Great renaming: Sparc --> SparcV9

llvm-svn: 11826
diff --git a/llvm/lib/Target/SparcV9/SparcV9RegInfo.cpp b/llvm/lib/Target/SparcV9/SparcV9RegInfo.cpp
new file mode 100644
index 0000000..42f68db
--- /dev/null
+++ b/llvm/lib/Target/SparcV9/SparcV9RegInfo.cpp
@@ -0,0 +1,978 @@
+//===-- SparcV9RegInfo.cpp - SparcV9 Target Register Information --------------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains implementation of SparcV9 specific helper methods
+// used for register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionInfo.h"
+#include "llvm/CodeGen/InstrSelection.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineCodeForInstruction.h"
+#include "llvm/CodeGen/MachineInstrAnnot.h"
+#include "RegAlloc/LiveRangeInfo.h"
+#include "RegAlloc/LiveRange.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iOther.h"
+#include "SparcV9Internals.h"
+#include "SparcV9RegClassInfo.h"
+#include "SparcV9RegInfo.h"
+#include "SparcV9TargetMachine.h"
+
+namespace llvm {
+
+enum {
+  BadRegClass = ~0
+};
+
+SparcV9RegInfo::SparcV9RegInfo(const SparcV9TargetMachine &tgt)
+  : TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32)
+{
+  MachineRegClassArr.push_back(new SparcV9IntRegClass(IntRegClassID));
+  MachineRegClassArr.push_back(new SparcV9FloatRegClass(FloatRegClassID));
+  MachineRegClassArr.push_back(new SparcV9IntCCRegClass(IntCCRegClassID));
+  MachineRegClassArr.push_back(new SparcV9FloatCCRegClass(FloatCCRegClassID));
+  MachineRegClassArr.push_back(new SparcV9SpecialRegClass(SpecialRegClassID));
+  
+  assert(SparcV9FloatRegClass::StartOfNonVolatileRegs == 32 && 
+         "32 Float regs are used for float arg passing");
+}
+
+
+// getZeroRegNum - returns the register that contains always zero.
+// this is the unified register number
+//
+unsigned SparcV9RegInfo::getZeroRegNum() const {
+  return getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                          SparcV9IntRegClass::g0);
+}
+
+// getCallAddressReg - returns the reg used for pushing the address when a
+// method is called. This can be used for other purposes between calls
+//
+unsigned SparcV9RegInfo::getCallAddressReg() const {
+  return getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                          SparcV9IntRegClass::o7);
+}
+
+// Returns the register containing the return address.
+// It should be made sure that this  register contains the return 
+// value when a return instruction is reached.
+//
+unsigned SparcV9RegInfo::getReturnAddressReg() const {
+  return getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                          SparcV9IntRegClass::i7);
+}
+
+// Register get name implementations...
+
+// Int register names in same order as enum in class SparcV9IntRegClass
+static const char * const IntRegNames[] = {
+  "o0", "o1", "o2", "o3", "o4", "o5",       "o7",
+  "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+  "i0", "i1", "i2", "i3", "i4", "i5",  
+  "i6", "i7",
+  "g0", "g1", "g2", "g3", "g4", "g5",  "g6", "g7", 
+  "o6"
+}; 
+
+const char * const SparcV9IntRegClass::getRegName(unsigned reg) const {
+  assert(reg < NumOfAllRegs);
+  return IntRegNames[reg];
+}
+
+static const char * const FloatRegNames[] = {    
+  "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",  "f8",  "f9", 
+  "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",
+  "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",
+  "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
+  "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",
+  "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",
+  "f60", "f61", "f62", "f63"
+};
+
+const char * const SparcV9FloatRegClass::getRegName(unsigned reg) const {
+  assert (reg < NumOfAllRegs);
+  return FloatRegNames[reg];
+}
+
+
+static const char * const IntCCRegNames[] = {    
+  "xcc",  "icc",  "ccr"
+};
+
+const char * const SparcV9IntCCRegClass::getRegName(unsigned reg) const {
+  assert(reg < 3);
+  return IntCCRegNames[reg];
+}
+
+static const char * const FloatCCRegNames[] = {    
+  "fcc0", "fcc1",  "fcc2",  "fcc3"
+};
+
+const char * const SparcV9FloatCCRegClass::getRegName(unsigned reg) const {
+  assert (reg < 5);
+  return FloatCCRegNames[reg];
+}
+
+static const char * const SpecialRegNames[] = {    
+  "fsr"
+};
+
+const char * const SparcV9SpecialRegClass::getRegName(unsigned reg) const {
+  assert (reg < 1);
+  return SpecialRegNames[reg];
+}
+
+// Get unified reg number for frame pointer
+unsigned SparcV9RegInfo::getFramePointer() const {
+  return getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                          SparcV9IntRegClass::i6);
+}
+
+// Get unified reg number for stack pointer
+unsigned SparcV9RegInfo::getStackPointer() const {
+  return getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                          SparcV9IntRegClass::o6);
+}
+
+
+//---------------------------------------------------------------------------
+// Finds whether a call is an indirect call
+//---------------------------------------------------------------------------
+
+inline bool
+isVarArgsFunction(const Type *funcType) {
+  return cast<FunctionType>(cast<PointerType>(funcType)
+                            ->getElementType())->isVarArg();
+}
+
+inline bool
+isVarArgsCall(const MachineInstr *CallMI) {
+  Value* callee = CallMI->getOperand(0).getVRegValue();
+  // const Type* funcType = isa<Function>(callee)? callee->getType()
+  //   : cast<PointerType>(callee->getType())->getElementType();
+  const Type* funcType = callee->getType();
+  return isVarArgsFunction(funcType);
+}
+
+
+// Get the register number for the specified argument #argNo,
+// 
+// Return value:
+//      getInvalidRegNum(),  if there is no int register available for the arg. 
+//      regNum,              otherwise (this is NOT the unified reg. num).
+//                           regClassId is set to the register class ID.
+// 
+int
+SparcV9RegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
+                                   unsigned argNo, unsigned& regClassId) const
+{
+  regClassId = IntRegClassID;
+  if (argNo >= NumOfIntArgRegs)
+    return getInvalidRegNum();
+  else
+    return argNo + (inCallee? SparcV9IntRegClass::i0 : SparcV9IntRegClass::o0);
+}
+
+// Get the register number for the specified FP argument #argNo,
+// Use INT regs for FP args if this is a varargs call.
+// 
+// Return value:
+//      getInvalidRegNum(),  if there is no int register available for the arg. 
+//      regNum,              otherwise (this is NOT the unified reg. num).
+//                           regClassId is set to the register class ID.
+// 
+int
+SparcV9RegInfo::regNumForFPArg(unsigned regType,
+                                  bool inCallee, bool isVarArgsCall,
+                                  unsigned argNo, unsigned& regClassId) const
+{
+  if (isVarArgsCall)
+    return regNumForIntArg(inCallee, isVarArgsCall, argNo, regClassId);
+  else
+    {
+      regClassId = FloatRegClassID;
+      if (regType == FPSingleRegType)
+        return (argNo*2+1 >= NumOfFloatArgRegs)?
+          getInvalidRegNum() : SparcV9FloatRegClass::f0 + (argNo * 2 + 1);
+      else if (regType == FPDoubleRegType)
+        return (argNo*2 >= NumOfFloatArgRegs)?
+          getInvalidRegNum() : SparcV9FloatRegClass::f0 + (argNo * 2);
+      else
+        assert(0 && "Illegal FP register type");
+	return 0;
+    }
+}
+
+
+//---------------------------------------------------------------------------
+// Finds the return address of a call sparc specific call instruction
+//---------------------------------------------------------------------------
+
+// The following 4  methods are used to find the RegType (SparcV9Internals.h)
+// of a LiveRange, a Value, and for a given register unified reg number.
+//
+int SparcV9RegInfo::getRegTypeForClassAndType(unsigned regClassID,
+                                                 const Type* type) const
+{
+  switch (regClassID) {
+  case IntRegClassID:                   return IntRegType; 
+  case FloatRegClassID:
+    if (type == Type::FloatTy)          return FPSingleRegType;
+    else if (type == Type::DoubleTy)    return FPDoubleRegType;
+    assert(0 && "Unknown type in FloatRegClass"); return 0;
+  case IntCCRegClassID:                 return IntCCRegType; 
+  case FloatCCRegClassID:               return FloatCCRegType; 
+  case SpecialRegClassID:               return SpecialRegType; 
+  default: assert( 0 && "Unknown reg class ID"); return 0;
+  }
+}
+
+int SparcV9RegInfo::getRegTypeForDataType(const Type* type) const
+{
+  return getRegTypeForClassAndType(getRegClassIDOfType(type), type);
+}
+
+int SparcV9RegInfo::getRegTypeForLR(const LiveRange *LR) const
+{
+  return getRegTypeForClassAndType(LR->getRegClassID(), LR->getType());
+}
+
+int SparcV9RegInfo::getRegType(int unifiedRegNum) const
+{
+  if (unifiedRegNum < 32) 
+    return IntRegType;
+  else if (unifiedRegNum < (32 + 32))
+    return FPSingleRegType;
+  else if (unifiedRegNum < (64 + 32))
+    return FPDoubleRegType;
+  else if (unifiedRegNum < (64+32+4))
+    return FloatCCRegType;
+  else if (unifiedRegNum < (64+32+4+2))  
+    return IntCCRegType;             
+  else 
+    assert(0 && "Invalid unified register number in getRegType");
+  return 0;
+}
+
+
+// To find the register class used for a specified Type
+//
+unsigned SparcV9RegInfo::getRegClassIDOfType(const Type *type,
+                                                bool isCCReg) const {
+  Type::PrimitiveID ty = type->getPrimitiveID();
+  unsigned res;
+    
+  // FIXME: Comparing types like this isn't very safe...
+  if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
+      (ty == Type::FunctionTyID) ||  (ty == Type::PointerTyID) )
+    res = IntRegClassID;             // sparc int reg (ty=0: void)
+  else if (ty <= Type::DoubleTyID)
+    res = FloatRegClassID;           // sparc float reg class
+  else { 
+    //std::cerr << "TypeID: " << ty << "\n";
+    assert(0 && "Cannot resolve register class for type");
+    return 0;
+  }
+  
+  if (isCCReg)
+    return res + 2;      // corresponding condition code register 
+  else 
+    return res;
+}
+
+unsigned SparcV9RegInfo::getRegClassIDOfRegType(int regType) const {
+  switch(regType) {
+  case IntRegType:      return IntRegClassID;
+  case FPSingleRegType:
+  case FPDoubleRegType: return FloatRegClassID;
+  case IntCCRegType:    return IntCCRegClassID;
+  case FloatCCRegType:  return FloatCCRegClassID;
+  default:
+    assert(0 && "Invalid register type in getRegClassIDOfRegType");
+    return 0;
+  }
+}
+
+//---------------------------------------------------------------------------
+// Suggests a register for the ret address in the RET machine instruction.
+// We always suggest %i7 by convention.
+//---------------------------------------------------------------------------
+void SparcV9RegInfo::suggestReg4RetAddr(MachineInstr *RetMI, 
+					   LiveRangeInfo& LRI) const {
+
+  assert(target.getInstrInfo().isReturn(RetMI->getOpcode()));
+  
+  // return address is always mapped to i7 so set it immediately
+  RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID,
+                                              SparcV9IntRegClass::i7));
+  
+  // Possible Optimization: 
+  // Instead of setting the color, we can suggest one. In that case,
+  // we have to test later whether it received the suggested color.
+  // In that case, a LR has to be created at the start of method.
+  // It has to be done as follows (remove the setRegVal above):
+
+  // MachineOperand & MO  = RetMI->getOperand(0);
+  // const Value *RetAddrVal = MO.getVRegValue();
+  // assert( RetAddrVal && "LR for ret address must be created at start");
+  // LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);  
+  // RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID, 
+  //                              SparcV9IntRegOrdr::i7) );
+}
+
+
+//---------------------------------------------------------------------------
+// Suggests a register for the ret address in the JMPL/CALL machine instr.
+// SparcV9 ABI dictates that %o7 be used for this purpose.
+//---------------------------------------------------------------------------
+void
+SparcV9RegInfo::suggestReg4CallAddr(MachineInstr * CallMI,
+                                       LiveRangeInfo& LRI) const
+{
+  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
+  const Value *RetAddrVal = argDesc->getReturnAddrReg();
+  assert(RetAddrVal && "INTERNAL ERROR: Return address value is required");
+
+  // A LR must already exist for the return address.
+  LiveRange *RetAddrLR = LRI.getLiveRangeForValue(RetAddrVal);
+  assert(RetAddrLR && "INTERNAL ERROR: No LR for return address of call!");
+
+  unsigned RegClassID = RetAddrLR->getRegClassID();
+  RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID, SparcV9IntRegClass::o7));
+}
+
+
+
+//---------------------------------------------------------------------------
+//  This method will suggest colors to incoming args to a method. 
+//  According to the SparcV9 ABI, the first 6 incoming args are in 
+//  %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
+//  If the arg is passed on stack due to the lack of regs, NOTHING will be
+//  done - it will be colored (or spilled) as a normal live range.
+//---------------------------------------------------------------------------
+void SparcV9RegInfo::suggestRegs4MethodArgs(const Function *Meth, 
+					       LiveRangeInfo& LRI) const 
+{
+  // Check if this is a varArgs function. needed for choosing regs.
+  bool isVarArgs = isVarArgsFunction(Meth->getType());
+  
+  // Count the arguments, *ignoring* whether they are int or FP args.
+  // Use this common arg numbering to pick the right int or fp register.
+  unsigned argNo=0;
+  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
+      I != E; ++I, ++argNo) {
+    LiveRange *LR = LRI.getLiveRangeForValue(I);
+    assert(LR && "No live range found for method arg");
+    
+    unsigned regType = getRegTypeForLR(LR);
+    unsigned regClassIDOfArgReg = BadRegClass; // for chosen reg (unused)
+    
+    int regNum = (regType == IntRegType)
+      ? regNumForIntArg(/*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg)
+      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs, argNo,
+                       regClassIDOfArgReg); 
+    
+    if (regNum != getInvalidRegNum())
+      LR->setSuggestedColor(regNum);
+  }
+}
+
+
+//---------------------------------------------------------------------------
+// This method is called after graph coloring to move incoming args to
+// the correct hardware registers if they did not receive the correct
+// (suggested) color through graph coloring.
+//---------------------------------------------------------------------------
+void SparcV9RegInfo::colorMethodArgs(const Function *Meth, 
+                            LiveRangeInfo &LRI,
+                            std::vector<MachineInstr*>& InstrnsBefore,
+                            std::vector<MachineInstr*>& InstrnsAfter) const {
+
+  // check if this is a varArgs function. needed for choosing regs.
+  bool isVarArgs = isVarArgsFunction(Meth->getType());
+  MachineInstr *AdMI;
+
+  // for each argument
+  // for each argument.  count INT and FP arguments separately.
+  unsigned argNo=0, intArgNo=0, fpArgNo=0;
+  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
+      I != E; ++I, ++argNo) {
+    // get the LR of arg
+    LiveRange *LR = LRI.getLiveRangeForValue(I);
+    assert( LR && "No live range found for method arg");
+
+    unsigned regType = getRegTypeForLR(LR);
+    unsigned RegClassID = LR->getRegClassID();
+    
+    // Find whether this argument is coming in a register (if not, on stack)
+    // Also find the correct register the argument must use (UniArgReg)
+    //
+    bool isArgInReg = false;
+    unsigned UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with
+    unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg
+    
+    int regNum = (regType == IntRegType)
+      ? regNumForIntArg(/*inCallee*/ true, isVarArgs,
+                        argNo, regClassIDOfArgReg)
+      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
+                       argNo, regClassIDOfArgReg);
+    
+    if(regNum != getInvalidRegNum()) {
+      isArgInReg = true;
+      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
+    }
+    
+    if( ! LR->isMarkedForSpill() ) {    // if this arg received a register
+
+      unsigned UniLRReg = getUnifiedRegNum(  RegClassID, LR->getColor() );
+
+      // if LR received the correct color, nothing to do
+      //
+      if( UniLRReg == UniArgReg )
+	continue;
+
+      // We are here because the LR did not receive the suggested 
+      // but LR received another register.
+      // Now we have to copy the %i reg (or stack pos of arg) 
+      // to the register the LR was colored with.
+      
+      // if the arg is coming in UniArgReg register, it MUST go into
+      // the UniLRReg register
+      //
+      if( isArgInReg ) {
+	if( regClassIDOfArgReg != RegClassID ) {
+          assert(0 && "This could should work but it is not tested yet");
+          
+	  // It is a variable argument call: the float reg must go in a %o reg.
+	  // We have to move an int reg to a float reg via memory.
+          // 
+          assert(isVarArgs &&
+                 RegClassID == FloatRegClassID && 
+                 regClassIDOfArgReg == IntRegClassID &&
+                 "This should only be an Int register for an FP argument");
+          
+ 	  int TmpOff = MachineFunction::get(Meth).getInfo()->pushTempValue(
+                                                getSpilledRegSize(regType));
+	  cpReg2MemMI(InstrnsBefore,
+                      UniArgReg, getFramePointer(), TmpOff, IntRegType);
+          
+	  cpMem2RegMI(InstrnsBefore,
+                      getFramePointer(), TmpOff, UniLRReg, regType);
+	}
+	else {	
+	  cpReg2RegMI(InstrnsBefore, UniArgReg, UniLRReg, regType);
+	}
+      }
+      else {
+
+	// Now the arg is coming on stack. Since the LR received a register,
+	// we just have to load the arg on stack into that register
+	//
+        const TargetFrameInfo& frameInfo = target.getFrameInfo();
+	int offsetFromFP =
+          frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
+                                         argNo);
+
+        // float arguments on stack are right justified so adjust the offset!
+        // int arguments are also right justified but they are always loaded as
+        // a full double-word so the offset does not need to be adjusted.
+        if (regType == FPSingleRegType) {
+          unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
+          unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
+          assert(argSize <= slotSize && "Insufficient slot size!");
+          offsetFromFP += slotSize - argSize;
+        }
+
+	cpMem2RegMI(InstrnsBefore,
+                    getFramePointer(), offsetFromFP, UniLRReg, regType);
+      }
+      
+    } // if LR received a color
+
+    else {                             
+
+      // Now, the LR did not receive a color. But it has a stack offset for
+      // spilling.
+      // So, if the arg is coming in UniArgReg register,  we can just move
+      // that on to the stack pos of LR
+
+      if( isArgInReg ) {
+        
+	if( regClassIDOfArgReg != RegClassID ) {
+          assert(0 &&
+                 "FP arguments to a varargs function should be explicitly "
+                 "copied to/from int registers by instruction selection!");
+          
+	  // It must be a float arg for a variable argument call, which
+          // must come in a %o reg.  Move the int reg to the stack.
+          // 
+          assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
+                 "This should only be an Int register for an FP argument");
+          
+          cpReg2MemMI(InstrnsBefore, UniArgReg,
+                      getFramePointer(), LR->getSpillOffFromFP(), IntRegType);
+        }
+        else {
+           cpReg2MemMI(InstrnsBefore, UniArgReg,
+                       getFramePointer(), LR->getSpillOffFromFP(), regType);
+        }
+      }
+
+      else {
+
+	// Now the arg is coming on stack. Since the LR did NOT 
+	// received a register as well, it is allocated a stack position. We
+	// can simply change the stack position of the LR. We can do this,
+	// since this method is called before any other method that makes
+	// uses of the stack pos of the LR (e.g., updateMachineInstr)
+        // 
+        const TargetFrameInfo& frameInfo = target.getFrameInfo();
+	int offsetFromFP =
+          frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
+                                         argNo);
+
+        // FP arguments on stack are right justified so adjust offset!
+        // int arguments are also right justified but they are always loaded as
+        // a full double-word so the offset does not need to be adjusted.
+        if (regType == FPSingleRegType) {
+          unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
+          unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
+          assert(argSize <= slotSize && "Insufficient slot size!");
+          offsetFromFP += slotSize - argSize;
+        }
+        
+	LR->modifySpillOffFromFP( offsetFromFP );
+      }
+
+    }
+
+  }  // for each incoming argument
+
+}
+
+
+
+//---------------------------------------------------------------------------
+// This method is called before graph coloring to suggest colors to the
+// outgoing call args and the return value of the call.
+//---------------------------------------------------------------------------
+void SparcV9RegInfo::suggestRegs4CallArgs(MachineInstr *CallMI, 
+					     LiveRangeInfo& LRI) const {
+  assert ( (target.getInstrInfo()).isCall(CallMI->getOpcode()) );
+
+  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
+  
+  suggestReg4CallAddr(CallMI, LRI);
+
+  // First color the return value of the call instruction, if any.
+  // The return value will be in %o0 if the value is an integer type,
+  // or in %f0 if the value is a float type.
+  // 
+  if (const Value *RetVal = argDesc->getReturnValue()) {
+    LiveRange *RetValLR = LRI.getLiveRangeForValue(RetVal);
+    assert(RetValLR && "No LR for return Value of call!");
+
+    unsigned RegClassID = RetValLR->getRegClassID();
+
+    // now suggest a register depending on the register class of ret arg
+    if( RegClassID == IntRegClassID ) 
+      RetValLR->setSuggestedColor(SparcV9IntRegClass::o0);
+    else if (RegClassID == FloatRegClassID ) 
+      RetValLR->setSuggestedColor(SparcV9FloatRegClass::f0 );
+    else assert( 0 && "Unknown reg class for return value of call\n");
+  }
+
+  // Now suggest colors for arguments (operands) of the call instruction.
+  // Colors are suggested only if the arg number is smaller than the
+  // the number of registers allocated for argument passing.
+  // Now, go thru call args - implicit operands of the call MI
+
+  unsigned NumOfCallArgs = argDesc->getNumArgs();
+  
+  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
+       i < NumOfCallArgs; ++i, ++argNo) {    
+
+    const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
+    
+    // get the LR of call operand (parameter)
+    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 
+    if (!LR)
+      continue;                    // no live ranges for constants and labels
+
+    unsigned regType = getRegTypeForLR(LR);
+    unsigned regClassIDOfArgReg = BadRegClass; // chosen reg class (unused)
+
+    // Choose a register for this arg depending on whether it is
+    // an INT or FP value.  Here we ignore whether or not it is a
+    // varargs calls, because FP arguments will be explicitly copied
+    // to an integer Value and handled under (argCopy != NULL) below.
+    int regNum = (regType == IntRegType)
+      ? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
+                        argNo, regClassIDOfArgReg)
+      : regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
+                       argNo, regClassIDOfArgReg); 
+    
+    // If a register could be allocated, use it.
+    // If not, do NOTHING as this will be colored as a normal value.
+    if(regNum != getInvalidRegNum())
+      LR->setSuggestedColor(regNum);
+  } // for all call arguments
+}
+
+
+//---------------------------------------------------------------------------
+// this method is called for an LLVM return instruction to identify which
+// values will be returned from this method and to suggest colors.
+//---------------------------------------------------------------------------
+void SparcV9RegInfo::suggestReg4RetValue(MachineInstr *RetMI, 
+                                            LiveRangeInfo& LRI) const {
+
+  assert( (target.getInstrInfo()).isReturn( RetMI->getOpcode() ) );
+
+  suggestReg4RetAddr(RetMI, LRI);
+
+  // To find the return value (if any), we can get the LLVM return instr.
+  // from the return address register, which is the first operand
+  Value* tmpI = RetMI->getOperand(0).getVRegValue();
+  ReturnInst* retI=cast<ReturnInst>(cast<TmpInstruction>(tmpI)->getOperand(0));
+  if (const Value *RetVal = retI->getReturnValue())
+    if (LiveRange *const LR = LRI.getLiveRangeForValue(RetVal))
+      LR->setSuggestedColor(LR->getRegClassID() == IntRegClassID
+                            ? (unsigned) SparcV9IntRegClass::i0
+                            : (unsigned) SparcV9FloatRegClass::f0);
+}
+
+//---------------------------------------------------------------------------
+// Check if a specified register type needs a scratch register to be
+// copied to/from memory.  If it does, the reg. type that must be used
+// for scratch registers is returned in scratchRegType.
+//
+// Only the int CC register needs such a scratch register.
+// The FP CC registers can (and must) be copied directly to/from memory.
+//---------------------------------------------------------------------------
+
+bool
+SparcV9RegInfo::regTypeNeedsScratchReg(int RegType,
+                                          int& scratchRegType) const
+{
+  if (RegType == IntCCRegType)
+    {
+      scratchRegType = IntRegType;
+      return true;
+    }
+  return false;
+}
+
+//---------------------------------------------------------------------------
+// Copy from a register to register. Register number must be the unified
+// register number.
+//---------------------------------------------------------------------------
+
+void
+SparcV9RegInfo::cpReg2RegMI(std::vector<MachineInstr*>& mvec,
+                               unsigned SrcReg,
+                               unsigned DestReg,
+                               int RegType) const {
+  assert( ((int)SrcReg != getInvalidRegNum()) && 
+          ((int)DestReg != getInvalidRegNum()) &&
+	  "Invalid Register");
+  
+  MachineInstr * MI = NULL;
+  
+  switch( RegType ) {
+    
+  case IntCCRegType:
+    if (getRegType(DestReg) == IntRegType) {
+      // copy intCC reg to int reg
+      MI = (BuildMI(V9::RDCCR, 2)
+            .addMReg(getUnifiedRegNum(SparcV9RegInfo::IntCCRegClassID,
+                                      SparcV9IntCCRegClass::ccr))
+            .addMReg(DestReg,MachineOperand::Def));
+    } else {
+      // copy int reg to intCC reg
+      assert(getRegType(SrcReg) == IntRegType
+             && "Can only copy CC reg to/from integer reg");
+      MI = (BuildMI(V9::WRCCRr, 3)
+            .addMReg(SrcReg)
+            .addMReg(SparcV9IntRegClass::g0)
+            .addMReg(getUnifiedRegNum(SparcV9RegInfo::IntCCRegClassID,
+                                      SparcV9IntCCRegClass::ccr),
+                     MachineOperand::Def));
+    }
+    break;
+    
+  case FloatCCRegType: 
+    assert(0 && "Cannot copy FPCC register to any other register");
+    break;
+    
+  case IntRegType:
+    MI = BuildMI(V9::ADDr, 3).addMReg(SrcReg).addMReg(getZeroRegNum())
+      .addMReg(DestReg, MachineOperand::Def);
+    break;
+    
+  case FPSingleRegType:
+    MI = BuildMI(V9::FMOVS, 2).addMReg(SrcReg)
+           .addMReg(DestReg, MachineOperand::Def);
+    break;
+
+  case FPDoubleRegType:
+    MI = BuildMI(V9::FMOVD, 2).addMReg(SrcReg)
+           .addMReg(DestReg, MachineOperand::Def);
+    break;
+
+  default:
+    assert(0 && "Unknown RegType");
+    break;
+  }
+  
+  if (MI)
+    mvec.push_back(MI);
+}
+
+//---------------------------------------------------------------------------
+// Copy from a register to memory (i.e., Store). Register number must 
+// be the unified register number
+//---------------------------------------------------------------------------
+
+
+void
+SparcV9RegInfo::cpReg2MemMI(std::vector<MachineInstr*>& mvec,
+                               unsigned SrcReg, 
+                               unsigned PtrReg,
+                               int Offset, int RegType,
+                               int scratchReg) const {
+  MachineInstr * MI = NULL;
+  int OffReg = -1;
+
+  // If the Offset will not fit in the signed-immediate field, find an
+  // unused register to hold the offset value.  This takes advantage of
+  // the fact that all the opcodes used below have the same size immed. field.
+  // Use the register allocator, PRA, to find an unused reg. at this MI.
+  // 
+  if (RegType != IntCCRegType)          // does not use offset below
+    if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
+#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
+      RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
+      OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
+#else
+      // Default to using register g4 for holding large offsets
+      OffReg = getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                                SparcV9IntRegClass::g4);
+#endif
+      assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
+      mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
+    }
+
+  switch (RegType) {
+  case IntRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::STXi, Offset))
+      MI = BuildMI(V9::STXi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
+    else
+      MI = BuildMI(V9::STXr,3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
+    break;
+
+  case FPSingleRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::STFi, Offset))
+      MI = BuildMI(V9::STFi, 3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
+    else
+      MI = BuildMI(V9::STFr, 3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
+    break;
+
+  case FPDoubleRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::STDFi, Offset))
+      MI = BuildMI(V9::STDFi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
+    else
+      MI = BuildMI(V9::STDFr,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(OffReg);
+    break;
+
+  case IntCCRegType:
+    assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory");
+    assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
+    MI = (BuildMI(V9::RDCCR, 2)
+          .addMReg(getUnifiedRegNum(SparcV9RegInfo::IntCCRegClassID,
+                                    SparcV9IntCCRegClass::ccr))
+          .addMReg(scratchReg, MachineOperand::Def));
+    mvec.push_back(MI);
+    
+    cpReg2MemMI(mvec, scratchReg, PtrReg, Offset, IntRegType);
+    return;
+
+  case FloatCCRegType: {
+    unsigned fsrReg =  getUnifiedRegNum(SparcV9RegInfo::SpecialRegClassID,
+                                           SparcV9SpecialRegClass::fsr);
+    if (target.getInstrInfo().constantFitsInImmedField(V9::STXFSRi, Offset))
+      MI=BuildMI(V9::STXFSRi,3).addMReg(fsrReg).addMReg(PtrReg).addSImm(Offset);
+    else
+      MI=BuildMI(V9::STXFSRr,3).addMReg(fsrReg).addMReg(PtrReg).addMReg(OffReg);
+    break;
+  }
+  default:
+    assert(0 && "Unknown RegType in cpReg2MemMI");
+  }
+  mvec.push_back(MI);
+}
+
+
+//---------------------------------------------------------------------------
+// Copy from memory to a reg (i.e., Load) Register number must be the unified
+// register number
+//---------------------------------------------------------------------------
+
+
+void
+SparcV9RegInfo::cpMem2RegMI(std::vector<MachineInstr*>& mvec,
+                               unsigned PtrReg,	
+                               int Offset,
+                               unsigned DestReg,
+                               int RegType,
+                               int scratchReg) const {
+  MachineInstr * MI = NULL;
+  int OffReg = -1;
+
+  // If the Offset will not fit in the signed-immediate field, find an
+  // unused register to hold the offset value.  This takes advantage of
+  // the fact that all the opcodes used below have the same size immed. field.
+  // Use the register allocator, PRA, to find an unused reg. at this MI.
+  // 
+  if (RegType != IntCCRegType)          // does not use offset below
+    if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
+#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
+      RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
+      OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
+#else
+      // Default to using register g4 for holding large offsets
+      OffReg = getUnifiedRegNum(SparcV9RegInfo::IntRegClassID,
+                                SparcV9IntRegClass::g4);
+#endif
+      assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
+      mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
+    }
+
+  switch (RegType) {
+  case IntRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset))
+      MI = BuildMI(V9::LDXi, 3).addMReg(PtrReg).addSImm(Offset)
+          .addMReg(DestReg, MachineOperand::Def);
+    else
+      MI = BuildMI(V9::LDXr, 3).addMReg(PtrReg).addMReg(OffReg)
+          .addMReg(DestReg, MachineOperand::Def);
+    break;
+
+  case FPSingleRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::LDFi, Offset))
+      MI = BuildMI(V9::LDFi, 3).addMReg(PtrReg).addSImm(Offset)
+          .addMReg(DestReg, MachineOperand::Def);
+    else
+      MI = BuildMI(V9::LDFr, 3).addMReg(PtrReg).addMReg(OffReg)
+          .addMReg(DestReg, MachineOperand::Def);
+    break;
+
+  case FPDoubleRegType:
+    if (target.getInstrInfo().constantFitsInImmedField(V9::LDDFi, Offset))
+      MI= BuildMI(V9::LDDFi, 3).addMReg(PtrReg).addSImm(Offset)
+          .addMReg(DestReg, MachineOperand::Def);
+    else
+      MI= BuildMI(V9::LDDFr, 3).addMReg(PtrReg).addMReg(OffReg)
+          .addMReg(DestReg, MachineOperand::Def);
+    break;
+
+  case IntCCRegType:
+    assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory");
+    assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
+    cpMem2RegMI(mvec, PtrReg, Offset, scratchReg, IntRegType);
+    MI = (BuildMI(V9::WRCCRr, 3)
+          .addMReg(scratchReg)
+          .addMReg(SparcV9IntRegClass::g0)
+          .addMReg(getUnifiedRegNum(SparcV9RegInfo::IntCCRegClassID,
+                                    SparcV9IntCCRegClass::ccr), MachineOperand::Def));
+    break;
+    
+  case FloatCCRegType: {
+    unsigned fsrRegNum =  getUnifiedRegNum(SparcV9RegInfo::SpecialRegClassID,
+                                           SparcV9SpecialRegClass::fsr);
+    if (target.getInstrInfo().constantFitsInImmedField(V9::LDXFSRi, Offset))
+      MI = BuildMI(V9::LDXFSRi, 3).addMReg(PtrReg).addSImm(Offset)
+        .addMReg(fsrRegNum, MachineOperand::UseAndDef);
+    else
+      MI = BuildMI(V9::LDXFSRr, 3).addMReg(PtrReg).addMReg(OffReg)
+        .addMReg(fsrRegNum, MachineOperand::UseAndDef);
+    break;
+  }
+  default:
+    assert(0 && "Unknown RegType in cpMem2RegMI");
+  }
+  mvec.push_back(MI);
+}
+
+
+//---------------------------------------------------------------------------
+// Generate a copy instruction to copy a value to another. Temporarily
+// used by PhiElimination code.
+//---------------------------------------------------------------------------
+
+
+void
+SparcV9RegInfo::cpValue2Value(Value *Src, Value *Dest,
+                                 std::vector<MachineInstr*>& mvec) const {
+  int RegType = getRegTypeForDataType(Src->getType());
+  MachineInstr * MI = NULL;
+
+  switch( RegType ) {
+  case IntRegType:
+    MI = BuildMI(V9::ADDr, 3).addReg(Src).addMReg(getZeroRegNum())
+      .addRegDef(Dest);
+    break;
+  case FPSingleRegType:
+    MI = BuildMI(V9::FMOVS, 2).addReg(Src).addRegDef(Dest);
+    break;
+  case FPDoubleRegType:
+    MI = BuildMI(V9::FMOVD, 2).addReg(Src).addRegDef(Dest);
+    break;
+  default:
+    assert(0 && "Unknow RegType in CpValu2Value");
+  }
+
+  mvec.push_back(MI);
+}
+
+
+
+//---------------------------------------------------------------------------
+// Print the register assigned to a LR
+//---------------------------------------------------------------------------
+
+void SparcV9RegInfo::printReg(const LiveRange *LR) const {
+  unsigned RegClassID = LR->getRegClassID();
+  std::cerr << " Node ";
+
+  if (!LR->hasColor()) {
+    std::cerr << " - could not find a color\n";
+    return;
+  }
+  
+  // if a color is found
+
+  std::cerr << " colored with color "<< LR->getColor();
+
+  unsigned uRegName = getUnifiedRegNum(RegClassID, LR->getColor());
+  
+  std::cerr << "[";
+  std::cerr<< getUnifiedRegName(uRegName);
+  if (RegClassID == FloatRegClassID && LR->getType() == Type::DoubleTy)
+    std::cerr << "+" << getUnifiedRegName(uRegName+1);
+  std::cerr << "]\n";
+}
+
+} // End llvm namespace