[WebAssembly] Enhanced register stackification

This patch revamps the RegStackifier pass with a new tree traversal mechanism,
enabling three major new features:

 - Stackification of values with multiple uses, using the result value of set_local
 - More aggressive stackification of instructions with side effects
 - Reordering operands in commutative instructions to enable more stackification.

llvm-svn: 259009
diff --git a/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp b/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
index df9e6de..3377ca0 100644
--- a/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
+++ b/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
@@ -27,6 +27,8 @@
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/Support/Debug.h"
@@ -44,12 +46,13 @@
   void getAnalysisUsage(AnalysisUsage &AU) const override {
     AU.setPreservesCFG();
     AU.addRequired<AAResultsWrapperPass>();
+    AU.addRequired<MachineDominatorTree>();
     AU.addRequired<LiveIntervals>();
     AU.addPreserved<MachineBlockFrequencyInfo>();
     AU.addPreserved<SlotIndexes>();
     AU.addPreserved<LiveIntervals>();
-    AU.addPreservedID(MachineDominatorsID);
     AU.addPreservedID(LiveVariablesID);
+    AU.addPreserved<MachineDominatorTree>();
     MachineFunctionPass::getAnalysisUsage(AU);
   }
 
@@ -89,8 +92,8 @@
 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
 // more precise.
 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
-                         AliasAnalysis &AA, LiveIntervals &LIS,
-                         MachineRegisterInfo &MRI) {
+                         AliasAnalysis &AA, const LiveIntervals &LIS,
+                         const MachineRegisterInfo &MRI) {
   assert(Def->getParent() == Insert->getParent());
   bool SawStore = false, SawSideEffects = false;
   MachineBasicBlock::const_iterator D(Def), I(Insert);
@@ -133,6 +136,250 @@
          !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
 }
 
+/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
+static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
+                                     const MachineBasicBlock &MBB,
+                                     const MachineRegisterInfo &MRI,
+                                     const MachineDominatorTree &MDT) {
+  for (const MachineOperand &Use : MRI.use_operands(Reg)) {
+    if (&Use == &OneUse)
+      continue;
+    const MachineInstr *UseInst = Use.getParent();
+    const MachineInstr *OneUseInst = OneUse.getParent();
+    if (UseInst->getOpcode() == TargetOpcode::PHI) {
+      // Test that the PHI use, which happens on the CFG edge rather than
+      // within the PHI's own block, is dominated by the one selected use.
+      const MachineBasicBlock *Pred =
+          UseInst->getOperand(&Use - &UseInst->getOperand(0) + 1).getMBB();
+      if (!MDT.dominates(&MBB, Pred))
+        return false;
+    } else if (UseInst == OneUseInst) {
+      // Another use in the same instruction. We need to ensure that the one
+      // selected use happens "before" it.
+      if (&OneUse > &Use)
+        return false;
+    } else {
+      // Test that the use is dominated by the one selected use.
+      if (!MDT.dominates(OneUseInst, UseInst))
+        return false;
+    }
+  }
+  return true;
+}
+
+/// Get the appropriate tee_local opcode for the given register class.
+static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) {
+  if (RC == &WebAssembly::I32RegClass)
+    return WebAssembly::TEE_LOCAL_I32;
+  if (RC == &WebAssembly::I64RegClass)
+    return WebAssembly::TEE_LOCAL_I64;
+  if (RC == &WebAssembly::F32RegClass)
+    return WebAssembly::TEE_LOCAL_F32;
+  if (RC == &WebAssembly::F64RegClass)
+    return WebAssembly::TEE_LOCAL_F64;
+  llvm_unreachable("Unexpected register class");
+}
+
+/// A single-use def in the same block with no intervening memory or register
+/// dependencies; move the def down and nest it with the current instruction.
+static MachineInstr *MoveForSingleUse(unsigned Reg, MachineInstr *Def,
+                                      MachineBasicBlock &MBB,
+                                      MachineInstr *Insert, LiveIntervals &LIS,
+                                      WebAssemblyFunctionInfo &MFI) {
+  MBB.splice(Insert, &MBB, Def);
+  LIS.handleMove(Def);
+  MFI.stackifyVReg(Reg);
+  ImposeStackOrdering(Def);
+  return Def;
+}
+
+/// A trivially cloneable instruction; clone it and nest the new copy with the
+/// current instruction.
+static MachineInstr *
+RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def,
+                      MachineBasicBlock &MBB, MachineInstr *Insert,
+                      LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
+                      MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII,
+                      const WebAssemblyRegisterInfo *TRI) {
+  unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
+  TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
+  Op.setReg(NewReg);
+  MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert));
+  LIS.InsertMachineInstrInMaps(Clone);
+  LIS.createAndComputeVirtRegInterval(NewReg);
+  MFI.stackifyVReg(NewReg);
+  ImposeStackOrdering(Clone);
+
+  // If that was the last use of the original, delete the original.
+  // Otherwise shrink the LiveInterval.
+  if (MRI.use_empty(Reg)) {
+    SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
+    LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
+    LIS.removeVRegDefAt(LIS.getInterval(Reg), Idx);
+    LIS.removeInterval(Reg);
+    LIS.RemoveMachineInstrFromMaps(Def);
+    Def->eraseFromParent();
+  } else {
+    LIS.shrinkToUses(&LIS.getInterval(Reg));
+  }
+  return Clone;
+}
+
+/// A multiple-use def in the same block with no intervening memory or register
+/// dependencies; move the def down, nest it with the current instruction, and
+/// insert a tee_local to satisfy the rest of the uses. As an illustration,
+/// rewrite this:
+///
+///    Reg = INST ...        // Def
+///    INST ..., Reg, ...    // Insert
+///    INST ..., Reg, ...
+///    INST ..., Reg, ...
+///
+/// to this:
+///
+///    Reg = INST ...        // Def (to become the new Insert)
+///    TeeReg, NewReg = TEE_LOCAL_... Reg
+///    INST ..., TeeReg, ... // Insert
+///    INST ..., NewReg, ...
+///    INST ..., NewReg, ...
+///
+/// with Reg and TeeReg stackified. This eliminates a get_local from the
+/// resulting code.
+static MachineInstr *MoveAndTeeForMultiUse(
+    unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
+    MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
+    MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
+  MBB.splice(Insert, &MBB, Def);
+  LIS.handleMove(Def);
+  const auto *RegClass = MRI.getRegClass(Reg);
+  unsigned NewReg = MRI.createVirtualRegister(RegClass);
+  unsigned TeeReg = MRI.createVirtualRegister(RegClass);
+  MRI.replaceRegWith(Reg, NewReg);
+  MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
+                              TII->get(GetTeeLocalOpcode(RegClass)), TeeReg)
+                          .addReg(NewReg, RegState::Define)
+                          .addReg(Reg);
+  Op.setReg(TeeReg);
+  Def->getOperand(0).setReg(Reg);
+  LIS.InsertMachineInstrInMaps(Tee);
+  LIS.shrinkToUses(&LIS.getInterval(Reg));
+  LIS.createAndComputeVirtRegInterval(NewReg);
+  LIS.createAndComputeVirtRegInterval(TeeReg);
+  MFI.stackifyVReg(Reg);
+  MFI.stackifyVReg(TeeReg);
+  ImposeStackOrdering(Def);
+  ImposeStackOrdering(Tee);
+  return Def;
+}
+
+namespace {
+/// A stack for walking the tree of instructions being built, visiting the
+/// MachineOperands in DFS order.
+class TreeWalkerState {
+  typedef MachineInstr::mop_iterator mop_iterator;
+  typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
+  typedef iterator_range<mop_reverse_iterator> RangeTy;
+  SmallVector<RangeTy, 4> Worklist;
+
+public:
+  explicit TreeWalkerState(MachineInstr *Insert) {
+    const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
+    if (Range.begin() != Range.end())
+      Worklist.push_back(reverse(Range));
+  }
+
+  bool Done() const { return Worklist.empty(); }
+
+  MachineOperand &Pop() {
+    RangeTy &Range = Worklist.back();
+    MachineOperand &Op = *Range.begin();
+    Range = drop_begin(Range, 1);
+    if (Range.begin() == Range.end())
+      Worklist.pop_back();
+    assert((Worklist.empty() ||
+            Worklist.back().begin() != Worklist.back().end()) &&
+           "Empty ranges shouldn't remain in the worklist");
+    return Op;
+  }
+
+  /// Push Instr's operands onto the stack to be visited.
+  void PushOperands(MachineInstr *Instr) {
+    const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
+    if (Range.begin() != Range.end())
+      Worklist.push_back(reverse(Range));
+  }
+
+  /// Some of Instr's operands are on the top of the stack; remove them and
+  /// re-insert them starting from the beginning (because we've commuted them).
+  void ResetTopOperands(MachineInstr *Instr) {
+    assert(HasRemainingOperands(Instr) &&
+           "Reseting operands should only be done when the instruction has "
+           "an operand still on the stack");
+    Worklist.back() = reverse(Instr->explicit_uses());
+  }
+
+  /// Test whether Instr has operands remaining to be visited at the top of
+  /// the stack.
+  bool HasRemainingOperands(const MachineInstr *Instr) const {
+    if (Worklist.empty())
+      return false;
+    const RangeTy &Range = Worklist.back();
+    return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
+  }
+};
+
+/// State to keep track of whether commuting is in flight or whether it's been
+/// tried for the current instruction and didn't work.
+class CommutingState {
+  /// There are effectively three states: the initial state where we haven't
+  /// started commuting anything and we don't know anything yet, the tenative
+  /// state where we've commuted the operands of the current instruction and are
+  /// revisting it, and the declined state where we've reverted the operands
+  /// back to their original order and will no longer commute it further.
+  bool TentativelyCommuting;
+  bool Declined;
+
+  /// During the tentative state, these hold the operand indices of the commuted
+  /// operands.
+  unsigned Operand0, Operand1;
+
+public:
+  CommutingState() : TentativelyCommuting(false), Declined(false) {}
+
+  /// Stackification for an operand was not successful due to ordering
+  /// constraints. If possible, and if we haven't already tried it and declined
+  /// it, commute Insert's operands and prepare to revisit it.
+  void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
+                    const WebAssemblyInstrInfo *TII) {
+    if (TentativelyCommuting) {
+      assert(!Declined &&
+             "Don't decline commuting until you've finished trying it");
+      // Commuting didn't help. Revert it.
+      TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
+      TentativelyCommuting = false;
+      Declined = true;
+    } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
+      Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
+      Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
+      if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) {
+        // Tentatively commute the operands and try again.
+        TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
+        TreeWalker.ResetTopOperands(Insert);
+        TentativelyCommuting = true;
+        Declined = false;
+      }
+    }
+  }
+
+  /// Stackification for some operand was successful. Reset to the default
+  /// state.
+  void Reset() {
+    TentativelyCommuting = false;
+    Declined = false;
+  }
+};
+} // end anonymous namespace
+
 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
   DEBUG(dbgs() << "********** Register Stackifying **********\n"
                   "********** Function: "
@@ -144,6 +391,7 @@
   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
 
   // Walk the instructions from the bottom up. Currently we don't look past
@@ -165,20 +413,36 @@
 
       // Iterate through the inputs in reverse order, since we'll be pulling
       // operands off the stack in LIFO order.
-      bool AnyStackified = false;
-      for (MachineOperand &Op : reverse(Insert->uses())) {
+      CommutingState Commuting;
+      TreeWalkerState TreeWalker(Insert);
+      while (!TreeWalker.Done()) {
+        MachineOperand &Op = TreeWalker.Pop();
+
         // We're only interested in explicit virtual register operands.
-        if (!Op.isReg() || Op.isImplicit() || !Op.isUse())
+        if (!Op.isReg())
           continue;
 
         unsigned Reg = Op.getReg();
-
-        // Only consider registers with a single definition.
-        // TODO: Eventually we may relax this, to stackify phi transfers.
-        MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
-        if (!Def)
+        assert(Op.isUse() && "explicit_uses() should only iterate over uses");
+        assert(!Op.isImplicit() &&
+               "explicit_uses() should only iterate over explicit operands");
+        if (TargetRegisterInfo::isPhysicalRegister(Reg))
           continue;
 
+        // Identify the definition for this register at this point. Most
+        // registers are in SSA form here so we try a quick MRI query first.
+        MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
+        if (!Def) {
+          // MRI doesn't know what the Def is. Try asking LIS.
+          const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
+              LIS.getInstructionIndex(Insert));
+          if (!ValNo)
+            continue;
+          Def = LIS.getInstructionFromIndex(ValNo->def);
+          if (!Def)
+            continue;
+        }
+
         // Don't nest an INLINE_ASM def into anything, because we don't have
         // constraints for $pop outputs.
         if (Def->getOpcode() == TargetOpcode::INLINEASM)
@@ -196,59 +460,52 @@
             Def->getOpcode() == WebAssembly::ARGUMENT_F64)
           continue;
 
-        if (MRI.hasOneUse(Reg) && Def->getParent() == &MBB &&
-            IsSafeToMove(Def, Insert, AA, LIS, MRI)) {
-          // A single-use def in the same block with no intervening memory or
-          // register dependencies; move the def down and nest it with the
-          // current instruction.
-          // TODO: Stackify multiple-use values, taking advantage of set_local
-          // returning its result.
-          Changed = true;
-          AnyStackified = true;
-          MBB.splice(Insert, &MBB, Def);
-          LIS.handleMove(Def);
-          MFI.stackifyVReg(Reg);
-          ImposeStackOrdering(Def);
-          Insert = Def;
+        // Decide which strategy to take. Prefer to move a single-use value
+        // over cloning it, and prefer cloning over introducing a tee_local.
+        // For moving, we require the def to be in the same block as the use;
+        // this makes things simpler (LiveIntervals' handleMove function only
+        // supports intra-block moves) and it's MachineSink's job to catch all
+        // the sinking opportunities anyway.
+        bool SameBlock = Def->getParent() == &MBB;
+        bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI);
+        if (CanMove && MRI.hasOneUse(Reg)) {
+          Insert = MoveForSingleUse(Reg, Def, MBB, Insert, LIS, MFI);
         } else if (Def->isAsCheapAsAMove() &&
                    TII->isTriviallyReMaterializable(Def, &AA)) {
-          // A trivially cloneable instruction; clone it and nest the new copy
-          // with the current instruction.
-          Changed = true;
-          AnyStackified = true;
-          unsigned OldReg = Def->getOperand(0).getReg();
-          unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
-          TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
-          Op.setReg(NewReg);
-          MachineInstr *Clone =
-              &*std::prev(MachineBasicBlock::instr_iterator(Insert));
-          LIS.InsertMachineInstrInMaps(Clone);
-          LIS.createAndComputeVirtRegInterval(NewReg);
-          MFI.stackifyVReg(NewReg);
-          ImposeStackOrdering(Clone);
-          Insert = Clone;
-
-          // If that was the last use of the original, delete the original.
-          // Otherwise shrink the LiveInterval.
-          if (MRI.use_empty(OldReg)) {
-            SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
-            LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
-            LIS.removeVRegDefAt(LIS.getInterval(OldReg), Idx);
-            LIS.removeInterval(OldReg);
-            LIS.RemoveMachineInstrFromMaps(Def);
-            Def->eraseFromParent();
-          } else {
-            LIS.shrinkToUses(&LIS.getInterval(OldReg));
-          }
+          Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI,
+                                         MRI, TII, TRI);
+        } else if (CanMove &&
+                   OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT)) {
+          Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
+                                         MRI, TII);
+        } else {
+          // We failed to stackify the operand. If the problem was ordering
+          // constraints, Commuting may be able to help.
+          if (!CanMove && SameBlock)
+            Commuting.MaybeCommute(Insert, TreeWalker, TII);
+          // Proceed to the next operand.
+          continue;
         }
+
+        // We stackified an operand. Add the defining instruction's operands to
+        // the worklist stack now to continue to build an ever deeper tree.
+        Commuting.Reset();
+        TreeWalker.PushOperands(Insert);
       }
-      if (AnyStackified)
+
+      // If we stackified any operands, skip over the tree to start looking for
+      // the next instruction we can build a tree on.
+      if (Insert != &*MII) {
         ImposeStackOrdering(&*MII);
+        MII = std::prev(
+            make_reverse_iterator(MachineBasicBlock::iterator(Insert)));
+        Changed = true;
+      }
     }
   }
 
-  // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere
-  // so that it never looks like a use-before-def.
+  // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so
+  // that it never looks like a use-before-def.
   if (Changed) {
     MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
     for (MachineBasicBlock &MBB : MF)
@@ -263,23 +520,25 @@
       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
         if (!MO.isReg())
           continue;
-        unsigned VReg = MO.getReg();
+        unsigned Reg = MO.getReg();
 
         // Don't stackify physregs like SP or FP.
-        if (!TargetRegisterInfo::isVirtualRegister(VReg))
+        if (!TargetRegisterInfo::isVirtualRegister(Reg))
           continue;
 
-        if (MFI.isVRegStackified(VReg)) {
+        if (MFI.isVRegStackified(Reg)) {
           if (MO.isDef())
-            Stack.push_back(VReg);
+            Stack.push_back(Reg);
           else
-            assert(Stack.pop_back_val() == VReg);
+            assert(Stack.pop_back_val() == Reg &&
+                   "Register stack pop should be paired with a push");
         }
       }
     }
     // TODO: Generalize this code to support keeping values on the stack across
     // basic block boundaries.
-    assert(Stack.empty());
+    assert(Stack.empty() &&
+           "Register stack pushes and pops should be balanced");
   }
 #endif