Move CheckICE and isIntegerConstantExpr to ExprConstant.cpp because it seemed
like a good idea at the time.
llvm-svn: 103237
diff --git a/clang/lib/AST/ExprConstant.cpp b/clang/lib/AST/ExprConstant.cpp
index c1a42d8..f6e0c29 100644
--- a/clang/lib/AST/ExprConstant.cpp
+++ b/clang/lib/AST/ExprConstant.cpp
@@ -2159,3 +2159,382 @@
return EvalResult.Val.getInt();
}
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+///
+/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
+/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
+/// cast+dereference.
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evalute.
+//
+// Meanings of Val:
+// 0: This expression is an ICE if it can be evaluated by Evaluate.
+// 1: This expression is not an ICE, but if it isn't evaluated, it's
+// a legal subexpression for an ICE. This return value is used to handle
+// the comma operator in C99 mode.
+// 2: This expression is not an ICE, and is not a legal subexpression for one.
+
+struct ICEDiag {
+ unsigned Val;
+ SourceLocation Loc;
+
+ public:
+ ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
+ ICEDiag() : Val(0) {}
+};
+
+ICEDiag NoDiag() { return ICEDiag(); }
+
+static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
+ Expr::EvalResult EVResult;
+ if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+ return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
+ assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+ if (!E->getType()->isIntegralType()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+
+ switch (E->getStmtClass()) {
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::PredefinedExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::StringLiteralClass:
+ case Expr::ArraySubscriptExprClass:
+ case Expr::MemberExprClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::InitListExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::StmtExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXBindTemporaryExprClass:
+ case Expr::CXXBindReferenceExprClass:
+ case Expr::CXXExprWithTemporariesClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCImplicitSetterGetterRefExprClass:
+ case Expr::ObjCSuperExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::BlockExprClass:
+ case Expr::BlockDeclRefExprClass:
+ case Expr::NoStmtClass:
+ return ICEDiag(2, E->getLocStart());
+
+ case Expr::GNUNullExprClass:
+ // GCC considers the GNU __null value to be an integral constant expression.
+ return NoDiag();
+
+ case Expr::ParenExprClass:
+ return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+ case Expr::IntegerLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXZeroInitValueExprClass:
+ case Expr::TypesCompatibleExprClass:
+ case Expr::UnaryTypeTraitExprClass:
+ return NoDiag();
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (CE->isBuiltinCall(Ctx))
+ return CheckEvalInICE(E, Ctx);
+ return ICEDiag(2, E->getLocStart());
+ }
+ case Expr::DeclRefExprClass:
+ if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return NoDiag();
+ if (Ctx.getLangOptions().CPlusPlus &&
+ E->getType().getCVRQualifiers() == Qualifiers::Const) {
+ const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ // Parameter variables are never constants. Without this check,
+ // getAnyInitializer() can find a default argument, which leads
+ // to chaos.
+ if (isa<ParmVarDecl>(D))
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+
+ // C++ 7.1.5.1p2
+ // A variable of non-volatile const-qualified integral or enumeration
+ // type initialized by an ICE can be used in ICEs.
+ if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
+ Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
+ if (Quals.hasVolatile() || !Quals.hasConst())
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+
+ // Look for a declaration of this variable that has an initializer.
+ const VarDecl *ID = 0;
+ const Expr *Init = Dcl->getAnyInitializer(ID);
+ if (Init) {
+ if (ID->isInitKnownICE()) {
+ // We have already checked whether this subexpression is an
+ // integral constant expression.
+ if (ID->isInitICE())
+ return NoDiag();
+ else
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+ }
+
+ // It's an ICE whether or not the definition we found is
+ // out-of-line. See DR 721 and the discussion in Clang PR
+ // 6206 for details.
+
+ if (Dcl->isCheckingICE()) {
+ return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+ }
+
+ Dcl->setCheckingICE();
+ ICEDiag Result = CheckICE(Init, Ctx);
+ // Cache the result of the ICE test.
+ Dcl->setInitKnownICE(Result.Val == 0);
+ return Result;
+ }
+ }
+ }
+ return ICEDiag(2, E->getLocStart());
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case UnaryOperator::PostInc:
+ case UnaryOperator::PostDec:
+ case UnaryOperator::PreInc:
+ case UnaryOperator::PreDec:
+ case UnaryOperator::AddrOf:
+ case UnaryOperator::Deref:
+ return ICEDiag(2, E->getLocStart());
+ case UnaryOperator::Extension:
+ case UnaryOperator::LNot:
+ case UnaryOperator::Plus:
+ case UnaryOperator::Minus:
+ case UnaryOperator::Not:
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ return CheckICE(Exp->getSubExpr(), Ctx);
+ case UnaryOperator::OffsetOf:
+ break;
+ }
+
+ // OffsetOf falls through here.
+ }
+ case Expr::OffsetOfExprClass: {
+ // Note that per C99, offsetof must be an ICE. And AFAIK, using
+ // Evaluate matches the proposed gcc behavior for cases like
+ // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect
+ // compliance: we should warn earlier for offsetof expressions with
+ // array subscripts that aren't ICEs, and if the array subscripts
+ // are ICEs, the value of the offsetof must be an integer constant.
+ return CheckEvalInICE(E, Ctx);
+ }
+ case Expr::SizeOfAlignOfExprClass: {
+ const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
+ if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
+ return ICEDiag(2, E->getLocStart());
+ return NoDiag();
+ }
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case BinaryOperator::PtrMemD:
+ case BinaryOperator::PtrMemI:
+ case BinaryOperator::Assign:
+ case BinaryOperator::MulAssign:
+ case BinaryOperator::DivAssign:
+ case BinaryOperator::RemAssign:
+ case BinaryOperator::AddAssign:
+ case BinaryOperator::SubAssign:
+ case BinaryOperator::ShlAssign:
+ case BinaryOperator::ShrAssign:
+ case BinaryOperator::AndAssign:
+ case BinaryOperator::XorAssign:
+ case BinaryOperator::OrAssign:
+ return ICEDiag(2, E->getLocStart());
+
+ case BinaryOperator::Mul:
+ case BinaryOperator::Div:
+ case BinaryOperator::Rem:
+ case BinaryOperator::Add:
+ case BinaryOperator::Sub:
+ case BinaryOperator::Shl:
+ case BinaryOperator::Shr:
+ case BinaryOperator::LT:
+ case BinaryOperator::GT:
+ case BinaryOperator::LE:
+ case BinaryOperator::GE:
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ case BinaryOperator::And:
+ case BinaryOperator::Xor:
+ case BinaryOperator::Or:
+ case BinaryOperator::Comma: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (Exp->getOpcode() == BinaryOperator::Div ||
+ Exp->getOpcode() == BinaryOperator::Rem) {
+ // Evaluate gives an error for undefined Div/Rem, so make sure
+ // we don't evaluate one.
+ if (LHSResult.Val != 2 && RHSResult.Val != 2) {
+ llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
+ if (REval == 0)
+ return ICEDiag(1, E->getLocStart());
+ if (REval.isSigned() && REval.isAllOnesValue()) {
+ llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
+ if (LEval.isMinSignedValue())
+ return ICEDiag(1, E->getLocStart());
+ }
+ }
+ }
+ if (Exp->getOpcode() == BinaryOperator::Comma) {
+ if (Ctx.getLangOptions().C99) {
+ // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+ // if it isn't evaluated.
+ if (LHSResult.Val == 0 && RHSResult.Val == 0)
+ return ICEDiag(1, E->getLocStart());
+ } else {
+ // In both C89 and C++, commas in ICEs are illegal.
+ return ICEDiag(2, E->getLocStart());
+ }
+ }
+ if (LHSResult.Val >= RHSResult.Val)
+ return LHSResult;
+ return RHSResult;
+ }
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (LHSResult.Val == 0 && RHSResult.Val == 1) {
+ // Rare case where the RHS has a comma "side-effect"; we need
+ // to actually check the condition to see whether the side
+ // with the comma is evaluated.
+ if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
+ (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
+ return RHSResult;
+ return NoDiag();
+ }
+
+ if (LHSResult.Val >= RHSResult.Val)
+ return LHSResult;
+ return RHSResult;
+ }
+ }
+ }
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass: {
+ const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+ if (SubExpr->getType()->isIntegralType())
+ return CheckICE(SubExpr, Ctx);
+ if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
+ return NoDiag();
+ return ICEDiag(2, E->getLocStart());
+ }
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // then only the true side is actually considered in an integer constant
+ // expression, and it is fully evaluated. This is an important GNU
+ // extension. See GCC PR38377 for discussion.
+ if (const CallExpr *CallCE
+ = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+ if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
+ Expr::EvalResult EVResult;
+ if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt()) {
+ return ICEDiag(2, E->getLocStart());
+ }
+ return NoDiag();
+ }
+ ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+ ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (CondResult.Val == 2)
+ return CondResult;
+ if (TrueResult.Val == 2)
+ return TrueResult;
+ if (FalseResult.Val == 2)
+ return FalseResult;
+ if (CondResult.Val == 1)
+ return CondResult;
+ if (TrueResult.Val == 0 && FalseResult.Val == 0)
+ return NoDiag();
+ // Rare case where the diagnostics depend on which side is evaluated
+ // Note that if we get here, CondResult is 0, and at least one of
+ // TrueResult and FalseResult is non-zero.
+ if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
+ return FalseResult;
+ }
+ return TrueResult;
+ }
+ case Expr::CXXDefaultArgExprClass:
+ return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+ case Expr::ChooseExprClass: {
+ return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
+ }
+ }
+
+ // Silence a GCC warning
+ return ICEDiag(2, E->getLocStart());
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ ICEDiag d = CheckICE(this, Ctx);
+ if (d.Val != 0) {
+ if (Loc) *Loc = d.Loc;
+ return false;
+ }
+ EvalResult EvalResult;
+ if (!Evaluate(EvalResult, Ctx))
+ llvm_unreachable("ICE cannot be evaluated!");
+ assert(!EvalResult.HasSideEffects && "ICE with side effects!");
+ assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
+ Result = EvalResult.Val.getInt();
+ return true;
+}