math: Add frexp ported from amd-builtins

The float implementation is almost a direct port from the amd-builtins,
but instead of just having a scalar and float4 implementation, it has
a scalar and arbitrary width vector implementation.

The double scalar is also a direct port from AMD's builtin release.

The double vector implementation copies the logic in the float vector
implementation using the values from the double scalar version.

Both have been tested in piglit using tests sent to that project's
mailing list.

Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 260114
diff --git a/libclc/generic/lib/math/frexp.inc b/libclc/generic/lib/math/frexp.inc
new file mode 100644
index 0000000..0f5ddea
--- /dev/null
+++ b/libclc/generic/lib/math/frexp.inc
@@ -0,0 +1,110 @@
+/*
+ * Copyright (c) 2014 Advanced Micro Devices, Inc.
+ * Copyright (c) 2016 Aaron Watry
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#if __CLC_FPSIZE == 32
+#ifdef __CLC_SCALAR
+_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE frexp(float x, private int *ep) {
+    int i = as_int(x);
+    int ai = i & 0x7fffffff;
+    int d = ai > 0 & ai < 0x00800000;
+    // scale subnormal by 2^26 without multiplying
+    float s = as_float(ai | 0x0d800000) - 0x1.0p-100F;
+    ai = d ? as_int(s) : ai;
+    int e = (ai >> 23) - 126 - (d ? 26 : 0);
+    int t = ai == 0 | e == 129;
+    i = (i & 0x80000000) | 0x3f000000 | (ai & 0x007fffff);
+    *ep = t ? 0 : e;
+    return t ? x : as_float(i);
+}
+#define __CLC_FREXP_VEC(width) \
+_CLC_OVERLOAD _CLC_DEF float##width frexp(float##width x, private int##width *ep) { \
+    int##width i = as_int##width(x); \
+    int##width ai = i & 0x7fffffff; \
+    int##width d = ai > 0 & ai < 0x00800000; \
+    /* scale subnormal by 2^26 without multiplying */ \
+    float##width s = as_float##width(ai | 0x0d800000) - 0x1.0p-100F; \
+    ai = bitselect(ai, as_int##width(s), d); \
+    int##width e = (ai >> 23) - 126 - bitselect((int##width)0, (int##width)26, d); \
+    int##width t = ai == (int##width)0 | e == (int##width)129; \
+    i = (i & (int##width)0x80000000) | (int##width)0x3f000000 | (ai & 0x007fffff); \
+    *ep = bitselect(e, (int##width)0, t); \
+    return bitselect(as_float##width(i), x, as_float##width(t)); \
+}
+__CLC_FREXP_VEC(2)
+__CLC_FREXP_VEC(3)
+__CLC_FREXP_VEC(4)
+__CLC_FREXP_VEC(8)
+__CLC_FREXP_VEC(16)
+#undef __CLC_FREXP_VEC
+#endif
+#endif
+
+#if __CLC_FPSIZE == 64
+#ifdef __CLC_SCALAR
+_CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE frexp(__CLC_GENTYPE x, private __CLC_INTN *ep) {
+    long i = as_long(x);
+    long ai = i & 0x7fffffffffffffffL;
+    int d = ai > 0 & ai < 0x0010000000000000L;
+    // scale subnormal by 2^54 without multiplying
+    double s = as_double(ai | 0x0370000000000000L) - 0x1.0p-968;
+    ai = d ? as_long(s) : ai;
+    int e = (int)(ai >> 52) - 1022 - (d ? 54 : 0);
+    int t = ai == 0 | e == 1025;
+    i = (i & 0x8000000000000000L) | 0x3fe0000000000000L | (ai & 0x000fffffffffffffL);
+    *ep = t ? 0 : e;
+    return t ? x : as_double(i);
+}
+#define __CLC_FREXP_VEC(width) \
+_CLC_OVERLOAD _CLC_DEF double##width frexp(double##width x, private int##width *ep) { \
+    long##width i = as_long##width(x); \
+    long##width ai = i & 0x7fffffffffffffffL; \
+    long##width d = ai > 0 & ai < 0x0010000000000000L; \
+    /* scale subnormal by 2^54 without multiplying */ \
+    double##width s = as_double##width(ai | 0x0370000000000000L) - 0x1.0p-968; \
+    ai = bitselect(ai, as_long##width(s), d); \
+    int##width e = convert_int##width(ai >> 52) - 1022 - bitselect((int##width)0, (int##width)54, convert_int##width(d)); \
+    int##width t = convert_int##width(ai == (long##width)0) | (e == (int##width)129); \
+    i = (i & (long##width)0x8000000000000000L) | (long##width)0x3fe0000000000000L | (ai & 0x000fffffffffffffL); \
+    *ep = bitselect(e, (int##width)0, t); \
+    return bitselect(as_double##width(i), x, as_double##width(convert_long##width(t))); \
+}
+__CLC_FREXP_VEC(2)
+__CLC_FREXP_VEC(3)
+__CLC_FREXP_VEC(4)
+__CLC_FREXP_VEC(8)
+__CLC_FREXP_VEC(16)
+#undef __CLC_FREXP_VEC
+#endif
+#endif
+
+#define __CLC_FREXP_DEF(addrspace) \
+  _CLC_OVERLOAD _CLC_DEF __CLC_GENTYPE frexp(__CLC_GENTYPE x, addrspace __CLC_INTN *iptr) { \
+    __CLC_INTN private_iptr; \
+    __CLC_GENTYPE ret = frexp(x, &private_iptr); \
+    *iptr = private_iptr; \
+    return ret; \
+}
+
+__CLC_FREXP_DEF(local);
+__CLC_FREXP_DEF(global);
+
+#undef __CLC_FREXP_DEF