AMDGPU: Unify divergent function exits.

StructurizeCFG can't handle cases with multiple
returns creating regions with multiple exits.
Create a copy of UnifyFunctionExitNodes that only
unifies exit nodes that skips exit nodes
with uniform branch sources.

llvm-svn: 298729
diff --git a/llvm/lib/Target/AMDGPU/AMDGPU.h b/llvm/lib/Target/AMDGPU/AMDGPU.h
index 3e1e64a..99d71f5 100644
--- a/llvm/lib/Target/AMDGPU/AMDGPU.h
+++ b/llvm/lib/Target/AMDGPU/AMDGPU.h
@@ -123,6 +123,9 @@
 void initializeSIInsertWaitsPass(PassRegistry&);
 extern char &SIInsertWaitsID;
 
+void initializeAMDGPUUnifyDivergentExitNodesPass(PassRegistry&);
+extern char &AMDGPUUnifyDivergentExitNodesID;
+
 ImmutablePass *createAMDGPUAAWrapperPass();
 void initializeAMDGPUAAWrapperPassPass(PassRegistry&);
 
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp b/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp
index 93c2814..46e458a 100644
--- a/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp
+++ b/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp
@@ -132,6 +132,7 @@
   initializeSIInsertSkipsPass(*PR);
   initializeSIDebuggerInsertNopsPass(*PR);
   initializeSIOptimizeExecMaskingPass(*PR);
+  initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
   initializeAMDGPUAAWrapperPassPass(*PR);
 }
 
@@ -673,6 +674,10 @@
   // supported.
   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
   addPass(createAMDGPUAnnotateKernelFeaturesPass(&TM));
+
+  // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
+  // regions formed by them.
+  addPass(&AMDGPUUnifyDivergentExitNodesID);
   addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
   addPass(createSinkingPass());
   addPass(createSITypeRewriter());
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp b/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp
new file mode 100644
index 0000000..309913f
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp
@@ -0,0 +1,225 @@
+//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
+// there is at most one ret and one unreachable instruction, it ensures there is
+// at most one divergent exiting block.
+//
+// StructurizeCFG can't deal with multi-exit regions formed by branches to
+// multiple return nodes. It is not desirable to structurize regions with
+// uniform branches, so unifying those to the same return block as divergent
+// branches inhibits use of scalar branching. It still can't deal with the case
+// where one branch goes to return, and one unreachable. Replace unreachable in
+// this case with a return.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/DivergenceAnalysis.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
+
+namespace {
+
+class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
+public:
+  static char ID; // Pass identification, replacement for typeid
+  AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
+    initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
+  }
+
+  // We can preserve non-critical-edgeness when we unify function exit nodes
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+  bool runOnFunction(Function &F) override;
+};
+
+}
+
+char AMDGPUUnifyDivergentExitNodes::ID = 0;
+INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
+                     "Unify divergent function exit nodes", false, false)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
+INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
+                    "Unify divergent function exit nodes", false, false)
+
+char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
+
+void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
+  // TODO: Preserve dominator tree.
+  AU.addRequired<PostDominatorTreeWrapperPass>();
+
+  AU.addRequired<DivergenceAnalysis>();
+
+  // No divergent values are changed, only blocks and branch edges.
+  AU.addPreserved<DivergenceAnalysis>();
+
+  // We preserve the non-critical-edgeness property
+  AU.addPreservedID(BreakCriticalEdgesID);
+
+  // This is a cluster of orthogonal Transforms
+  AU.addPreservedID(LowerSwitchID);
+  FunctionPass::getAnalysisUsage(AU);
+
+  AU.addRequired<TargetTransformInfoWrapperPass>();
+}
+
+/// \returns true if \p BB is reachable through only uniform branches.
+/// XXX - Is there a more efficient way to find this?
+static bool isUniformlyReached(const DivergenceAnalysis &DA,
+                               BasicBlock &BB) {
+  SmallVector<BasicBlock *, 8> Stack;
+  SmallPtrSet<BasicBlock *, 8> Visited;
+
+  for (BasicBlock *Pred : predecessors(&BB))
+    Stack.push_back(Pred);
+
+  while (!Stack.empty()) {
+    BasicBlock *Top = Stack.pop_back_val();
+    if (!DA.isUniform(Top->getTerminator()))
+      return false;
+
+    for (BasicBlock *Pred : predecessors(Top)) {
+      if (Visited.insert(Pred).second)
+        Stack.push_back(Pred);
+    }
+  }
+
+  return true;
+}
+
+static BasicBlock *unifyReturnBlockSet(Function &F,
+                                       ArrayRef<BasicBlock *> ReturningBlocks,
+                                       const TargetTransformInfo &TTI,
+                                       StringRef Name) {
+  // Otherwise, we need to insert a new basic block into the function, add a PHI
+  // nodes (if the function returns values), and convert all of the return
+  // instructions into unconditional branches.
+  //
+  BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
+
+  PHINode *PN = nullptr;
+  if (F.getReturnType()->isVoidTy()) {
+    ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
+  } else {
+    // If the function doesn't return void... add a PHI node to the block...
+    PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
+                         "UnifiedRetVal");
+    NewRetBlock->getInstList().push_back(PN);
+    ReturnInst::Create(F.getContext(), PN, NewRetBlock);
+  }
+
+  // Loop over all of the blocks, replacing the return instruction with an
+  // unconditional branch.
+  //
+  for (BasicBlock *BB : ReturningBlocks) {
+    // Add an incoming element to the PHI node for every return instruction that
+    // is merging into this new block...
+    if (PN)
+      PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
+
+    BB->getInstList().pop_back();  // Remove the return insn
+    BranchInst::Create(NewRetBlock, BB);
+  }
+
+  for (BasicBlock *BB : ReturningBlocks) {
+    // Cleanup possible branch to unconditional branch to the return.
+    SimplifyCFG(BB, TTI, 2);
+  }
+
+  return NewRetBlock;
+}
+
+bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
+  auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
+  if (PDT.getRoots().size() <= 1)
+    return false;
+
+  DivergenceAnalysis &DA = getAnalysis<DivergenceAnalysis>();
+
+  // Loop over all of the blocks in a function, tracking all of the blocks that
+  // return.
+  //
+  SmallVector<BasicBlock *, 4> ReturningBlocks;
+  SmallVector<BasicBlock *, 4> UnreachableBlocks;
+
+  for (BasicBlock *BB : PDT.getRoots()) {
+    if (isa<ReturnInst>(BB->getTerminator())) {
+      if (!isUniformlyReached(DA, *BB))
+        ReturningBlocks.push_back(BB);
+    } else if (isa<UnreachableInst>(BB->getTerminator())) {
+      if (!isUniformlyReached(DA, *BB))
+        UnreachableBlocks.push_back(BB);
+    }
+  }
+
+  if (!UnreachableBlocks.empty()) {
+    BasicBlock *UnreachableBlock = nullptr;
+
+    if (UnreachableBlocks.size() == 1) {
+      UnreachableBlock = UnreachableBlocks.front();
+    } else {
+      UnreachableBlock = BasicBlock::Create(F.getContext(),
+                                            "UnifiedUnreachableBlock", &F);
+      new UnreachableInst(F.getContext(), UnreachableBlock);
+
+      for (BasicBlock *BB : UnreachableBlocks) {
+        BB->getInstList().pop_back();  // Remove the unreachable inst.
+        BranchInst::Create(UnreachableBlock, BB);
+      }
+    }
+
+    if (!ReturningBlocks.empty()) {
+      // Don't create a new unreachable inst if we have a return. The
+      // structurizer/annotator can't handle the multiple exits
+
+      Type *RetTy = F.getReturnType();
+      Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
+      UnreachableBlock->getInstList().pop_back();  // Remove the unreachable inst.
+
+      Function *UnreachableIntrin =
+        Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
+
+      // Insert a call to an intrinsic tracking that this is an unreachable
+      // point, in case we want to kill the active lanes or something later.
+      CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
+
+      // Don't create a scalar trap. We would only want to trap if this code was
+      // really reached, but a scalar trap would happen even if no lanes
+      // actually reached here.
+      ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
+      ReturningBlocks.push_back(UnreachableBlock);
+    }
+  }
+
+  // Now handle return blocks.
+  if (ReturningBlocks.empty())
+    return false; // No blocks return
+
+  if (ReturningBlocks.size() == 1)
+    return false; // Already has a single return block
+
+  const TargetTransformInfo &TTI
+    = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+
+  unifyReturnBlockSet(F, ReturningBlocks, TTI, "UnifiedReturnBlock");
+  return true;
+}
diff --git a/llvm/lib/Target/AMDGPU/CMakeLists.txt b/llvm/lib/Target/AMDGPU/CMakeLists.txt
index ffdcadd..689fc97 100644
--- a/llvm/lib/Target/AMDGPU/CMakeLists.txt
+++ b/llvm/lib/Target/AMDGPU/CMakeLists.txt
@@ -58,6 +58,7 @@
   AMDGPUInstrInfo.cpp
   AMDGPUPromoteAlloca.cpp
   AMDGPURegisterInfo.cpp
+  AMDGPUUnifyDivergentExitNodes.cpp
   GCNHazardRecognizer.cpp
   GCNSchedStrategy.cpp
   R600ClauseMergePass.cpp
diff --git a/llvm/lib/Target/AMDGPU/SIInstrFormats.td b/llvm/lib/Target/AMDGPU/SIInstrFormats.td
index 1db2212..b83a1fe 100644
--- a/llvm/lib/Target/AMDGPU/SIInstrFormats.td
+++ b/llvm/lib/Target/AMDGPU/SIInstrFormats.td
@@ -138,19 +138,19 @@
   let AsmVariantName = AMDGPUAsmVariants.Default;
 }
 
-class PseudoInstSI<dag outs, dag ins, list<dag> pattern = []>
-  : InstSI<outs, ins, "", pattern> {
+class PseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
+  : InstSI<outs, ins, asm, pattern> {
   let isPseudo = 1;
   let isCodeGenOnly = 1;
 }
 
-class SPseudoInstSI<dag outs, dag ins, list<dag> pattern = []>
-  : PseudoInstSI<outs, ins, pattern> {
+class SPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
+  : PseudoInstSI<outs, ins, pattern, asm> {
   let SALU = 1;
 }
 
-class VPseudoInstSI<dag outs, dag ins, list<dag> pattern = []>
-  : PseudoInstSI<outs, ins, pattern> {
+class VPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
+  : PseudoInstSI<outs, ins, pattern, asm> {
   let VALU = 1;
   let Uses = [EXEC];
 }
diff --git a/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp b/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp
index 40d35bf..e2e0895 100644
--- a/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp
+++ b/llvm/lib/Target/AMDGPU/SIInstrInfo.cpp
@@ -3803,16 +3803,11 @@
   if (DescSize != 0 && DescSize != 4)
     return DescSize;
 
-  if (Opc == AMDGPU::WAVE_BARRIER)
-    return 0;
-
   // 4-byte instructions may have a 32-bit literal encoded after them. Check
   // operands that coud ever be literals.
   if (isVALU(MI) || isSALU(MI)) {
-    if (isFixedSize(MI)) {
-      assert(DescSize == 4);
+    if (isFixedSize(MI))
       return DescSize;
-    }
 
     int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
     if (Src0Idx == -1)
@@ -3835,7 +3830,6 @@
     return 4;
 
   switch (Opc) {
-  case AMDGPU::SI_MASK_BRANCH:
   case TargetOpcode::IMPLICIT_DEF:
   case TargetOpcode::KILL:
   case TargetOpcode::DBG_VALUE:
diff --git a/llvm/lib/Target/AMDGPU/SIInstructions.td b/llvm/lib/Target/AMDGPU/SIInstructions.td
index cc76648..9e343aa 100644
--- a/llvm/lib/Target/AMDGPU/SIInstructions.td
+++ b/llvm/lib/Target/AMDGPU/SIInstructions.td
@@ -152,6 +152,8 @@
   let mayStore = 1;
   let isBarrier = 1;
   let isConvergent = 1;
+  let FixedSize = 1;
+  let Size = 0;
 }
 
 // SI pseudo instructions. These are used by the CFG structurizer pass
@@ -159,14 +161,15 @@
 
 // Dummy terminator instruction to use after control flow instructions
 // replaced with exec mask operations.
-def SI_MASK_BRANCH : PseudoInstSI <
+def SI_MASK_BRANCH : VPseudoInstSI <
   (outs), (ins brtarget:$target)> {
   let isBranch = 0;
   let isTerminator = 1;
   let isBarrier = 0;
-  let Uses = [EXEC];
   let SchedRW = [];
   let hasNoSchedulingInfo = 1;
+  let FixedSize = 1;
+  let Size = 0;
 }
 
 let isTerminator = 1 in {
@@ -260,6 +263,14 @@
   let SALU = 1;
 }
 
+def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
+  [(int_amdgcn_unreachable)],
+  "; divergent unreachable"> {
+  let Size = 0;
+  let hasNoSchedulingInfo = 1;
+  let FixedSize = 1;
+}
+
 // Used as an isel pseudo to directly emit initialization with an
 // s_mov_b32 rather than a copy of another initialized
 // register. MachineCSE skips copies, and we don't want to have to