTy LHS = Visit(E->getTrueExpr()); | 
|  | LHSBlock = Builder.GetInsertBlock(); | 
|  | CGF.EmitBranch(ContBlock); | 
|  | eval.end(CGF); | 
|  |  | 
|  | eval.begin(CGF); | 
|  | CGF.EmitBlock(RHSBlock); | 
|  | ComplexPairTy RHS = Visit(E->getFalseExpr()); | 
|  | RHSBlock = Builder.GetInsertBlock(); | 
|  | CGF.EmitBlock(ContBlock); | 
|  | eval.end(CGF); | 
|  |  | 
|  | // Create a PHI node for the real part. | 
|  | llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); | 
|  | RealPN->addIncoming(LHS.first, LHSBlock); | 
|  | RealPN->addIncoming(RHS.first, RHSBlock); | 
|  |  | 
|  | // Create a PHI node for the imaginary part. | 
|  | llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); | 
|  | ImagPN->addIncoming(LHS.second, LHSBlock); | 
|  | ImagPN->addIncoming(RHS.second, RHSBlock); | 
|  |  | 
|  | return ComplexPairTy(RealPN, ImagPN); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { | 
|  | return Visit(E->getChosenSubExpr()); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { | 
|  | bool Ignore = TestAndClearIgnoreReal(); | 
|  | (void)Ignore; | 
|  | assert (Ignore == false && "init list ignored"); | 
|  | Ignore = TestAndClearIgnoreImag(); | 
|  | (void)Ignore; | 
|  | assert (Ignore == false && "init list ignored"); | 
|  |  | 
|  | if (E->getNumInits() == 2) { | 
|  | llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); | 
|  | llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); | 
|  | return ComplexPairTy(Real, Imag); | 
|  | } else if (E->getNumInits() == 1) { | 
|  | return Visit(E->getInit(0)); | 
|  | } | 
|  |  | 
|  | // Empty init list intializes to null | 
|  | assert(E->getNumInits() == 0 && "Unexpected number of inits"); | 
|  | QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); | 
|  | llvm::Type* LTy = CGF.ConvertType(Ty); | 
|  | llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); | 
|  | return ComplexPairTy(zeroConstant, zeroConstant); | 
|  | } | 
|  |  | 
|  | ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { | 
|  | Address ArgValue = Address::invalid(); | 
|  | Address ArgPtr = CGF.EmitVAArg(E, ArgValue); | 
|  |  | 
|  | if (!ArgPtr.isValid()) { | 
|  | CGF.ErrorUnsupported(E, "complex va_arg expression"); | 
|  | llvm::Type *EltTy = | 
|  | CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); | 
|  | llvm::Value *U = llvm::UndefValue::get(EltTy); | 
|  | return ComplexPairTy(U, U); | 
|  | } | 
|  |  | 
|  | return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Entry Point into this File | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitComplexExpr - Emit the computation of the specified expression of | 
|  | /// complex type, ignoring the result. | 
|  | ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, | 
|  | bool IgnoreImag) { | 
|  | assert(E && getComplexType(E->getType()) && | 
|  | "Invalid complex expression to emit"); | 
|  |  | 
|  | return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) | 
|  | .Visit(const_cast<Expr *>(E)); | 
|  | } | 
|  |  | 
|  | void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, | 
|  | bool isInit) { | 
|  | assert(E && getComplexType(E->getType()) && | 
|  | "Invalid complex expression to emit"); | 
|  | ComplexExprEmitter Emitter(*this); | 
|  | ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); | 
|  | Emitter.EmitStoreOfComplex(Val, dest, isInit); | 
|  | } | 
|  |  | 
|  | /// EmitStoreOfComplex - Store a complex number into the specified l-value. | 
|  | void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, | 
|  | bool isInit) { | 
|  | ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); | 
|  | } | 
|  |  | 
|  | /// EmitLoadOfComplex - Load a complex number from the specified address. | 
|  | ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, | 
|  | SourceLocation loc) { | 
|  | return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { | 
|  | assert(E->getOpcode() == BO_Assign); | 
|  | ComplexPairTy Val; // ignored | 
|  | return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); | 
|  | } | 
|  |  | 
|  | typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( | 
|  | const ComplexExprEmitter::BinOpInfo &); | 
|  |  | 
|  | static CompoundFunc getComplexOp(BinaryOperatorKind Op) { | 
|  | switch (Op) { | 
|  | case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; | 
|  | case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; | 
|  | case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; | 
|  | case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; | 
|  | default: | 
|  | llvm_unreachable("unexpected complex compound assignment"); | 
|  | } | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { | 
|  | CompoundFunc Op = getComplexOp(E->getOpcode()); | 
|  | RValue Val; | 
|  | return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction:: | 
|  | EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, | 
|  | llvm::Value *&Result) { | 
|  | CompoundFunc Op = getComplexOp(E->getOpcode()); | 
|  | RValue Val; | 
|  | LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); | 
|  | Result = Val.getScalarVal(); | 
|  | return Ret; | 
|  | } |