[Attributor] Pass infrastructure and fixpoint framework

NOTE: Note that no attributes are derived yet. This patch will not go in
      alone but only with others that derive attributes. The framework is
      split for review purposes.

This commit introduces the Attributor pass infrastructure and fixpoint
iteration framework. Further patches will introduce abstract attributes
into this framework.

In a nutshell, the Attributor will update instances of abstract
arguments until a fixpoint, or a "timeout", is reached. Communication
between the Attributor and the abstract attributes that are derived is
restricted to the AbstractState and AbstractAttribute interfaces.

Please see the file comment in Attributor.h for detailed information
including design decisions and typical use case. Also consider the class
documentation for Attributor, AbstractState, and AbstractAttribute.

Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames

Subscribers: mehdi_amini, mgorny, hiraditya, bollu, steven_wu, dexonsmith, dang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59918

llvm-svn: 362578
diff --git a/llvm/lib/Transforms/IPO/Attributor.cpp b/llvm/lib/Transforms/IPO/Attributor.cpp
new file mode 100644
index 0000000..56c3223
--- /dev/null
+++ b/llvm/lib/Transforms/IPO/Attributor.cpp
@@ -0,0 +1,529 @@
+//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements an inter procedural pass that deduces and/or propagating
+// attributes. This is done in an abstract interpretation style fixpoint
+// iteration. See the Attributor.h file comment and the class descriptions in
+// that file for more information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/Attributor.h"
+
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "attributor"
+
+STATISTIC(NumFnWithExactDefinition,
+          "Number of function with exact definitions");
+STATISTIC(NumFnWithoutExactDefinition,
+          "Number of function without exact definitions");
+STATISTIC(NumAttributesTimedOut,
+          "Number of abstract attributes timed out before fixpoint");
+STATISTIC(NumAttributesValidFixpoint,
+          "Number of abstract attributes in a valid fixpoint state");
+STATISTIC(NumAttributesManifested,
+          "Number of abstract attributes manifested in IR");
+
+// TODO: Determine a good default value.
+//
+// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
+// (when run with the first 5 abstract attributes). The results also indicate
+// that we never reach 32 iterations but always find a fixpoint sooner.
+//
+// This will become more evolved once we perform two interleaved fixpoint
+// iterations: bottom-up and top-down.
+static cl::opt<unsigned>
+    MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
+                          cl::desc("Maximal number of fixpoint iterations."),
+                          cl::init(32));
+
+static cl::opt<bool> DisableAttributor(
+    "attributor-disable", cl::Hidden,
+    cl::desc("Disable the attributor inter-procedural deduction pass."),
+    cl::init(false));
+
+static cl::opt<bool> VerifyAttributor(
+    "attributor-verify", cl::Hidden,
+    cl::desc("Verify the Attributor deduction and "
+             "manifestation of attributes -- may issue false-positive errors"),
+    cl::init(false));
+
+/// Logic operators for the change status enum class.
+///
+///{
+ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
+  return l == ChangeStatus::CHANGED ? l : r;
+}
+ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
+  return l == ChangeStatus::UNCHANGED ? l : r;
+}
+///}
+
+/// Helper to adjust the statistics.
+static void bookkeeping(AbstractAttribute::ManifestPosition MP,
+                        const Attribute &Attr) {
+  if (!AreStatisticsEnabled())
+    return;
+
+  if (!Attr.isEnumAttribute())
+    return;
+  switch (Attr.getKindAsEnum()) {
+  default:
+    return;
+  }
+}
+
+/// Helper to identify the correct offset into an attribute list.
+static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
+                             unsigned ArgNo = 0) {
+  switch (MP) {
+  case AbstractAttribute::MP_ARGUMENT:
+  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
+    return ArgNo + AttributeList::FirstArgIndex;
+  case AbstractAttribute::MP_FUNCTION:
+    return AttributeList::FunctionIndex;
+  case AbstractAttribute::MP_RETURNED:
+    return AttributeList::ReturnIndex;
+  }
+}
+
+/// Return true if \p New is equal or worse than \p Old.
+static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
+  if (!Old.isIntAttribute())
+    return true;
+
+  return Old.getValueAsInt() >= New.getValueAsInt();
+}
+
+/// Return true if the information provided by \p Attr was added to the
+/// attribute list \p Attrs. This is only the case if it was not already present
+/// in \p Attrs at the position describe by \p MP and \p ArgNo.
+static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
+                             AttributeList &Attrs,
+                             AbstractAttribute::ManifestPosition MP,
+                             unsigned ArgNo = 0) {
+  unsigned AttrIdx = getAttrIndex(MP, ArgNo);
+
+  if (Attr.isEnumAttribute()) {
+    Attribute::AttrKind Kind = Attr.getKindAsEnum();
+    if (Attrs.hasAttribute(AttrIdx, Kind))
+      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
+        return false;
+    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
+    return true;
+  }
+  if (Attr.isStringAttribute()) {
+    StringRef Kind = Attr.getKindAsString();
+    if (Attrs.hasAttribute(AttrIdx, Kind))
+      if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
+        return false;
+    Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
+    return true;
+  }
+
+  llvm_unreachable("Expected enum or string attribute!");
+}
+
+ChangeStatus AbstractAttribute::update(Attributor &A) {
+  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+  if (getState().isAtFixpoint())
+    return HasChanged;
+
+  LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
+
+  HasChanged = updateImpl(A);
+
+  LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
+                    << "\n");
+
+  return HasChanged;
+}
+
+ChangeStatus AbstractAttribute::manifest(Attributor &A) {
+  assert(getState().isValidState() &&
+         "Attempted to manifest an invalid state!");
+  assert(getAssociatedValue() &&
+         "Attempted to manifest an attribute without associated value!");
+
+  ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+  SmallVector<Attribute, 4> DeducedAttrs;
+  getDeducedAttributes(DeducedAttrs);
+
+  Function &ScopeFn = getAnchorScope();
+  LLVMContext &Ctx = ScopeFn.getContext();
+  ManifestPosition MP = getManifestPosition();
+
+  AttributeList Attrs;
+  SmallVector<unsigned, 4> ArgNos;
+
+  // In the following some generic code that will manifest attributes in
+  // DeducedAttrs if they improve the current IR. Due to the different
+  // annotation positions we use the underlying AttributeList interface.
+  // Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.
+
+  switch (MP) {
+  case MP_ARGUMENT:
+    ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
+    Attrs = ScopeFn.getAttributes();
+    break;
+  case MP_FUNCTION:
+  case MP_RETURNED:
+    ArgNos.push_back(0);
+    Attrs = ScopeFn.getAttributes();
+    break;
+  case MP_CALL_SITE_ARGUMENT: {
+    CallSite CS(&getAnchoredValue());
+    for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
+      if (CS.getArgOperand(u) == getAssociatedValue())
+        ArgNos.push_back(u);
+    Attrs = CS.getAttributes();
+  }
+  }
+
+  for (const Attribute &Attr : DeducedAttrs) {
+    for (unsigned ArgNo : ArgNos) {
+      if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
+        continue;
+
+      HasChanged = ChangeStatus::CHANGED;
+      bookkeeping(MP, Attr);
+    }
+  }
+
+  if (HasChanged == ChangeStatus::UNCHANGED)
+    return HasChanged;
+
+  switch (MP) {
+  case MP_ARGUMENT:
+  case MP_FUNCTION:
+  case MP_RETURNED:
+    ScopeFn.setAttributes(Attrs);
+    break;
+  case MP_CALL_SITE_ARGUMENT:
+    CallSite(&getAnchoredValue()).setAttributes(Attrs);
+  }
+
+  return HasChanged;
+}
+
+Function &AbstractAttribute::getAnchorScope() {
+  Value &V = getAnchoredValue();
+  if (isa<Function>(V))
+    return cast<Function>(V);
+  if (isa<Argument>(V))
+    return *cast<Argument>(V).getParent();
+  if (isa<Instruction>(V))
+    return *cast<Instruction>(V).getFunction();
+  llvm_unreachable("No scope for anchored value found!");
+}
+
+const Function &AbstractAttribute::getAnchorScope() const {
+  return const_cast<AbstractAttribute *>(this)->getAnchorScope();
+}
+
+/// ----------------------------------------------------------------------------
+///                               Attributor
+/// ----------------------------------------------------------------------------
+
+ChangeStatus Attributor::run() {
+  // Initialize all abstract attributes.
+  for (AbstractAttribute *AA : AllAbstractAttributes)
+    AA->initialize(*this);
+
+  LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
+                    << AllAbstractAttributes.size()
+                    << " abstract attributes.\n");
+
+  // Now that all abstract attributes are collected and initialized we start the
+  // abstract analysis.
+
+  unsigned IterationCounter = 1;
+
+  SmallVector<AbstractAttribute *, 64> ChangedAAs;
+  SetVector<AbstractAttribute *> Worklist;
+  Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
+
+  do {
+    LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
+                      << ", Worklist size: " << Worklist.size() << "\n");
+
+    // Add all abstract attributes that are potentially dependent on one that
+    // changed to the work list.
+    for (AbstractAttribute *ChangedAA : ChangedAAs) {
+      auto &QuerriedAAs = QueryMap[ChangedAA];
+      Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
+    }
+
+    // Reset the changed set.
+    ChangedAAs.clear();
+
+    // Update all abstract attribute in the work list and record the ones that
+    // changed.
+    for (AbstractAttribute *AA : Worklist)
+      if (AA->update(*this) == ChangeStatus::CHANGED)
+        ChangedAAs.push_back(AA);
+
+    // Reset the work list and repopulate with the changed abstract attributes.
+    // Note that dependent ones are added above.
+    Worklist.clear();
+    Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
+
+  } while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);
+
+  LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
+                    << IterationCounter << "/" << MaxFixpointIterations
+                    << " iterations\n");
+
+  bool FinishedAtFixpoint = Worklist.empty();
+
+  // Reset abstract arguments not settled in a sound fixpoint by now. This
+  // happens when we stopped the fixpoint iteration early. Note that only the
+  // ones marked as "changed" *and* the ones transitively depending on them
+  // need to be reverted to a pessimistic state. Others might not be in a
+  // fixpoint state but we can use the optimistic results for them anyway.
+  SmallPtrSet<AbstractAttribute *, 32> Visited;
+  for (unsigned u = 0; u < ChangedAAs.size(); u++) {
+    AbstractAttribute *ChangedAA = ChangedAAs[u];
+    if (!Visited.insert(ChangedAA).second)
+      continue;
+
+    AbstractState &State = ChangedAA->getState();
+    if (!State.isAtFixpoint()) {
+      State.indicatePessimisticFixpoint();
+
+      NumAttributesTimedOut++;
+    }
+
+    auto &QuerriedAAs = QueryMap[ChangedAA];
+    ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
+  }
+
+  LLVM_DEBUG({
+    if (!Visited.empty())
+      dbgs() << "\n[Attributor] Finalized " << Visited.size()
+             << " abstract attributes.\n";
+  });
+
+  unsigned NumManifested = 0;
+  unsigned NumAtFixpoint = 0;
+  ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
+  for (AbstractAttribute *AA : AllAbstractAttributes) {
+    AbstractState &State = AA->getState();
+
+    // If there is not already a fixpoint reached, we can now take the
+    // optimistic state. This is correct because we enforced a pessimistic one
+    // on abstract attributes that were transitively dependent on a changed one
+    // already above.
+    if (!State.isAtFixpoint())
+      State.indicateOptimisticFixpoint();
+
+    // If the state is invalid, we do not try to manifest it.
+    if (!State.isValidState())
+      continue;
+
+    // Manifest the state and record if we changed the IR.
+    ChangeStatus LocalChange = AA->manifest(*this);
+    ManifestChange = ManifestChange | LocalChange;
+
+    NumAtFixpoint++;
+    NumManifested += (LocalChange == ChangeStatus::CHANGED);
+  }
+
+  (void)NumManifested;
+  (void)NumAtFixpoint;
+  LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
+                    << " arguments while " << NumAtFixpoint
+                    << " were in a valid fixpoint state\n");
+
+  // If verification is requested, we finished this run at a fixpoint, and the
+  // IR was changed, we re-run the whole fixpoint analysis, starting at
+  // re-initialization of the arguments. This re-run should not result in an IR
+  // change. Though, the (virtual) state of attributes at the end of the re-run
+  // might be more optimistic than the known state or the IR state if the better
+  // state cannot be manifested.
+  if (VerifyAttributor && FinishedAtFixpoint &&
+      ManifestChange == ChangeStatus::CHANGED) {
+    VerifyAttributor = false;
+    ChangeStatus VerifyStatus = run();
+    if (VerifyStatus != ChangeStatus::UNCHANGED)
+      llvm_unreachable(
+          "Attributor verification failed, re-run did result in an IR change "
+          "even after a fixpoint was reached in the original run. (False "
+          "positives possible!)");
+    VerifyAttributor = true;
+  }
+
+  NumAttributesManifested += NumManifested;
+  NumAttributesValidFixpoint += NumAtFixpoint;
+
+  return ManifestChange;
+}
+
+void Attributor::identifyDefaultAbstractAttributes(
+    Function &F, InformationCache &InfoCache,
+    DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {
+
+  // Walk all instructions to find more attribute opportunities and also
+  // interesting instructions that might be queried by abstract attributes
+  // during their initialization or update.
+  auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
+  auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
+
+  for (Instruction &I : instructions(&F)) {
+    bool IsInterestingOpcode = false;
+
+    // To allow easy access to all instructions in a function with a given
+    // opcode we store them in the InfoCache. As not all opcodes are interesting
+    // to concrete attributes we only cache the ones that are as identified in
+    // the following switch.
+    // Note: There are no concrete attributes now so this is initially empty.
+    switch (I.getOpcode()) {
+    default:
+      break;
+    }
+    if (IsInterestingOpcode)
+      InstOpcodeMap[I.getOpcode()].push_back(&I);
+    if (I.mayReadOrWriteMemory())
+      ReadOrWriteInsts.push_back(&I);
+  }
+}
+
+/// Helpers to ease debugging through output streams and print calls.
+///
+///{
+raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
+  return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS,
+                              AbstractAttribute::ManifestPosition AP) {
+  switch (AP) {
+  case AbstractAttribute::MP_ARGUMENT:
+    return OS << "arg";
+  case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
+    return OS << "cs_arg";
+  case AbstractAttribute::MP_FUNCTION:
+    return OS << "fn";
+  case AbstractAttribute::MP_RETURNED:
+    return OS << "fn_ret";
+  }
+  llvm_unreachable("Unknown attribute position!");
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
+  return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
+  AA.print(OS);
+  return OS;
+}
+
+void AbstractAttribute::print(raw_ostream &OS) const {
+  OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
+     << AnchoredVal.getName() << "]";
+}
+///}
+
+/// ----------------------------------------------------------------------------
+///                       Pass (Manager) Boilerplate
+/// ----------------------------------------------------------------------------
+
+static bool runAttributorOnModule(Module &M) {
+  if (DisableAttributor)
+    return false;
+
+  LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
+                    << " functions.\n");
+
+  // Create an Attributor and initially empty information cache that is filled
+  // while we identify default attribute opportunities.
+  Attributor A;
+  InformationCache InfoCache;
+
+  for (Function &F : M) {
+    // TODO: Not all attributes require an exact definition. Find a way to
+    //       enable deduction for some but not all attributes in case the
+    //       definition might be changed at runtime, see also
+    //       http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
+    // TODO: We could always determine abstract attributes and if sufficient
+    //       information was found we could duplicate the functions that do not
+    //       have an exact definition.
+    if (!F.hasExactDefinition()) {
+      NumFnWithoutExactDefinition++;
+      continue;
+    }
+
+    // For now we ignore naked and optnone functions.
+    if (F.hasFnAttribute(Attribute::Naked) ||
+        F.hasFnAttribute(Attribute::OptimizeNone))
+      continue;
+
+    NumFnWithExactDefinition++;
+
+    // Populate the Attributor with abstract attribute opportunities in the
+    // function and the information cache with IR information.
+    A.identifyDefaultAbstractAttributes(F, InfoCache);
+  }
+
+  return A.run() == ChangeStatus::CHANGED;
+}
+
+PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
+  if (runAttributorOnModule(M)) {
+    // FIXME: Think about passes we will preserve and add them here.
+    return PreservedAnalyses::none();
+  }
+  return PreservedAnalyses::all();
+}
+
+namespace {
+
+struct AttributorLegacyPass : public ModulePass {
+  static char ID;
+
+  AttributorLegacyPass() : ModulePass(ID) {
+    initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
+  }
+
+  bool runOnModule(Module &M) override {
+    if (skipModule(M))
+      return false;
+    return runAttributorOnModule(M);
+  }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    // FIXME: Think about passes we will preserve and add them here.
+    AU.setPreservesCFG();
+  }
+};
+
+} // end anonymous namespace
+
+Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
+
+char AttributorLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
+                      "Deduce and propagate attributes", false, false)
+INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
+                    "Deduce and propagate attributes", false, false)
+