Move VectorUtils from Transforms to Analysis to correct layering violation

llvm-svn: 240804
diff --git a/llvm/lib/Analysis/VectorUtils.cpp b/llvm/lib/Analysis/VectorUtils.cpp
new file mode 100644
index 0000000..96fddd1
--- /dev/null
+++ b/llvm/lib/Analysis/VectorUtils.cpp
@@ -0,0 +1,213 @@
+//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines vectorizer utilities.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/VectorUtils.h"
+
+/// \brief Identify if the intrinsic is trivially vectorizable.
+/// This method returns true if the intrinsic's argument types are all
+/// scalars for the scalar form of the intrinsic and all vectors for
+/// the vector form of the intrinsic.
+bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
+  switch (ID) {
+  case Intrinsic::sqrt:
+  case Intrinsic::sin:
+  case Intrinsic::cos:
+  case Intrinsic::exp:
+  case Intrinsic::exp2:
+  case Intrinsic::log:
+  case Intrinsic::log10:
+  case Intrinsic::log2:
+  case Intrinsic::fabs:
+  case Intrinsic::minnum:
+  case Intrinsic::maxnum:
+  case Intrinsic::copysign:
+  case Intrinsic::floor:
+  case Intrinsic::ceil:
+  case Intrinsic::trunc:
+  case Intrinsic::rint:
+  case Intrinsic::nearbyint:
+  case Intrinsic::round:
+  case Intrinsic::bswap:
+  case Intrinsic::ctpop:
+  case Intrinsic::pow:
+  case Intrinsic::fma:
+  case Intrinsic::fmuladd:
+  case Intrinsic::ctlz:
+  case Intrinsic::cttz:
+  case Intrinsic::powi:
+    return true;
+  default:
+    return false;
+  }
+}
+
+/// \brief Identifies if the intrinsic has a scalar operand. It check for
+/// ctlz,cttz and powi special intrinsics whose argument is scalar.
+bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
+                                        unsigned ScalarOpdIdx) {
+  switch (ID) {
+  case Intrinsic::ctlz:
+  case Intrinsic::cttz:
+  case Intrinsic::powi:
+    return (ScalarOpdIdx == 1);
+  default:
+    return false;
+  }
+}
+
+/// \brief Check call has a unary float signature
+/// It checks following:
+/// a) call should have a single argument
+/// b) argument type should be floating point type
+/// c) call instruction type and argument type should be same
+/// d) call should only reads memory.
+/// If all these condition is met then return ValidIntrinsicID
+/// else return not_intrinsic.
+llvm::Intrinsic::ID
+llvm::checkUnaryFloatSignature(const CallInst &I,
+                               Intrinsic::ID ValidIntrinsicID) {
+  if (I.getNumArgOperands() != 1 ||
+      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+/// \brief Check call has a binary float signature
+/// It checks following:
+/// a) call should have 2 arguments.
+/// b) arguments type should be floating point type
+/// c) call instruction type and arguments type should be same
+/// d) call should only reads memory.
+/// If all these condition is met then return ValidIntrinsicID
+/// else return not_intrinsic.
+llvm::Intrinsic::ID
+llvm::checkBinaryFloatSignature(const CallInst &I,
+                                Intrinsic::ID ValidIntrinsicID) {
+  if (I.getNumArgOperands() != 2 ||
+      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
+      I.getType() != I.getArgOperand(0)->getType() ||
+      I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+/// \brief Returns intrinsic ID for call.
+/// For the input call instruction it finds mapping intrinsic and returns
+/// its ID, in case it does not found it return not_intrinsic.
+llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
+                                                const TargetLibraryInfo *TLI) {
+  // If we have an intrinsic call, check if it is trivially vectorizable.
+  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+    Intrinsic::ID ID = II->getIntrinsicID();
+    if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
+        ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
+      return ID;
+    return Intrinsic::not_intrinsic;
+  }
+
+  if (!TLI)
+    return Intrinsic::not_intrinsic;
+
+  LibFunc::Func Func;
+  Function *F = CI->getCalledFunction();
+  // We're going to make assumptions on the semantics of the functions, check
+  // that the target knows that it's available in this environment and it does
+  // not have local linkage.
+  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
+    return Intrinsic::not_intrinsic;
+
+  // Otherwise check if we have a call to a function that can be turned into a
+  // vector intrinsic.
+  switch (Func) {
+  default:
+    break;
+  case LibFunc::sin:
+  case LibFunc::sinf:
+  case LibFunc::sinl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
+  case LibFunc::cos:
+  case LibFunc::cosf:
+  case LibFunc::cosl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
+  case LibFunc::exp:
+  case LibFunc::expf:
+  case LibFunc::expl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
+  case LibFunc::exp2:
+  case LibFunc::exp2f:
+  case LibFunc::exp2l:
+    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
+  case LibFunc::log:
+  case LibFunc::logf:
+  case LibFunc::logl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::log);
+  case LibFunc::log10:
+  case LibFunc::log10f:
+  case LibFunc::log10l:
+    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
+  case LibFunc::log2:
+  case LibFunc::log2f:
+  case LibFunc::log2l:
+    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
+  case LibFunc::fabs:
+  case LibFunc::fabsf:
+  case LibFunc::fabsl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
+  case LibFunc::fmin:
+  case LibFunc::fminf:
+  case LibFunc::fminl:
+    return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
+  case LibFunc::fmax:
+  case LibFunc::fmaxf:
+  case LibFunc::fmaxl:
+    return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
+  case LibFunc::copysign:
+  case LibFunc::copysignf:
+  case LibFunc::copysignl:
+    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
+  case LibFunc::floor:
+  case LibFunc::floorf:
+  case LibFunc::floorl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
+  case LibFunc::ceil:
+  case LibFunc::ceilf:
+  case LibFunc::ceill:
+    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
+  case LibFunc::trunc:
+  case LibFunc::truncf:
+  case LibFunc::truncl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
+  case LibFunc::rint:
+  case LibFunc::rintf:
+  case LibFunc::rintl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
+  case LibFunc::nearbyint:
+  case LibFunc::nearbyintf:
+  case LibFunc::nearbyintl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
+  case LibFunc::round:
+  case LibFunc::roundf:
+  case LibFunc::roundl:
+    return checkUnaryFloatSignature(*CI, Intrinsic::round);
+  case LibFunc::pow:
+  case LibFunc::powf:
+  case LibFunc::powl:
+    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
+  }
+
+  return Intrinsic::not_intrinsic;
+}