[PM] Switch the TargetMachine interface from accepting a pass manager
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
llvm-svn: 227685
diff --git a/llvm/lib/Target/TargetMachineC.cpp b/llvm/lib/Target/TargetMachineC.cpp
index 0a80b4a..9d759a3 100644
--- a/llvm/lib/Target/TargetMachineC.cpp
+++ b/llvm/lib/Target/TargetMachineC.cpp
@@ -14,6 +14,7 @@
#include "llvm-c/TargetMachine.h"
#include "llvm-c/Core.h"
#include "llvm-c/Target.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
@@ -255,5 +256,5 @@
}
void LLVMAddAnalysisPasses(LLVMTargetMachineRef T, LLVMPassManagerRef PM) {
- unwrap(T)->addAnalysisPasses(*unwrap(PM));
+ unwrap(PM)->add(createTargetTransformInfoWrapperPass(unwrap(T)->getTTI()));
}