[ValueTracking, VectorUtils] Refactor getIntrinsicIDForCall

The functionality contained within getIntrinsicIDForCall is two-fold: it
checks if a CallInst's callee is a vectorizable intrinsic.  If it isn't
an intrinsic, it attempts to map the call's target to a suitable
intrinsic.

Move the mapping functionality into getIntrinsicForCallSite and rename
getIntrinsicIDForCall to getVectorIntrinsicIDForCall while
reimplementing it in terms of getIntrinsicForCallSite.

llvm-svn: 266801
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 222005f..a712298 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -1505,7 +1505,7 @@
         // vectorize a loop if it contains known function calls that don't set
         // the flag. Therefore, it is safe to ignore this read from memory.
         CallInst *Call = dyn_cast<CallInst>(it);
-        if (Call && getIntrinsicIDForCall(Call, TLI))
+        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
           continue;
 
         // If the function has an explicit vectorized counterpart, we can safely
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp
index bea414a..f6a713f 100644
--- a/llvm/lib/Analysis/ValueTracking.cpp
+++ b/llvm/lib/Analysis/ValueTracking.cpp
@@ -2262,6 +2262,153 @@
   return false;
 }
 
+/// \brief Check call has a unary float signature
+/// It checks following:
+/// a) call should have a single argument
+/// b) argument type should be floating point type
+/// c) call instruction type and argument type should be same
+/// d) call should only reads memory.
+/// If all these condition is met then return ValidIntrinsicID
+/// else return not_intrinsic.
+static Intrinsic::ID checkUnaryFloatSignature(ImmutableCallSite ICS,
+                                              Intrinsic::ID ValidIntrinsicID) {
+  if (ICS.getNumArgOperands() != 1 ||
+      !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      ICS.getType() != ICS.getArgOperand(0)->getType() ||
+      !ICS.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+/// \brief Check call has a binary float signature
+/// It checks following:
+/// a) call should have 2 arguments.
+/// b) arguments type should be floating point type
+/// c) call instruction type and arguments type should be same
+/// d) call should only reads memory.
+/// If all these condition is met then return ValidIntrinsicID
+/// else return not_intrinsic.
+static Intrinsic::ID checkBinaryFloatSignature(ImmutableCallSite ICS,
+                                               Intrinsic::ID ValidIntrinsicID) {
+  if (ICS.getNumArgOperands() != 2 ||
+      !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
+      !ICS.getArgOperand(1)->getType()->isFloatingPointTy() ||
+      ICS.getType() != ICS.getArgOperand(0)->getType() ||
+      ICS.getType() != ICS.getArgOperand(1)->getType() ||
+      !ICS.onlyReadsMemory())
+    return Intrinsic::not_intrinsic;
+
+  return ValidIntrinsicID;
+}
+
+Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
+                                            const TargetLibraryInfo *TLI) {
+  const Function *F = ICS.getCalledFunction();
+  if (!F)
+    return Intrinsic::not_intrinsic;
+
+  if (F->isIntrinsic())
+    return F->getIntrinsicID();
+
+  if (!TLI)
+    return Intrinsic::not_intrinsic;
+
+  LibFunc::Func Func;
+  // We're going to make assumptions on the semantics of the functions, check
+  // that the target knows that it's available in this environment and it does
+  // not have local linkage.
+  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
+    return Intrinsic::not_intrinsic;
+
+  // Otherwise check if we have a call to a function that can be turned into a
+  // vector intrinsic.
+  switch (Func) {
+  default:
+    break;
+  case LibFunc::sin:
+  case LibFunc::sinf:
+  case LibFunc::sinl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::sin);
+  case LibFunc::cos:
+  case LibFunc::cosf:
+  case LibFunc::cosl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::cos);
+  case LibFunc::exp:
+  case LibFunc::expf:
+  case LibFunc::expl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::exp);
+  case LibFunc::exp2:
+  case LibFunc::exp2f:
+  case LibFunc::exp2l:
+    return checkUnaryFloatSignature(ICS, Intrinsic::exp2);
+  case LibFunc::log:
+  case LibFunc::logf:
+  case LibFunc::logl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::log);
+  case LibFunc::log10:
+  case LibFunc::log10f:
+  case LibFunc::log10l:
+    return checkUnaryFloatSignature(ICS, Intrinsic::log10);
+  case LibFunc::log2:
+  case LibFunc::log2f:
+  case LibFunc::log2l:
+    return checkUnaryFloatSignature(ICS, Intrinsic::log2);
+  case LibFunc::fabs:
+  case LibFunc::fabsf:
+  case LibFunc::fabsl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::fabs);
+  case LibFunc::fmin:
+  case LibFunc::fminf:
+  case LibFunc::fminl:
+    return checkBinaryFloatSignature(ICS, Intrinsic::minnum);
+  case LibFunc::fmax:
+  case LibFunc::fmaxf:
+  case LibFunc::fmaxl:
+    return checkBinaryFloatSignature(ICS, Intrinsic::maxnum);
+  case LibFunc::copysign:
+  case LibFunc::copysignf:
+  case LibFunc::copysignl:
+    return checkBinaryFloatSignature(ICS, Intrinsic::copysign);
+  case LibFunc::floor:
+  case LibFunc::floorf:
+  case LibFunc::floorl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::floor);
+  case LibFunc::ceil:
+  case LibFunc::ceilf:
+  case LibFunc::ceill:
+    return checkUnaryFloatSignature(ICS, Intrinsic::ceil);
+  case LibFunc::trunc:
+  case LibFunc::truncf:
+  case LibFunc::truncl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::trunc);
+  case LibFunc::rint:
+  case LibFunc::rintf:
+  case LibFunc::rintl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::rint);
+  case LibFunc::nearbyint:
+  case LibFunc::nearbyintf:
+  case LibFunc::nearbyintl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::nearbyint);
+  case LibFunc::round:
+  case LibFunc::roundf:
+  case LibFunc::roundl:
+    return checkUnaryFloatSignature(ICS, Intrinsic::round);
+  case LibFunc::pow:
+  case LibFunc::powf:
+  case LibFunc::powl:
+    return checkBinaryFloatSignature(ICS, Intrinsic::pow);
+  case LibFunc::sqrt:
+  case LibFunc::sqrtf:
+  case LibFunc::sqrtl:
+    if (ICS->hasNoNaNs())
+      return checkUnaryFloatSignature(ICS, Intrinsic::sqrt);
+    return Intrinsic::not_intrinsic;
+  }
+
+  return Intrinsic::not_intrinsic;
+}
+
 /// Return true if we can prove that the specified FP value is never equal to
 /// -0.0.
 ///
@@ -2298,7 +2445,7 @@
     return true;
 
   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
-    Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI);
+    Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
     switch (IID) {
     default:
       break;
@@ -2352,7 +2499,7 @@
     // Widening/narrowing never change sign.
     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
   case Instruction::Call:
-    Intrinsic::ID IID = getIntrinsicIDForCall(cast<CallInst>(I), TLI);
+    Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
     switch (IID) {
     default:
       break;
diff --git a/llvm/lib/Analysis/VectorUtils.cpp b/llvm/lib/Analysis/VectorUtils.cpp
index cffe033..23a0de8 100644
--- a/llvm/lib/Analysis/VectorUtils.cpp
+++ b/llvm/lib/Analysis/VectorUtils.cpp
@@ -17,6 +17,7 @@
 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 #include "llvm/Analysis/ScalarEvolution.h"
 #include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Analysis/VectorUtils.h"
 #include "llvm/IR/GetElementPtrTypeIterator.h"
 #include "llvm/IR/PatternMatch.h"
@@ -78,156 +79,18 @@
   }
 }
 
-/// \brief Check call has a unary float signature
-/// It checks following:
-/// a) call should have a single argument
-/// b) argument type should be floating point type
-/// c) call instruction type and argument type should be same
-/// d) call should only reads memory.
-/// If all these condition is met then return ValidIntrinsicID
-/// else return not_intrinsic.
-Intrinsic::ID
-llvm::checkUnaryFloatSignature(const CallInst &I,
-                               Intrinsic::ID ValidIntrinsicID) {
-  if (I.getNumArgOperands() != 1 ||
-      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
-      I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
-    return Intrinsic::not_intrinsic;
-
-  return ValidIntrinsicID;
-}
-
-/// \brief Check call has a binary float signature
-/// It checks following:
-/// a) call should have 2 arguments.
-/// b) arguments type should be floating point type
-/// c) call instruction type and arguments type should be same
-/// d) call should only reads memory.
-/// If all these condition is met then return ValidIntrinsicID
-/// else return not_intrinsic.
-Intrinsic::ID
-llvm::checkBinaryFloatSignature(const CallInst &I,
-                                Intrinsic::ID ValidIntrinsicID) {
-  if (I.getNumArgOperands() != 2 ||
-      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
-      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
-      I.getType() != I.getArgOperand(0)->getType() ||
-      I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
-    return Intrinsic::not_intrinsic;
-
-  return ValidIntrinsicID;
-}
-
 /// \brief Returns intrinsic ID for call.
 /// For the input call instruction it finds mapping intrinsic and returns
 /// its ID, in case it does not found it return not_intrinsic.
-Intrinsic::ID llvm::getIntrinsicIDForCall(const CallInst *CI,
-                                          const TargetLibraryInfo *TLI) {
-  // If we have an intrinsic call, check if it is trivially vectorizable.
-  if (const auto *II = dyn_cast<IntrinsicInst>(CI)) {
-    Intrinsic::ID ID = II->getIntrinsicID();
-    if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
-        ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
-      return ID;
-    return Intrinsic::not_intrinsic;
-  }
-
-  if (!TLI)
+Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
+                                                const TargetLibraryInfo *TLI) {
+  Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
+  if (ID == Intrinsic::not_intrinsic)
     return Intrinsic::not_intrinsic;
 
-  LibFunc::Func Func;
-  Function *F = CI->getCalledFunction();
-  // We're going to make assumptions on the semantics of the functions, check
-  // that the target knows that it's available in this environment and it does
-  // not have local linkage.
-  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
-    return Intrinsic::not_intrinsic;
-
-  // Otherwise check if we have a call to a function that can be turned into a
-  // vector intrinsic.
-  switch (Func) {
-  default:
-    break;
-  case LibFunc::sin:
-  case LibFunc::sinf:
-  case LibFunc::sinl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
-  case LibFunc::cos:
-  case LibFunc::cosf:
-  case LibFunc::cosl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
-  case LibFunc::exp:
-  case LibFunc::expf:
-  case LibFunc::expl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
-  case LibFunc::exp2:
-  case LibFunc::exp2f:
-  case LibFunc::exp2l:
-    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
-  case LibFunc::log:
-  case LibFunc::logf:
-  case LibFunc::logl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::log);
-  case LibFunc::log10:
-  case LibFunc::log10f:
-  case LibFunc::log10l:
-    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
-  case LibFunc::log2:
-  case LibFunc::log2f:
-  case LibFunc::log2l:
-    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
-  case LibFunc::fabs:
-  case LibFunc::fabsf:
-  case LibFunc::fabsl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
-  case LibFunc::fmin:
-  case LibFunc::fminf:
-  case LibFunc::fminl:
-    return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
-  case LibFunc::fmax:
-  case LibFunc::fmaxf:
-  case LibFunc::fmaxl:
-    return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
-  case LibFunc::copysign:
-  case LibFunc::copysignf:
-  case LibFunc::copysignl:
-    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
-  case LibFunc::floor:
-  case LibFunc::floorf:
-  case LibFunc::floorl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
-  case LibFunc::ceil:
-  case LibFunc::ceilf:
-  case LibFunc::ceill:
-    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
-  case LibFunc::trunc:
-  case LibFunc::truncf:
-  case LibFunc::truncl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
-  case LibFunc::rint:
-  case LibFunc::rintf:
-  case LibFunc::rintl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
-  case LibFunc::nearbyint:
-  case LibFunc::nearbyintf:
-  case LibFunc::nearbyintl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
-  case LibFunc::round:
-  case LibFunc::roundf:
-  case LibFunc::roundl:
-    return checkUnaryFloatSignature(*CI, Intrinsic::round);
-  case LibFunc::pow:
-  case LibFunc::powf:
-  case LibFunc::powl:
-    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
-  case LibFunc::sqrt:
-  case LibFunc::sqrtf:
-  case LibFunc::sqrtl:
-    if (CI->hasNoNaNs())
-      return checkUnaryFloatSignature(*CI, Intrinsic::sqrt);
-    return Intrinsic::not_intrinsic;
-  }
-
+  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
+      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
+    return ID;
   return Intrinsic::not_intrinsic;
 }