[PowerPC] MachineSSA pass to reduce the number of CR-logical operations

The initial implementation of an MI SSA pass to reduce cr-logical operations.
Currently, the only operations handled by the pass are binary operations where
both CR-inputs come from the same block and the single use is a conditional
branch (also in the same block).

Committing this off by default to allow for a period of field testing. Will
enable it by default in a follow-up patch soon.

Differential Revision: https://reviews.llvm.org/D30431

llvm-svn: 320584
diff --git a/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp b/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp
new file mode 100644
index 0000000..50c3d96
--- /dev/null
+++ b/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp
@@ -0,0 +1,533 @@
+//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===---------------------------------------------------------------------===//
+//
+// This pass aims to reduce the number of logical operations on bits in the CR
+// register. These instructions have a fairly high latency and only a single
+// pipeline at their disposal in modern PPC cores. Furthermore, they have a
+// tendency to occur in fairly small blocks where there's little opportunity
+// to hide the latency between the CR logical operation and its user.
+//
+//===---------------------------------------------------------------------===//
+
+#include "PPCInstrInfo.h"
+#include "PPC.h"
+#include "PPCTargetMachine.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-reduce-cr-ops"
+#include "PPCMachineBasicBlockUtils.h"
+
+STATISTIC(NumContainedSingleUseBinOps,
+          "Number of single-use binary CR logical ops contained in a block");
+STATISTIC(NumToSplitBlocks,
+          "Number of binary CR logical ops that can be used to split blocks");
+STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
+STATISTIC(TotalNullaryCRLogicals,
+          "Number of nullary CR logical ops (CRSET/CRUNSET).");
+STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
+STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
+STATISTIC(NumBlocksSplitOnBinaryCROp,
+          "Number of blocks split on CR binary logical ops.");
+STATISTIC(NumNotSplitIdenticalOperands,
+          "Number of blocks not split due to operands being identical.");
+STATISTIC(NumNotSplitChainCopies,
+          "Number of blocks not split due to operands being chained copies.");
+STATISTIC(NumNotSplitWrongOpcode,
+          "Number of blocks not split due to the wrong opcode.");
+
+namespace llvm {
+  void initializePPCReduceCRLogicalsPass(PassRegistry&);
+}
+
+namespace {
+
+static bool isBinary(MachineInstr &MI) {
+  return MI.getNumOperands() == 3;
+}
+
+static bool isNullary(MachineInstr &MI) {
+  return MI.getNumOperands() == 1;
+}
+
+/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
+/// a flag to indicate if the first operand of \p CROp is used as the
+/// SplitBefore operand, determines whether either of the branches are to be
+/// inverted as well as whether the new target should be the original
+/// fall-through block.
+static void
+computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
+                                bool &InvertNewBranch, bool &InvertOrigBranch,
+                                bool &TargetIsFallThrough) {
+  // The conditions under which each of the output operands should be [un]set
+  // can certainly be written much more concisely with just 3 if statements or
+  // ternary expressions. However, this provides a much clearer overview to the
+  // reader as to what is set for each <CROp, BROp, OpUsed> combination.
+  if (BROp == PPC::BC || BROp == PPC::BCLR) {
+    // Regular branches.
+    switch (CROp) {
+    default:
+      llvm_unreachable("Don't know how to handle this CR logical.");
+    case PPC::CROR:
+      InvertNewBranch = false;
+      InvertOrigBranch = false;
+      TargetIsFallThrough = false;
+      return;
+    case PPC::CRAND:
+      InvertNewBranch = true;
+      InvertOrigBranch = false;
+      TargetIsFallThrough = true;
+      return;
+    case PPC::CRNAND:
+      InvertNewBranch = true;
+      InvertOrigBranch = true;
+      TargetIsFallThrough = false;
+      return;
+    case PPC::CRNOR:
+      InvertNewBranch = false;
+      InvertOrigBranch = true;
+      TargetIsFallThrough = true;
+      return;
+    case PPC::CRORC:
+      InvertNewBranch = UsingDef1;
+      InvertOrigBranch = !UsingDef1;
+      TargetIsFallThrough = false;
+      return;
+    case PPC::CRANDC:
+      InvertNewBranch = !UsingDef1;
+      InvertOrigBranch = !UsingDef1;
+      TargetIsFallThrough = true;
+      return;
+    }
+  } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
+    // Negated branches.
+    switch (CROp) {
+    default:
+      llvm_unreachable("Don't know how to handle this CR logical.");
+    case PPC::CROR:
+      InvertNewBranch = true;
+      InvertOrigBranch = false;
+      TargetIsFallThrough = true;
+      return;
+    case PPC::CRAND:
+      InvertNewBranch = false;
+      InvertOrigBranch = false;
+      TargetIsFallThrough = false;
+      return;
+    case PPC::CRNAND:
+      InvertNewBranch = false;
+      InvertOrigBranch = true;
+      TargetIsFallThrough = true;
+      return;
+    case PPC::CRNOR:
+      InvertNewBranch = true;
+      InvertOrigBranch = true;
+      TargetIsFallThrough = false;
+      return;
+    case PPC::CRORC:
+      InvertNewBranch = !UsingDef1;
+      InvertOrigBranch = !UsingDef1;
+      TargetIsFallThrough = true;
+      return;
+    case PPC::CRANDC:
+      InvertNewBranch = UsingDef1;
+      InvertOrigBranch = !UsingDef1;
+      TargetIsFallThrough = false;
+      return;
+    }
+  } else
+    llvm_unreachable("Don't know how to handle this branch.");
+}
+
+class PPCReduceCRLogicals : public MachineFunctionPass {
+
+public:
+  static char ID;
+  struct CRLogicalOpInfo {
+    MachineInstr *MI;
+    // FIXME: If chains of copies are to be handled, this should be a vector.
+    std::pair<MachineInstr*, MachineInstr*> CopyDefs;
+    std::pair<MachineInstr*, MachineInstr*> TrueDefs;
+    unsigned IsBinary : 1;
+    unsigned IsNullary : 1;
+    unsigned ContainedInBlock : 1;
+    unsigned FeedsISEL : 1;
+    unsigned FeedsBR : 1;
+    unsigned FeedsLogical : 1;
+    unsigned SingleUse : 1;
+    unsigned DefsSingleUse : 1;
+    unsigned SubregDef1;
+    unsigned SubregDef2;
+    CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
+                        ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
+                        FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
+                        SubregDef1(0), SubregDef2(0) { }
+    void dump();
+  };
+
+private:
+  const PPCInstrInfo *TII;
+  MachineFunction *MF;
+  MachineRegisterInfo *MRI;
+  const MachineBranchProbabilityInfo *MBPI;
+
+  // A vector to contain all the CR logical operations
+  std::vector<CRLogicalOpInfo> AllCRLogicalOps;
+  void initialize(MachineFunction &MFParm);
+  void collectCRLogicals();
+  bool handleCROp(CRLogicalOpInfo &CRI);
+  bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
+  static bool isCRLogical(MachineInstr &MI) {
+    unsigned Opc = MI.getOpcode();
+    return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
+      Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
+      Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
+      Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
+  }
+  bool simplifyCode() {
+    bool Changed = false;
+    // Not using a range-based for loop here as the vector may grow while being
+    // operated on.
+    for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
+      Changed |= handleCROp(AllCRLogicalOps[i]);
+    return Changed;
+  }
+
+public:
+  PPCReduceCRLogicals() : MachineFunctionPass(ID) {
+    initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
+  }
+
+  MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
+                                  MachineInstr *&CpDef);
+  bool runOnMachineFunction(MachineFunction &MF) override {
+    if (skipFunction(*MF.getFunction()))
+      return false;
+
+    // If the subtarget doesn't use CR bits, there's nothing to do.
+    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
+    if (!STI.useCRBits())
+      return false;
+
+    initialize(MF);
+    collectCRLogicals();
+    return simplifyCode();
+  }
+  CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<MachineBranchProbabilityInfo>();
+    AU.addRequired<MachineDominatorTree>();
+    MachineFunctionPass::getAnalysisUsage(AU);
+  }
+};
+
+void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
+  dbgs() << "CRLogicalOpMI: ";
+  MI->dump();
+  dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
+  dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
+  dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
+  dbgs() << ", DefsSingleUse: " << DefsSingleUse;
+  dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
+  dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
+  if (!IsNullary) {
+    dbgs() << "\nDefs:\n";
+    TrueDefs.first->dump();
+  }
+  if (IsBinary)
+    TrueDefs.second->dump();
+  dbgs() << "\n";
+  if (CopyDefs.first) {
+    dbgs() << "CopyDef1: ";
+    CopyDefs.first->dump();
+  }
+  if (CopyDefs.second) {
+    dbgs() << "CopyDef2: ";
+    CopyDefs.second->dump();
+  }
+}
+
+PPCReduceCRLogicals::CRLogicalOpInfo
+PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
+  CRLogicalOpInfo Ret;
+  Ret.MI = &MIParam;
+  // Get the defs
+  if (isNullary(MIParam)) {
+    Ret.IsNullary = 1;
+    Ret.TrueDefs = std::make_pair(nullptr, nullptr);
+    Ret.CopyDefs = std::make_pair(nullptr, nullptr);
+  } else {
+    MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
+                                           Ret.SubregDef1, Ret.CopyDefs.first);
+    Ret.DefsSingleUse &=
+      MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
+    Ret.DefsSingleUse &=
+      MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
+    assert(Def1 && "Must be able to find a definition of operand 1.");
+    if (isBinary(MIParam)) {
+      Ret.IsBinary = 1;
+      MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
+                                             Ret.SubregDef2,
+                                             Ret.CopyDefs.second);
+      Ret.DefsSingleUse &=
+        MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
+      Ret.DefsSingleUse &=
+        MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
+      assert(Def2 && "Must be able to find a definition of operand 2.");
+      Ret.TrueDefs = std::make_pair(Def1, Def2);
+    } else {
+      Ret.TrueDefs = std::make_pair(Def1, nullptr);
+      Ret.CopyDefs.second = nullptr;
+    }
+  }
+
+  Ret.ContainedInBlock = 1;
+  // Get the uses
+  for (MachineInstr &UseMI :
+       MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
+    unsigned Opc = UseMI.getOpcode();
+    if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
+      Ret.FeedsISEL = 1;
+    if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
+        Opc == PPC::BCLRn)
+      Ret.FeedsBR = 1;
+    Ret.FeedsLogical = isCRLogical(UseMI);
+    if (UseMI.getParent() != MIParam.getParent())
+      Ret.ContainedInBlock = 0;
+  }
+  Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
+
+  // We now know whether all the uses of the CR logical are in the same block.
+  if (!Ret.IsNullary) {
+    Ret.ContainedInBlock &=
+      (MIParam.getParent() == Ret.TrueDefs.first->getParent());
+    if (Ret.IsBinary)
+      Ret.ContainedInBlock &=
+        (MIParam.getParent() == Ret.TrueDefs.second->getParent());
+  }
+  DEBUG(Ret.dump());
+  if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
+    NumContainedSingleUseBinOps++;
+    if (Ret.FeedsBR && Ret.DefsSingleUse)
+      NumToSplitBlocks++;
+  }
+  return Ret;
+}
+
+/// Looks trhough a COPY instruction to the actual definition of the CR-bit
+/// register and returns the instruction that defines it.
+/// FIXME: This currently handles what is by-far the most common case:
+/// an instruction that defines a CR field followed by a single copy of a bit
+/// from that field into a virtual register. If chains of copies need to be
+/// handled, this should have a loop until a non-copy instruction is found.
+MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
+                                                     unsigned &Subreg,
+                                                     MachineInstr *&CpDef) {
+  Subreg = -1;
+  if (!TargetRegisterInfo::isVirtualRegister(Reg))
+    return nullptr;
+  MachineInstr *Copy = MRI->getVRegDef(Reg);
+  CpDef = Copy;
+  if (!Copy->isCopy())
+    return Copy;
+  unsigned CopySrc = Copy->getOperand(1).getReg();
+  Subreg = Copy->getOperand(1).getSubReg();
+  if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
+    const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
+    // Set the Subreg
+    if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
+      Subreg = PPC::sub_eq;
+    if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
+      Subreg = PPC::sub_lt;
+    if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
+      Subreg = PPC::sub_gt;
+    if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
+      Subreg = PPC::sub_un;
+    // Loop backwards and return the first MI that modifies the physical CR Reg.
+    MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
+    while (Me != B)
+      if ((--Me)->modifiesRegister(CopySrc, TRI))
+        return &*Me;
+    return nullptr;
+  }
+  return MRI->getVRegDef(CopySrc);
+}
+
+void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
+  MF = &MFParam;
+  MRI = &MF->getRegInfo();
+  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
+  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+
+  AllCRLogicalOps.clear();
+}
+
+/// Contains all the implemented transformations on CR logical operations.
+/// For example, a binary CR logical can be used to split a block on its inputs,
+/// a unary CR logical might be used to change the condition code on a
+/// comparison feeding it. A nullary CR logical might simply be removable
+/// if the user of the bit it [un]sets can be transformed.
+bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
+  // We can definitely split a block on the inputs to a binary CR operation
+  // whose defs and (single) use are within the same block.
+  bool Changed = false;
+  if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
+      CRI.DefsSingleUse) {
+    Changed = splitBlockOnBinaryCROp(CRI);
+    if (Changed)
+      NumBlocksSplitOnBinaryCROp++;
+  }
+  return Changed;
+}
+
+/// Splits a block that contains a CR-logical operation that feeds a branch
+/// and whose operands are produced within the block.
+/// Example:
+///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
+///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
+///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
+///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
+///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
+///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
+/// Becomes:
+///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
+///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
+///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
+///
+///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
+///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
+///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
+bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
+  if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
+    DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
+    NumNotSplitIdenticalOperands++;
+    return false;
+  }
+  if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
+      CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
+    DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or "
+          "chain of copies.\n");
+    NumNotSplitChainCopies++;
+    return false;
+  }
+  // Note: keep in sync with computeBranchTargetAndInversion().
+  if (CRI.MI->getOpcode() != PPC::CROR &&
+      CRI.MI->getOpcode() != PPC::CRAND &&
+      CRI.MI->getOpcode() != PPC::CRNOR &&
+      CRI.MI->getOpcode() != PPC::CRNAND &&
+      CRI.MI->getOpcode() != PPC::CRORC &&
+      CRI.MI->getOpcode() != PPC::CRANDC) {
+    DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
+    NumNotSplitWrongOpcode++;
+    return false;
+  }
+  DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
+  MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
+  MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
+
+  bool UsingDef1 = false;
+  MachineInstr *SplitBefore = &*Def2It;
+  for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
+    if (Def1It == Def2It) { // Def2 comes before Def1.
+      SplitBefore = &*Def1It;
+      UsingDef1 = true;
+      break;
+    }
+  }
+
+  DEBUG(dbgs() << "We will split the following block:\n";);
+  DEBUG(CRI.MI->getParent()->dump());
+  DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
+
+  // Get the branch instruction.
+  MachineInstr *Branch =
+    MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
+
+  // We want the new block to have no code in it other than the definition
+  // of the input to the CR logical and the CR logical itself. So we move
+  // those to the bottom of the block (just before the branch). Then we
+  // will split before the CR logical.
+  MachineBasicBlock *MBB = SplitBefore->getParent();
+  auto FirstTerminator = MBB->getFirstTerminator();
+  MachineBasicBlock::iterator FirstInstrToMove =
+    UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
+  MachineBasicBlock::iterator SecondInstrToMove =
+    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
+
+  // The instructions that need to be moved are not guaranteed to be
+  // contiguous. Move them individually.
+  // FIXME: If one of the operands is a chain of (single use) copies, they
+  // can all be moved and we can still split.
+  MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
+  if (FirstInstrToMove != SecondInstrToMove)
+    MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
+  MBB->splice(FirstTerminator, MBB, CRI.MI);
+
+  unsigned Opc = CRI.MI->getOpcode();
+  bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
+  computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
+                                  InvertNewBranch, InvertOrigBranch,
+                                  TargetIsFallThrough);
+  MachineInstr *SplitCond =
+    UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
+  DEBUG(dbgs() << "We will " <<  (InvertNewBranch ? "invert" : "copy"));
+  DEBUG(dbgs() << " the original branch and the target is the " <<
+        (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n"));
+  DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
+  BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
+    InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
+    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
+  bool Changed = splitMBB(BSI);
+  // If we've split on a CR logical that is fed by a CR logical,
+  // recompute the source CR logical as it may be usable for splitting.
+  if (Changed) {
+    bool Input1CRlogical =
+      CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
+    bool Input2CRlogical =
+      CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
+    if (Input1CRlogical)
+      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
+    if (Input2CRlogical)
+      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
+  }
+  return Changed;
+}
+
+void PPCReduceCRLogicals::collectCRLogicals() {
+  for (MachineBasicBlock &MBB : *MF) {
+    for (MachineInstr &MI : MBB) {
+      if (isCRLogical(MI)) {
+        AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
+        TotalCRLogicals++;
+        if (AllCRLogicalOps.back().IsNullary)
+          TotalNullaryCRLogicals++;
+        else if (AllCRLogicalOps.back().IsBinary)
+          TotalBinaryCRLogicals++;
+        else
+          TotalUnaryCRLogicals++;
+      }
+    }
+  }
+}
+
+} // end annonymous namespace
+
+INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
+                      "PowerPC Reduce CR logical Operation", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
+                    "PowerPC Reduce CR logical Operation", false, false)
+
+char PPCReduceCRLogicals::ID = 0;
+FunctionPass*
+llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }