[AArch64] Refactor floating point materialization. NFC
It splits the login of actual instruction emission away from the logic
that figures out the appropriate sequence on AArch64ExpandPseudo::expandMOVImm.
The new function AArch64_IMM::expandMOVImm, which return the list of the 
instructions to materialize the immediate constant, is implemented on a 
separated unit because it will be used in a subsequent patch to optimize
floating point materialization.
Reviewers: efriedma
Differential Revision: https://reviews.llvm.org/D58915
llvm-svn: 356387
diff --git a/llvm/lib/Target/AArch64/AArch64ExpandImm.cpp b/llvm/lib/Target/AArch64/AArch64ExpandImm.cpp
new file mode 100644
index 0000000..c8602da
--- /dev/null
+++ b/llvm/lib/Target/AArch64/AArch64ExpandImm.cpp
@@ -0,0 +1,408 @@
+//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64ExpandImm stuff.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "AArch64ExpandImm.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+
+namespace llvm {
+
+namespace AArch64_IMM {
+
+/// Helper function which extracts the specified 16-bit chunk from a
+/// 64-bit value.
+static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
+  assert(ChunkIdx < 4 && "Out of range chunk index specified!");
+
+  return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
+}
+
+/// Check whether the given 16-bit chunk replicated to full 64-bit width
+/// can be materialized with an ORR instruction.
+static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
+  Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
+
+  return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
+}
+
+/// Check for identical 16-bit chunks within the constant and if so
+/// materialize them with a single ORR instruction. The remaining one or two
+/// 16-bit chunks will be materialized with MOVK instructions.
+///
+/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
+/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
+/// an ORR instruction.
+static bool tryToreplicateChunks(uint64_t UImm,
+				 SmallVectorImpl<ImmInsnModel> &Insn) {
+  using CountMap = DenseMap<uint64_t, unsigned>;
+
+  CountMap Counts;
+
+  // Scan the constant and count how often every chunk occurs.
+  for (unsigned Idx = 0; Idx < 4; ++Idx)
+    ++Counts[getChunk(UImm, Idx)];
+
+  // Traverse the chunks to find one which occurs more than once.
+  for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
+       Chunk != End; ++Chunk) {
+    const uint64_t ChunkVal = Chunk->first;
+    const unsigned Count = Chunk->second;
+
+    uint64_t Encoding = 0;
+
+    // We are looking for chunks which have two or three instances and can be
+    // materialized with an ORR instruction.
+    if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
+      continue;
+
+    const bool CountThree = Count == 3;
+
+    Insn.push_back({ AArch64::ORRXri, 0, Encoding });
+
+    unsigned ShiftAmt = 0;
+    uint64_t Imm16 = 0;
+    // Find the first chunk not materialized with the ORR instruction.
+    for (; ShiftAmt < 64; ShiftAmt += 16) {
+      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+      if (Imm16 != ChunkVal)
+        break;
+    }
+
+    // Create the first MOVK instruction.
+    Insn.push_back({ AArch64::MOVKXi, Imm16,
+		     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
+
+    // In case we have three instances the whole constant is now materialized
+    // and we can exit.
+    if (CountThree)
+      return true;
+
+    // Find the remaining chunk which needs to be materialized.
+    for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
+      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
+
+      if (Imm16 != ChunkVal)
+        break;
+    }
+    Insn.push_back({ AArch64::MOVKXi, Imm16,
+                     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
+    return true;
+  }
+
+  return false;
+}
+
+/// Check whether this chunk matches the pattern '1...0...'. This pattern
+/// starts a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isStartChunk(uint64_t Chunk) {
+  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
+    return false;
+
+  return isMask_64(~Chunk);
+}
+
+/// Check whether this chunk matches the pattern '0...1...' This pattern
+/// ends a contiguous sequence of ones if we look at the bits from the LSB
+/// towards the MSB.
+static bool isEndChunk(uint64_t Chunk) {
+  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
+    return false;
+
+  return isMask_64(Chunk);
+}
+
+/// Clear or set all bits in the chunk at the given index.
+static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
+  const uint64_t Mask = 0xFFFF;
+
+  if (Clear)
+    // Clear chunk in the immediate.
+    Imm &= ~(Mask << (Idx * 16));
+  else
+    // Set all bits in the immediate for the particular chunk.
+    Imm |= Mask << (Idx * 16);
+
+  return Imm;
+}
+
+/// Check whether the constant contains a sequence of contiguous ones,
+/// which might be interrupted by one or two chunks. If so, materialize the
+/// sequence of contiguous ones with an ORR instruction.
+/// Materialize the chunks which are either interrupting the sequence or outside
+/// of the sequence with a MOVK instruction.
+///
+/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
+/// which ends the sequence (0...1...). Then we are looking for constants which
+/// contain at least one S and E chunk.
+/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
+///
+/// We are also looking for constants like |S|A|B|E| where the contiguous
+/// sequence of ones wraps around the MSB into the LSB.
+static bool trySequenceOfOnes(uint64_t UImm,
+                              SmallVectorImpl<ImmInsnModel> &Insn) {
+  const int NotSet = -1;
+  const uint64_t Mask = 0xFFFF;
+
+  int StartIdx = NotSet;
+  int EndIdx = NotSet;
+  // Try to find the chunks which start/end a contiguous sequence of ones.
+  for (int Idx = 0; Idx < 4; ++Idx) {
+    int64_t Chunk = getChunk(UImm, Idx);
+    // Sign extend the 16-bit chunk to 64-bit.
+    Chunk = (Chunk << 48) >> 48;
+
+    if (isStartChunk(Chunk))
+      StartIdx = Idx;
+    else if (isEndChunk(Chunk))
+      EndIdx = Idx;
+  }
+
+  // Early exit in case we can't find a start/end chunk.
+  if (StartIdx == NotSet || EndIdx == NotSet)
+    return false;
+
+  // Outside of the contiguous sequence of ones everything needs to be zero.
+  uint64_t Outside = 0;
+  // Chunks between the start and end chunk need to have all their bits set.
+  uint64_t Inside = Mask;
+
+  // If our contiguous sequence of ones wraps around from the MSB into the LSB,
+  // just swap indices and pretend we are materializing a contiguous sequence
+  // of zeros surrounded by a contiguous sequence of ones.
+  if (StartIdx > EndIdx) {
+    std::swap(StartIdx, EndIdx);
+    std::swap(Outside, Inside);
+  }
+
+  uint64_t OrrImm = UImm;
+  int FirstMovkIdx = NotSet;
+  int SecondMovkIdx = NotSet;
+
+  // Find out which chunks we need to patch up to obtain a contiguous sequence
+  // of ones.
+  for (int Idx = 0; Idx < 4; ++Idx) {
+    const uint64_t Chunk = getChunk(UImm, Idx);
+
+    // Check whether we are looking at a chunk which is not part of the
+    // contiguous sequence of ones.
+    if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
+      OrrImm = updateImm(OrrImm, Idx, Outside == 0);
+
+      // Remember the index we need to patch.
+      if (FirstMovkIdx == NotSet)
+        FirstMovkIdx = Idx;
+      else
+        SecondMovkIdx = Idx;
+
+      // Check whether we are looking a chunk which is part of the contiguous
+      // sequence of ones.
+    } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
+      OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
+
+      // Remember the index we need to patch.
+      if (FirstMovkIdx == NotSet)
+        FirstMovkIdx = Idx;
+      else
+        SecondMovkIdx = Idx;
+    }
+  }
+  assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
+
+  // Create the ORR-immediate instruction.
+  uint64_t Encoding = 0;
+  AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
+  Insn.push_back({ AArch64::ORRXri, 0, Encoding });
+
+  const bool SingleMovk = SecondMovkIdx == NotSet;
+  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
+                   AArch64_AM::getShifterImm(AArch64_AM::LSL,
+                                             FirstMovkIdx * 16) });
+
+  // Early exit in case we only need to emit a single MOVK instruction.
+  if (SingleMovk)
+    return true;
+
+  // Create the second MOVK instruction.
+  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
+	           AArch64_AM::getShifterImm(AArch64_AM::LSL,
+                                             SecondMovkIdx * 16) });
+
+  return true;
+}
+
+/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
+/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
+static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
+				      unsigned OneChunks, unsigned ZeroChunks,
+				      SmallVectorImpl<ImmInsnModel> &Insn) {
+  const unsigned Mask = 0xFFFF;
+
+  // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
+  // more MOVK instructions to insert additional 16-bit portions into the
+  // lower bits.
+  bool isNeg = false;
+
+  // Use MOVN to materialize the high bits if we have more all one chunks
+  // than all zero chunks.
+  if (OneChunks > ZeroChunks) {
+    isNeg = true;
+    Imm = ~Imm;
+  }
+
+  unsigned FirstOpc;
+  if (BitSize == 32) {
+    Imm &= (1LL << 32) - 1;
+    FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
+  } else {
+    FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
+  }
+  unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
+  unsigned LastShift = 0; // LSL amount for last MOVK
+  if (Imm != 0) {
+    unsigned LZ = countLeadingZeros(Imm);
+    unsigned TZ = countTrailingZeros(Imm);
+    Shift = (TZ / 16) * 16;
+    LastShift = ((63 - LZ) / 16) * 16;
+  }
+  unsigned Imm16 = (Imm >> Shift) & Mask;
+
+  Insn.push_back({ FirstOpc, Imm16,
+                   AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
+
+  if (Shift == LastShift)
+    return;
+
+  // If a MOVN was used for the high bits of a negative value, flip the rest
+  // of the bits back for use with MOVK.
+  if (isNeg)
+    Imm = ~Imm;
+
+  unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
+  while (Shift < LastShift) {
+    Shift += 16;
+    Imm16 = (Imm >> Shift) & Mask;
+    if (Imm16 == (isNeg ? Mask : 0))
+      continue; // This 16-bit portion is already set correctly.
+
+    Insn.push_back({ Opc, Imm16,
+                     AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
+  }
+}
+
+/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
+/// real move-immediate instructions to synthesize the immediate.
+void expandMOVImm(uint64_t Imm, unsigned BitSize,
+		  SmallVectorImpl<ImmInsnModel> &Insn) {
+  const unsigned Mask = 0xFFFF;
+
+  // Scan the immediate and count the number of 16-bit chunks which are either
+  // all ones or all zeros.
+  unsigned OneChunks = 0;
+  unsigned ZeroChunks = 0;
+  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
+    const unsigned Chunk = (Imm >> Shift) & Mask;
+    if (Chunk == Mask)
+      OneChunks++;
+    else if (Chunk == 0)
+      ZeroChunks++;
+  }
+
+  // FIXME: Prefer MOVZ/MOVN over ORR because of the rules for the "mov"
+  // alias.
+
+  // Try a single ORR.
+  uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+  uint64_t Encoding;
+  if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+    unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
+    Insn.push_back({ Opc, 0, Encoding });
+    return;
+  }
+
+  // One to up three instruction sequences.
+  //
+  // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
+  // fastest sequence with fast literal generation.
+  if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
+    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
+    return;
+  }
+
+  assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
+                          "MOVZ/MOVK pair");
+
+  // Try other two-instruction sequences.
+
+  // 64-bit ORR followed by MOVK.
+  // We try to construct the ORR immediate in three different ways: either we
+  // zero out the chunk which will be replaced, we fill the chunk which will
+  // be replaced with ones, or we take the bit pattern from the other half of
+  // the 64-bit immediate. This is comprehensive because of the way ORR
+  // immediates are constructed.
+  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
+    uint64_t ShiftedMask = (0xFFFFULL << Shift);
+    uint64_t ZeroChunk = UImm & ~ShiftedMask;
+    uint64_t OneChunk = UImm | ShiftedMask;
+    uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
+    uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
+    if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
+        AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
+        AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
+                                            Encoding)) {
+      // Create the ORR-immediate instruction.
+      Insn.push_back({ AArch64::ORRXri, 0, Encoding });
+
+      // Create the MOVK instruction.
+      const unsigned Imm16 = getChunk(UImm, Shift / 16);
+      Insn.push_back({ AArch64::MOVKXi, Imm16,
+		       AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
+      return;
+    }
+  }
+
+  // FIXME: Add more two-instruction sequences.
+
+  // Three instruction sequences.
+  //
+  // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
+  // the fastest sequence with fast literal generation. (If neither MOVK is
+  // part of a fast literal generation pair, it could be slower than the
+  // four-instruction sequence, but we won't worry about that for now.)
+  if (OneChunks || ZeroChunks) {
+    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
+    return;
+  }
+
+  // Check for identical 16-bit chunks within the constant and if so materialize
+  // them with a single ORR instruction. The remaining one or two 16-bit chunks
+  // will be materialized with MOVK instructions.
+  if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
+    return;
+
+  // Check whether the constant contains a sequence of contiguous ones, which
+  // might be interrupted by one or two chunks. If so, materialize the sequence
+  // of contiguous ones with an ORR instruction. Materialize the chunks which
+  // are either interrupting the sequence or outside of the sequence with a
+  // MOVK instruction.
+  if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
+    return;
+
+  // We found no possible two or three instruction sequence; use the general
+  // four-instruction sequence.
+  expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
+}
+
+} // end namespace AArch64_AM
+
+} // end namespace llvm