NFC: make AtomicOrdering an enum class
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
diff --git a/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
index 38d87cb..dad42a8 100644
--- a/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ b/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
@@ -480,14 +480,16 @@
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
uint32_t v = 0;
switch (ord) {
- case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
- case Unordered: // Fall-through.
- case Monotonic: v = 0; break;
- // case Consume: v = 1; break; // Not specified yet.
- case Acquire: v = 2; break;
- case Release: v = 3; break;
- case AcquireRelease: v = 4; break;
- case SequentiallyConsistent: v = 5; break;
+ case AtomicOrdering::NotAtomic:
+ llvm_unreachable("unexpected atomic ordering!");
+ case AtomicOrdering::Unordered: // Fall-through.
+ case AtomicOrdering::Monotonic: v = 0; break;
+ // Not specified yet:
+ // case AtomicOrdering::Consume: v = 1; break;
+ case AtomicOrdering::Acquire: v = 2; break;
+ case AtomicOrdering::Release: v = 3; break;
+ case AtomicOrdering::AcquireRelease: v = 4; break;
+ case AtomicOrdering::SequentiallyConsistent: v = 5; break;
}
return IRB->getInt32(v);
}