|  | //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Methods common to all machine instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/CodeGen/GlobalISel/RegisterBank.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineInstrBundle.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSlotTracker.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/LowLevelTypeImpl.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { | 
|  | if (const MachineBasicBlock *MBB = MI.getParent()) | 
|  | if (const MachineFunction *MF = MBB->getParent()) | 
|  | return MF; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Try to crawl up to the machine function and get TRI and IntrinsicInfo from | 
|  | // it. | 
|  | static void tryToGetTargetInfo(const MachineInstr &MI, | 
|  | const TargetRegisterInfo *&TRI, | 
|  | const MachineRegisterInfo *&MRI, | 
|  | const TargetIntrinsicInfo *&IntrinsicInfo, | 
|  | const TargetInstrInfo *&TII) { | 
|  |  | 
|  | if (const MachineFunction *MF = getMFIfAvailable(MI)) { | 
|  | TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF->getRegInfo(); | 
|  | IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { | 
|  | if (MCID->ImplicitDefs) | 
|  | for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; | 
|  | ++ImpDefs) | 
|  | addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); | 
|  | if (MCID->ImplicitUses) | 
|  | for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; | 
|  | ++ImpUses) | 
|  | addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); | 
|  | } | 
|  |  | 
|  | /// MachineInstr ctor - This constructor creates a MachineInstr and adds the | 
|  | /// implicit operands. It reserves space for the number of operands specified by | 
|  | /// the MCInstrDesc. | 
|  | MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, | 
|  | DebugLoc dl, bool NoImp) | 
|  | : MCID(&tid), debugLoc(std::move(dl)) { | 
|  | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); | 
|  |  | 
|  | // Reserve space for the expected number of operands. | 
|  | if (unsigned NumOps = MCID->getNumOperands() + | 
|  | MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { | 
|  | CapOperands = OperandCapacity::get(NumOps); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  | } | 
|  |  | 
|  | if (!NoImp) | 
|  | addImplicitDefUseOperands(MF); | 
|  | } | 
|  |  | 
|  | /// MachineInstr ctor - Copies MachineInstr arg exactly | 
|  | /// | 
|  | MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) | 
|  | : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { | 
|  | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); | 
|  |  | 
|  | CapOperands = OperandCapacity::get(MI.getNumOperands()); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  |  | 
|  | // Copy operands. | 
|  | for (const MachineOperand &MO : MI.operands()) | 
|  | addOperand(MF, MO); | 
|  |  | 
|  | // Copy all the sensible flags. | 
|  | setFlags(MI.Flags); | 
|  | } | 
|  |  | 
|  | /// getRegInfo - If this instruction is embedded into a MachineFunction, | 
|  | /// return the MachineRegisterInfo object for the current function, otherwise | 
|  | /// return null. | 
|  | MachineRegisterInfo *MachineInstr::getRegInfo() { | 
|  | if (MachineBasicBlock *MBB = getParent()) | 
|  | return &MBB->getParent()->getRegInfo(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in | 
|  | /// this instruction from their respective use lists.  This requires that the | 
|  | /// operands already be on their use lists. | 
|  | void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { | 
|  | for (MachineOperand &MO : operands()) | 
|  | if (MO.isReg()) | 
|  | MRI.removeRegOperandFromUseList(&MO); | 
|  | } | 
|  |  | 
|  | /// AddRegOperandsToUseLists - Add all of the register operands in | 
|  | /// this instruction from their respective use lists.  This requires that the | 
|  | /// operands not be on their use lists yet. | 
|  | void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { | 
|  | for (MachineOperand &MO : operands()) | 
|  | if (MO.isReg()) | 
|  | MRI.addRegOperandToUseList(&MO); | 
|  | } | 
|  |  | 
|  | void MachineInstr::addOperand(const MachineOperand &Op) { | 
|  | MachineBasicBlock *MBB = getParent(); | 
|  | assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); | 
|  | addOperand(*MF, Op); | 
|  | } | 
|  |  | 
|  | /// Move NumOps MachineOperands from Src to Dst, with support for overlapping | 
|  | /// ranges. If MRI is non-null also update use-def chains. | 
|  | static void moveOperands(MachineOperand *Dst, MachineOperand *Src, | 
|  | unsigned NumOps, MachineRegisterInfo *MRI) { | 
|  | if (MRI) | 
|  | return MRI->moveOperands(Dst, Src, NumOps); | 
|  | // MachineOperand is a trivially copyable type so we can just use memmove. | 
|  | assert(Dst && Src && "Unknown operands"); | 
|  | std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); | 
|  | } | 
|  |  | 
|  | /// addOperand - Add the specified operand to the instruction.  If it is an | 
|  | /// implicit operand, it is added to the end of the operand list.  If it is | 
|  | /// an explicit operand it is added at the end of the explicit operand list | 
|  | /// (before the first implicit operand). | 
|  | void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { | 
|  | assert(MCID && "Cannot add operands before providing an instr descriptor"); | 
|  |  | 
|  | // Check if we're adding one of our existing operands. | 
|  | if (&Op >= Operands && &Op < Operands + NumOperands) { | 
|  | // This is unusual: MI->addOperand(MI->getOperand(i)). | 
|  | // If adding Op requires reallocating or moving existing operands around, | 
|  | // the Op reference could go stale. Support it by copying Op. | 
|  | MachineOperand CopyOp(Op); | 
|  | return addOperand(MF, CopyOp); | 
|  | } | 
|  |  | 
|  | // Find the insert location for the new operand.  Implicit registers go at | 
|  | // the end, everything else goes before the implicit regs. | 
|  | // | 
|  | // FIXME: Allow mixed explicit and implicit operands on inline asm. | 
|  | // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as | 
|  | // implicit-defs, but they must not be moved around.  See the FIXME in | 
|  | // InstrEmitter.cpp. | 
|  | unsigned OpNo = getNumOperands(); | 
|  | bool isImpReg = Op.isReg() && Op.isImplicit(); | 
|  | if (!isImpReg && !isInlineAsm()) { | 
|  | while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { | 
|  | --OpNo; | 
|  | assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || | 
|  | Op.getType() == MachineOperand::MO_MCSymbol; | 
|  | // OpNo now points as the desired insertion point.  Unless this is a variadic | 
|  | // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). | 
|  | // RegMask operands go between the explicit and implicit operands. | 
|  | assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || | 
|  | OpNo < MCID->getNumOperands() || isDebugOp) && | 
|  | "Trying to add an operand to a machine instr that is already done!"); | 
|  | #endif | 
|  |  | 
|  | MachineRegisterInfo *MRI = getRegInfo(); | 
|  |  | 
|  | // Determine if the Operands array needs to be reallocated. | 
|  | // Save the old capacity and operand array. | 
|  | OperandCapacity OldCap = CapOperands; | 
|  | MachineOperand *OldOperands = Operands; | 
|  | if (!OldOperands || OldCap.getSize() == getNumOperands()) { | 
|  | CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); | 
|  | Operands = MF.allocateOperandArray(CapOperands); | 
|  | // Move the operands before the insertion point. | 
|  | if (OpNo) | 
|  | moveOperands(Operands, OldOperands, OpNo, MRI); | 
|  | } | 
|  |  | 
|  | // Move the operands following the insertion point. | 
|  | if (OpNo != NumOperands) | 
|  | moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, | 
|  | MRI); | 
|  | ++NumOperands; | 
|  |  | 
|  | // Deallocate the old operand array. | 
|  | if (OldOperands != Operands && OldOperands) | 
|  | MF.deallocateOperandArray(OldCap, OldOperands); | 
|  |  | 
|  | // Copy Op into place. It still needs to be inserted into the MRI use lists. | 
|  | MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); | 
|  | NewMO->ParentMI = this; | 
|  |  | 
|  | // When adding a register operand, tell MRI about it. | 
|  | if (NewMO->isReg()) { | 
|  | // Ensure isOnRegUseList() returns false, regardless of Op's status. | 
|  | NewMO->Contents.Reg.Prev = nullptr; | 
|  | // Ignore existing ties. This is not a property that can be copied. | 
|  | NewMO->TiedTo = 0; | 
|  | // Add the new operand to MRI, but only for instructions in an MBB. | 
|  | if (MRI) | 
|  | MRI->addRegOperandToUseList(NewMO); | 
|  | // The MCID operand information isn't accurate until we start adding | 
|  | // explicit operands. The implicit operands are added first, then the | 
|  | // explicits are inserted before them. | 
|  | if (!isImpReg) { | 
|  | // Tie uses to defs as indicated in MCInstrDesc. | 
|  | if (NewMO->isUse()) { | 
|  | int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); | 
|  | if (DefIdx != -1) | 
|  | tieOperands(DefIdx, OpNo); | 
|  | } | 
|  | // If the register operand is flagged as early, mark the operand as such. | 
|  | if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) | 
|  | NewMO->setIsEarlyClobber(true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RemoveOperand - Erase an operand  from an instruction, leaving it with one | 
|  | /// fewer operand than it started with. | 
|  | /// | 
|  | void MachineInstr::RemoveOperand(unsigned OpNo) { | 
|  | assert(OpNo < getNumOperands() && "Invalid operand number"); | 
|  | untieRegOperand(OpNo); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Moving tied operands would break the ties. | 
|  | for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) | 
|  | if (Operands[i].isReg()) | 
|  | assert(!Operands[i].isTied() && "Cannot move tied operands"); | 
|  | #endif | 
|  |  | 
|  | MachineRegisterInfo *MRI = getRegInfo(); | 
|  | if (MRI && Operands[OpNo].isReg()) | 
|  | MRI->removeRegOperandFromUseList(Operands + OpNo); | 
|  |  | 
|  | // Don't call the MachineOperand destructor. A lot of this code depends on | 
|  | // MachineOperand having a trivial destructor anyway, and adding a call here | 
|  | // wouldn't make it 'destructor-correct'. | 
|  |  | 
|  | if (unsigned N = NumOperands - 1 - OpNo) | 
|  | moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); | 
|  | --NumOperands; | 
|  | } | 
|  |  | 
|  | void MachineInstr::setExtraInfo(MachineFunction &MF, | 
|  | ArrayRef<MachineMemOperand *> MMOs, | 
|  | MCSymbol *PreInstrSymbol, | 
|  | MCSymbol *PostInstrSymbol, | 
|  | MDNode *HeapAllocMarker) { | 
|  | bool HasPreInstrSymbol = PreInstrSymbol != nullptr; | 
|  | bool HasPostInstrSymbol = PostInstrSymbol != nullptr; | 
|  | bool HasHeapAllocMarker = HeapAllocMarker != nullptr; | 
|  | int NumPointers = | 
|  | MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; | 
|  |  | 
|  | // Drop all extra info if there is none. | 
|  | if (NumPointers <= 0) { | 
|  | Info.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If more than one pointer, then store out of line. Store heap alloc markers | 
|  | // out of line because PointerSumType cannot hold more than 4 tag types with | 
|  | // 32-bit pointers. | 
|  | // FIXME: Maybe we should make the symbols in the extra info mutable? | 
|  | else if (NumPointers > 1 || HasHeapAllocMarker) { | 
|  | Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( | 
|  | MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise store the single pointer inline. | 
|  | if (HasPreInstrSymbol) | 
|  | Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); | 
|  | else if (HasPostInstrSymbol) | 
|  | Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); | 
|  | else | 
|  | Info.set<EIIK_MMO>(MMOs[0]); | 
|  | } | 
|  |  | 
|  | void MachineInstr::dropMemRefs(MachineFunction &MF) { | 
|  | if (memoperands_empty()) | 
|  | return; | 
|  |  | 
|  | setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), | 
|  | getHeapAllocMarker()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setMemRefs(MachineFunction &MF, | 
|  | ArrayRef<MachineMemOperand *> MMOs) { | 
|  | if (MMOs.empty()) { | 
|  | dropMemRefs(MF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), | 
|  | getHeapAllocMarker()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::addMemOperand(MachineFunction &MF, | 
|  | MachineMemOperand *MO) { | 
|  | SmallVector<MachineMemOperand *, 2> MMOs; | 
|  | MMOs.append(memoperands_begin(), memoperands_end()); | 
|  | MMOs.push_back(MO); | 
|  | setMemRefs(MF, MMOs); | 
|  | } | 
|  |  | 
|  | void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { | 
|  | if (this == &MI) | 
|  | // Nothing to do for a self-clone! | 
|  | return; | 
|  |  | 
|  | assert(&MF == MI.getMF() && | 
|  | "Invalid machine functions when cloning memory refrences!"); | 
|  | // See if we can just steal the extra info already allocated for the | 
|  | // instruction. We can do this whenever the pre- and post-instruction symbols | 
|  | // are the same (including null). | 
|  | if (getPreInstrSymbol() == MI.getPreInstrSymbol() && | 
|  | getPostInstrSymbol() == MI.getPostInstrSymbol() && | 
|  | getHeapAllocMarker() == MI.getHeapAllocMarker()) { | 
|  | Info = MI.Info; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, fall back on a copy-based clone. | 
|  | setMemRefs(MF, MI.memoperands()); | 
|  | } | 
|  |  | 
|  | /// Check to see if the MMOs pointed to by the two MemRefs arrays are | 
|  | /// identical. | 
|  | static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, | 
|  | ArrayRef<MachineMemOperand *> RHS) { | 
|  | if (LHS.size() != RHS.size()) | 
|  | return false; | 
|  |  | 
|  | auto LHSPointees = make_pointee_range(LHS); | 
|  | auto RHSPointees = make_pointee_range(RHS); | 
|  | return std::equal(LHSPointees.begin(), LHSPointees.end(), | 
|  | RHSPointees.begin()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, | 
|  | ArrayRef<const MachineInstr *> MIs) { | 
|  | // Try handling easy numbers of MIs with simpler mechanisms. | 
|  | if (MIs.empty()) { | 
|  | dropMemRefs(MF); | 
|  | return; | 
|  | } | 
|  | if (MIs.size() == 1) { | 
|  | cloneMemRefs(MF, *MIs[0]); | 
|  | return; | 
|  | } | 
|  | // Because an empty memoperands list provides *no* information and must be | 
|  | // handled conservatively (assuming the instruction can do anything), the only | 
|  | // way to merge with it is to drop all other memoperands. | 
|  | if (MIs[0]->memoperands_empty()) { | 
|  | dropMemRefs(MF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle the general case. | 
|  | SmallVector<MachineMemOperand *, 2> MergedMMOs; | 
|  | // Start with the first instruction. | 
|  | assert(&MF == MIs[0]->getMF() && | 
|  | "Invalid machine functions when cloning memory references!"); | 
|  | MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); | 
|  | // Now walk all the other instructions and accumulate any different MMOs. | 
|  | for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { | 
|  | assert(&MF == MI.getMF() && | 
|  | "Invalid machine functions when cloning memory references!"); | 
|  |  | 
|  | // Skip MIs with identical operands to the first. This is a somewhat | 
|  | // arbitrary hack but will catch common cases without being quadratic. | 
|  | // TODO: We could fully implement merge semantics here if needed. | 
|  | if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) | 
|  | continue; | 
|  |  | 
|  | // Because an empty memoperands list provides *no* information and must be | 
|  | // handled conservatively (assuming the instruction can do anything), the | 
|  | // only way to merge with it is to drop all other memoperands. | 
|  | if (MI.memoperands_empty()) { | 
|  | dropMemRefs(MF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise accumulate these into our temporary buffer of the merged state. | 
|  | MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); | 
|  | } | 
|  |  | 
|  | setMemRefs(MF, MergedMMOs); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { | 
|  | // Do nothing if old and new symbols are the same. | 
|  | if (Symbol == getPreInstrSymbol()) | 
|  | return; | 
|  |  | 
|  | // If there was only one symbol and we're removing it, just clear info. | 
|  | if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { | 
|  | Info.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), | 
|  | getHeapAllocMarker()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { | 
|  | // Do nothing if old and new symbols are the same. | 
|  | if (Symbol == getPostInstrSymbol()) | 
|  | return; | 
|  |  | 
|  | // If there was only one symbol and we're removing it, just clear info. | 
|  | if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { | 
|  | Info.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, | 
|  | getHeapAllocMarker()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { | 
|  | // Do nothing if old and new symbols are the same. | 
|  | if (Marker == getHeapAllocMarker()) | 
|  | return; | 
|  |  | 
|  | setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), | 
|  | Marker); | 
|  | } | 
|  |  | 
|  | void MachineInstr::cloneInstrSymbols(MachineFunction &MF, | 
|  | const MachineInstr &MI) { | 
|  | if (this == &MI) | 
|  | // Nothing to do for a self-clone! | 
|  | return; | 
|  |  | 
|  | assert(&MF == MI.getMF() && | 
|  | "Invalid machine functions when cloning instruction symbols!"); | 
|  |  | 
|  | setPreInstrSymbol(MF, MI.getPreInstrSymbol()); | 
|  | setPostInstrSymbol(MF, MI.getPostInstrSymbol()); | 
|  | setHeapAllocMarker(MF, MI.getHeapAllocMarker()); | 
|  | } | 
|  |  | 
|  | uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { | 
|  | // For now, the just return the union of the flags. If the flags get more | 
|  | // complicated over time, we might need more logic here. | 
|  | return getFlags() | Other.getFlags(); | 
|  | } | 
|  |  | 
|  | uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { | 
|  | uint16_t MIFlags = 0; | 
|  | // Copy the wrapping flags. | 
|  | if (const OverflowingBinaryOperator *OB = | 
|  | dyn_cast<OverflowingBinaryOperator>(&I)) { | 
|  | if (OB->hasNoSignedWrap()) | 
|  | MIFlags |= MachineInstr::MIFlag::NoSWrap; | 
|  | if (OB->hasNoUnsignedWrap()) | 
|  | MIFlags |= MachineInstr::MIFlag::NoUWrap; | 
|  | } | 
|  |  | 
|  | // Copy the exact flag. | 
|  | if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) | 
|  | if (PE->isExact()) | 
|  | MIFlags |= MachineInstr::MIFlag::IsExact; | 
|  |  | 
|  | // Copy the fast-math flags. | 
|  | if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { | 
|  | const FastMathFlags Flags = FP->getFastMathFlags(); | 
|  | if (Flags.noNaNs()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmNoNans; | 
|  | if (Flags.noInfs()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmNoInfs; | 
|  | if (Flags.noSignedZeros()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmNsz; | 
|  | if (Flags.allowReciprocal()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmArcp; | 
|  | if (Flags.allowContract()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmContract; | 
|  | if (Flags.approxFunc()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmAfn; | 
|  | if (Flags.allowReassoc()) | 
|  | MIFlags |= MachineInstr::MIFlag::FmReassoc; | 
|  | } | 
|  |  | 
|  | return MIFlags; | 
|  | } | 
|  |  | 
|  | void MachineInstr::copyIRFlags(const Instruction &I) { | 
|  | Flags = copyFlagsFromInstruction(I); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { | 
|  | assert(!isBundledWithPred() && "Must be called on bundle header"); | 
|  | for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { | 
|  | if (MII->getDesc().getFlags() & Mask) { | 
|  | if (Type == AnyInBundle) | 
|  | return true; | 
|  | } else { | 
|  | if (Type == AllInBundle && !MII->isBundle()) | 
|  | return false; | 
|  | } | 
|  | // This was the last instruction in the bundle. | 
|  | if (!MII->isBundledWithSucc()) | 
|  | return Type == AllInBundle; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isIdenticalTo(const MachineInstr &Other, | 
|  | MICheckType Check) const { | 
|  | // If opcodes or number of operands are not the same then the two | 
|  | // instructions are obviously not identical. | 
|  | if (Other.getOpcode() != getOpcode() || | 
|  | Other.getNumOperands() != getNumOperands()) | 
|  | return false; | 
|  |  | 
|  | if (isBundle()) { | 
|  | // We have passed the test above that both instructions have the same | 
|  | // opcode, so we know that both instructions are bundles here. Let's compare | 
|  | // MIs inside the bundle. | 
|  | assert(Other.isBundle() && "Expected that both instructions are bundles."); | 
|  | MachineBasicBlock::const_instr_iterator I1 = getIterator(); | 
|  | MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); | 
|  | // Loop until we analysed the last intruction inside at least one of the | 
|  | // bundles. | 
|  | while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { | 
|  | ++I1; | 
|  | ++I2; | 
|  | if (!I1->isIdenticalTo(*I2, Check)) | 
|  | return false; | 
|  | } | 
|  | // If we've reached the end of just one of the two bundles, but not both, | 
|  | // the instructions are not identical. | 
|  | if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check operands to make sure they match. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | const MachineOperand &OMO = Other.getOperand(i); | 
|  | if (!MO.isReg()) { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Clients may or may not want to ignore defs when testing for equality. | 
|  | // For example, machine CSE pass only cares about finding common | 
|  | // subexpressions, so it's safe to ignore virtual register defs. | 
|  | if (MO.isDef()) { | 
|  | if (Check == IgnoreDefs) | 
|  | continue; | 
|  | else if (Check == IgnoreVRegDefs) { | 
|  | if (!Register::isVirtualRegister(MO.getReg()) || | 
|  | !Register::isVirtualRegister(OMO.getReg())) | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | } else { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!MO.isIdenticalTo(OMO)) | 
|  | return false; | 
|  | if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // If DebugLoc does not match then two debug instructions are not identical. | 
|  | if (isDebugInstr()) | 
|  | if (getDebugLoc() && Other.getDebugLoc() && | 
|  | getDebugLoc() != Other.getDebugLoc()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const MachineFunction *MachineInstr::getMF() const { | 
|  | return getParent()->getParent(); | 
|  | } | 
|  |  | 
|  | MachineInstr *MachineInstr::removeFromParent() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | return getParent()->remove(this); | 
|  | } | 
|  |  | 
|  | MachineInstr *MachineInstr::removeFromBundle() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | return getParent()->remove_instr(this); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromParent() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | getParent()->erase(this); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | MachineBasicBlock *MBB = getParent(); | 
|  | MachineFunction *MF = MBB->getParent(); | 
|  | assert(MF && "Not embedded in a function!"); | 
|  |  | 
|  | MachineInstr *MI = (MachineInstr *)this; | 
|  | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  |  | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | continue; | 
|  | MRI.markUsesInDebugValueAsUndef(Reg); | 
|  | } | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | void MachineInstr::eraseFromBundle() { | 
|  | assert(getParent() && "Not embedded in a basic block!"); | 
|  | getParent()->erase_instr(this); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isCandidateForCallSiteEntry() const { | 
|  | if (!isCall(MachineInstr::IgnoreBundle)) | 
|  | return false; | 
|  | switch (getOpcode()) { | 
|  | case TargetOpcode::PATCHABLE_EVENT_CALL: | 
|  | case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: | 
|  | case TargetOpcode::PATCHPOINT: | 
|  | case TargetOpcode::STACKMAP: | 
|  | case TargetOpcode::STATEPOINT: | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned MachineInstr::getNumExplicitOperands() const { | 
|  | unsigned NumOperands = MCID->getNumOperands(); | 
|  | if (!MCID->isVariadic()) | 
|  | return NumOperands; | 
|  |  | 
|  | for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &MO = getOperand(I); | 
|  | // The operands must always be in the following order: | 
|  | // - explicit reg defs, | 
|  | // - other explicit operands (reg uses, immediates, etc.), | 
|  | // - implicit reg defs | 
|  | // - implicit reg uses | 
|  | if (MO.isReg() && MO.isImplicit()) | 
|  | break; | 
|  | ++NumOperands; | 
|  | } | 
|  | return NumOperands; | 
|  | } | 
|  |  | 
|  | unsigned MachineInstr::getNumExplicitDefs() const { | 
|  | unsigned NumDefs = MCID->getNumDefs(); | 
|  | if (!MCID->isVariadic()) | 
|  | return NumDefs; | 
|  |  | 
|  | for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &MO = getOperand(I); | 
|  | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) | 
|  | break; | 
|  | ++NumDefs; | 
|  | } | 
|  | return NumDefs; | 
|  | } | 
|  |  | 
|  | void MachineInstr::bundleWithPred() { | 
|  | assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); | 
|  | setFlag(BundledPred); | 
|  | MachineBasicBlock::instr_iterator Pred = getIterator(); | 
|  | --Pred; | 
|  | assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); | 
|  | Pred->setFlag(BundledSucc); | 
|  | } | 
|  |  | 
|  | void MachineInstr::bundleWithSucc() { | 
|  | assert(!isBundledWithSucc() && "MI is already bundled with its successor"); | 
|  | setFlag(BundledSucc); | 
|  | MachineBasicBlock::instr_iterator Succ = getIterator(); | 
|  | ++Succ; | 
|  | assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); | 
|  | Succ->setFlag(BundledPred); | 
|  | } | 
|  |  | 
|  | void MachineInstr::unbundleFromPred() { | 
|  | assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); | 
|  | clearFlag(BundledPred); | 
|  | MachineBasicBlock::instr_iterator Pred = getIterator(); | 
|  | --Pred; | 
|  | assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); | 
|  | Pred->clearFlag(BundledSucc); | 
|  | } | 
|  |  | 
|  | void MachineInstr::unbundleFromSucc() { | 
|  | assert(isBundledWithSucc() && "MI isn't bundled with its successor"); | 
|  | clearFlag(BundledSucc); | 
|  | MachineBasicBlock::instr_iterator Succ = getIterator(); | 
|  | ++Succ; | 
|  | assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); | 
|  | Succ->clearFlag(BundledPred); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isStackAligningInlineAsm() const { | 
|  | if (isInlineAsm()) { | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { | 
|  | assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); | 
|  | } | 
|  |  | 
|  | int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, | 
|  | unsigned *GroupNo) const { | 
|  | assert(isInlineAsm() && "Expected an inline asm instruction"); | 
|  | assert(OpIdx < getNumOperands() && "OpIdx out of range"); | 
|  |  | 
|  | // Ignore queries about the initial operands. | 
|  | if (OpIdx < InlineAsm::MIOp_FirstOperand) | 
|  | return -1; | 
|  |  | 
|  | unsigned Group = 0; | 
|  | unsigned NumOps; | 
|  | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; | 
|  | i += NumOps) { | 
|  | const MachineOperand &FlagMO = getOperand(i); | 
|  | // If we reach the implicit register operands, stop looking. | 
|  | if (!FlagMO.isImm()) | 
|  | return -1; | 
|  | NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); | 
|  | if (i + NumOps > OpIdx) { | 
|  | if (GroupNo) | 
|  | *GroupNo = Group; | 
|  | return i; | 
|  | } | 
|  | ++Group; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const DILabel *MachineInstr::getDebugLabel() const { | 
|  | assert(isDebugLabel() && "not a DBG_LABEL"); | 
|  | return cast<DILabel>(getOperand(0).getMetadata()); | 
|  | } | 
|  |  | 
|  | const DILocalVariable *MachineInstr::getDebugVariable() const { | 
|  | assert(isDebugValue() && "not a DBG_VALUE"); | 
|  | return cast<DILocalVariable>(getOperand(2).getMetadata()); | 
|  | } | 
|  |  | 
|  | const DIExpression *MachineInstr::getDebugExpression() const { | 
|  | assert(isDebugValue() && "not a DBG_VALUE"); | 
|  | return cast<DIExpression>(getOperand(3).getMetadata()); | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isDebugEntryValue() const { | 
|  | return isDebugValue() && getDebugExpression()->isEntryValue(); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass* | 
|  | MachineInstr::getRegClassConstraint(unsigned OpIdx, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | assert(getParent() && "Can't have an MBB reference here!"); | 
|  | assert(getMF() && "Can't have an MF reference here!"); | 
|  | const MachineFunction &MF = *getMF(); | 
|  |  | 
|  | // Most opcodes have fixed constraints in their MCInstrDesc. | 
|  | if (!isInlineAsm()) | 
|  | return TII->getRegClass(getDesc(), OpIdx, TRI, MF); | 
|  |  | 
|  | if (!getOperand(OpIdx).isReg()) | 
|  | return nullptr; | 
|  |  | 
|  | // For tied uses on inline asm, get the constraint from the def. | 
|  | unsigned DefIdx; | 
|  | if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) | 
|  | OpIdx = DefIdx; | 
|  |  | 
|  | // Inline asm stores register class constraints in the flag word. | 
|  | int FlagIdx = findInlineAsmFlagIdx(OpIdx); | 
|  | if (FlagIdx < 0) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned Flag = getOperand(FlagIdx).getImm(); | 
|  | unsigned RCID; | 
|  | if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || | 
|  | InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || | 
|  | InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && | 
|  | InlineAsm::hasRegClassConstraint(Flag, RCID)) | 
|  | return TRI->getRegClass(RCID); | 
|  |  | 
|  | // Assume that all registers in a memory operand are pointers. | 
|  | if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) | 
|  | return TRI->getPointerRegClass(MF); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( | 
|  | Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI, bool ExploreBundle) const { | 
|  | // Check every operands inside the bundle if we have | 
|  | // been asked to. | 
|  | if (ExploreBundle) | 
|  | for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; | 
|  | ++OpndIt) | 
|  | CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( | 
|  | OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); | 
|  | else | 
|  | // Otherwise, just check the current operands. | 
|  | for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) | 
|  | CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); | 
|  | return CurRC; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( | 
|  | unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, | 
|  | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { | 
|  | assert(CurRC && "Invalid initial register class"); | 
|  | // Check if Reg is constrained by some of its use/def from MI. | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | if (!MO.isReg() || MO.getReg() != Reg) | 
|  | return CurRC; | 
|  | // If yes, accumulate the constraints through the operand. | 
|  | return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( | 
|  | unsigned OpIdx, const TargetRegisterClass *CurRC, | 
|  | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { | 
|  | const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | assert(MO.isReg() && | 
|  | "Cannot get register constraints for non-register operand"); | 
|  | assert(CurRC && "Invalid initial register class"); | 
|  | if (unsigned SubIdx = MO.getSubReg()) { | 
|  | if (OpRC) | 
|  | CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); | 
|  | else | 
|  | CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); | 
|  | } else if (OpRC) | 
|  | CurRC = TRI->getCommonSubClass(CurRC, OpRC); | 
|  | return CurRC; | 
|  | } | 
|  |  | 
|  | /// Return the number of instructions inside the MI bundle, not counting the | 
|  | /// header instruction. | 
|  | unsigned MachineInstr::getBundleSize() const { | 
|  | MachineBasicBlock::const_instr_iterator I = getIterator(); | 
|  | unsigned Size = 0; | 
|  | while (I->isBundledWithSucc()) { | 
|  | ++Size; | 
|  | ++I; | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | /// Returns true if the MachineInstr has an implicit-use operand of exactly | 
|  | /// the given register (not considering sub/super-registers). | 
|  | bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of | 
|  | /// the specific register or -1 if it is not found. It further tightens | 
|  | /// the search criteria to a use that kills the register if isKill is true. | 
|  | int MachineInstr::findRegisterUseOperandIdx( | 
|  | Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | Register MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) | 
|  | if (!isKill || MO.isKill()) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) | 
|  | /// indicating if this instruction reads or writes Reg. This also considers | 
|  | /// partial defines. | 
|  | std::pair<bool,bool> | 
|  | MachineInstr::readsWritesVirtualRegister(Register Reg, | 
|  | SmallVectorImpl<unsigned> *Ops) const { | 
|  | bool PartDef = false; // Partial redefine. | 
|  | bool FullDef = false; // Full define. | 
|  | bool Use = false; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || MO.getReg() != Reg) | 
|  | continue; | 
|  | if (Ops) | 
|  | Ops->push_back(i); | 
|  | if (MO.isUse()) | 
|  | Use |= !MO.isUndef(); | 
|  | else if (MO.getSubReg() && !MO.isUndef()) | 
|  | // A partial def undef doesn't count as reading the register. | 
|  | PartDef = true; | 
|  | else | 
|  | FullDef = true; | 
|  | } | 
|  | // A partial redefine uses Reg unless there is also a full define. | 
|  | return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); | 
|  | } | 
|  |  | 
|  | /// findRegisterDefOperandIdx() - Returns the operand index that is a def of | 
|  | /// the specified register or -1 if it is not found. If isDead is true, defs | 
|  | /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it | 
|  | /// also checks if there is a def of a super-register. | 
|  | int | 
|  | MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | bool isPhys = Register::isPhysicalRegister(Reg); | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  | // Accept regmask operands when Overlap is set. | 
|  | // Ignore them when looking for a specific def operand (Overlap == false). | 
|  | if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) | 
|  | return i; | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register MOReg = MO.getReg(); | 
|  | bool Found = (MOReg == Reg); | 
|  | if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { | 
|  | if (Overlap) | 
|  | Found = TRI->regsOverlap(MOReg, Reg); | 
|  | else | 
|  | Found = TRI->isSubRegister(MOReg, Reg); | 
|  | } | 
|  | if (Found && (!isDead || MO.isDead())) | 
|  | return i; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// findFirstPredOperandIdx() - Find the index of the first operand in the | 
|  | /// operand list that is used to represent the predicate. It returns -1 if | 
|  | /// none is found. | 
|  | int MachineInstr::findFirstPredOperandIdx() const { | 
|  | // Don't call MCID.findFirstPredOperandIdx() because this variant | 
|  | // is sometimes called on an instruction that's not yet complete, and | 
|  | // so the number of operands is less than the MCID indicates. In | 
|  | // particular, the PTX target does this. | 
|  | const MCInstrDesc &MCID = getDesc(); | 
|  | if (MCID.isPredicable()) { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (MCID.OpInfo[i].isPredicate()) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // MachineOperand::TiedTo is 4 bits wide. | 
|  | const unsigned TiedMax = 15; | 
|  |  | 
|  | /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. | 
|  | /// | 
|  | /// Use and def operands can be tied together, indicated by a non-zero TiedTo | 
|  | /// field. TiedTo can have these values: | 
|  | /// | 
|  | /// 0:              Operand is not tied to anything. | 
|  | /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). | 
|  | /// TiedMax:        Tied to an operand >= TiedMax-1. | 
|  | /// | 
|  | /// The tied def must be one of the first TiedMax operands on a normal | 
|  | /// instruction. INLINEASM instructions allow more tied defs. | 
|  | /// | 
|  | void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { | 
|  | MachineOperand &DefMO = getOperand(DefIdx); | 
|  | MachineOperand &UseMO = getOperand(UseIdx); | 
|  | assert(DefMO.isDef() && "DefIdx must be a def operand"); | 
|  | assert(UseMO.isUse() && "UseIdx must be a use operand"); | 
|  | assert(!DefMO.isTied() && "Def is already tied to another use"); | 
|  | assert(!UseMO.isTied() && "Use is already tied to another def"); | 
|  |  | 
|  | if (DefIdx < TiedMax) | 
|  | UseMO.TiedTo = DefIdx + 1; | 
|  | else { | 
|  | // Inline asm can use the group descriptors to find tied operands, but on | 
|  | // normal instruction, the tied def must be within the first TiedMax | 
|  | // operands. | 
|  | assert(isInlineAsm() && "DefIdx out of range"); | 
|  | UseMO.TiedTo = TiedMax; | 
|  | } | 
|  |  | 
|  | // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). | 
|  | DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); | 
|  | } | 
|  |  | 
|  | /// Given the index of a tied register operand, find the operand it is tied to. | 
|  | /// Defs are tied to uses and vice versa. Returns the index of the tied operand | 
|  | /// which must exist. | 
|  | unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | assert(MO.isTied() && "Operand isn't tied"); | 
|  |  | 
|  | // Normally TiedTo is in range. | 
|  | if (MO.TiedTo < TiedMax) | 
|  | return MO.TiedTo - 1; | 
|  |  | 
|  | // Uses on normal instructions can be out of range. | 
|  | if (!isInlineAsm()) { | 
|  | // Normal tied defs must be in the 0..TiedMax-1 range. | 
|  | if (MO.isUse()) | 
|  | return TiedMax - 1; | 
|  | // MO is a def. Search for the tied use. | 
|  | for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &UseMO = getOperand(i); | 
|  | if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) | 
|  | return i; | 
|  | } | 
|  | llvm_unreachable("Can't find tied use"); | 
|  | } | 
|  |  | 
|  | // Now deal with inline asm by parsing the operand group descriptor flags. | 
|  | // Find the beginning of each operand group. | 
|  | SmallVector<unsigned, 8> GroupIdx; | 
|  | unsigned OpIdxGroup = ~0u; | 
|  | unsigned NumOps; | 
|  | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; | 
|  | i += NumOps) { | 
|  | const MachineOperand &FlagMO = getOperand(i); | 
|  | assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); | 
|  | unsigned CurGroup = GroupIdx.size(); | 
|  | GroupIdx.push_back(i); | 
|  | NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); | 
|  | // OpIdx belongs to this operand group. | 
|  | if (OpIdx > i && OpIdx < i + NumOps) | 
|  | OpIdxGroup = CurGroup; | 
|  | unsigned TiedGroup; | 
|  | if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) | 
|  | continue; | 
|  | // Operands in this group are tied to operands in TiedGroup which must be | 
|  | // earlier. Find the number of operands between the two groups. | 
|  | unsigned Delta = i - GroupIdx[TiedGroup]; | 
|  |  | 
|  | // OpIdx is a use tied to TiedGroup. | 
|  | if (OpIdxGroup == CurGroup) | 
|  | return OpIdx - Delta; | 
|  |  | 
|  | // OpIdx is a def tied to this use group. | 
|  | if (OpIdxGroup == TiedGroup) | 
|  | return OpIdx + Delta; | 
|  | } | 
|  | llvm_unreachable("Invalid tied operand on inline asm"); | 
|  | } | 
|  |  | 
|  | /// clearKillInfo - Clears kill flags on all operands. | 
|  | /// | 
|  | void MachineInstr::clearKillInfo() { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (MO.isReg() && MO.isUse()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::substituteRegister(Register FromReg, Register ToReg, | 
|  | unsigned SubIdx, | 
|  | const TargetRegisterInfo &RegInfo) { | 
|  | if (Register::isPhysicalRegister(ToReg)) { | 
|  | if (SubIdx) | 
|  | ToReg = RegInfo.getSubReg(ToReg, SubIdx); | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.getReg() != FromReg) | 
|  | continue; | 
|  | MO.substPhysReg(ToReg, RegInfo); | 
|  | } | 
|  | } else { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.getReg() != FromReg) | 
|  | continue; | 
|  | MO.substVirtReg(ToReg, SubIdx, RegInfo); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeToMove - Return true if it is safe to move this instruction. If | 
|  | /// SawStore is set to true, it means that there is a store (or call) between | 
|  | /// the instruction's location and its intended destination. | 
|  | bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { | 
|  | // Ignore stuff that we obviously can't move. | 
|  | // | 
|  | // Treat volatile loads as stores. This is not strictly necessary for | 
|  | // volatiles, but it is required for atomic loads. It is not allowed to move | 
|  | // a load across an atomic load with Ordering > Monotonic. | 
|  | if (mayStore() || isCall() || isPHI() || | 
|  | (mayLoad() && hasOrderedMemoryRef())) { | 
|  | SawStore = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isPosition() || isDebugInstr() || isTerminator() || | 
|  | mayRaiseFPException() || hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // See if this instruction does a load.  If so, we have to guarantee that the | 
|  | // loaded value doesn't change between the load and the its intended | 
|  | // destination. The check for isInvariantLoad gives the targe the chance to | 
|  | // classify the load as always returning a constant, e.g. a constant pool | 
|  | // load. | 
|  | if (mayLoad() && !isDereferenceableInvariantLoad(AA)) | 
|  | // Otherwise, this is a real load.  If there is a store between the load and | 
|  | // end of block, we can't move it. | 
|  | return !SawStore; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, | 
|  | bool UseTBAA) const { | 
|  | const MachineFunction *MF = getMF(); | 
|  | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
|  | const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  |  | 
|  | // If neither instruction stores to memory, they can't alias in any | 
|  | // meaningful way, even if they read from the same address. | 
|  | if (!mayStore() && !Other.mayStore()) | 
|  | return false; | 
|  |  | 
|  | // Let the target decide if memory accesses cannot possibly overlap. | 
|  | if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Need to handle multiple memory operands to support all targets. | 
|  | if (!hasOneMemOperand() || !Other.hasOneMemOperand()) | 
|  | return true; | 
|  |  | 
|  | MachineMemOperand *MMOa = *memoperands_begin(); | 
|  | MachineMemOperand *MMOb = *Other.memoperands_begin(); | 
|  |  | 
|  | // The following interface to AA is fashioned after DAGCombiner::isAlias | 
|  | // and operates with MachineMemOperand offset with some important | 
|  | // assumptions: | 
|  | //   - LLVM fundamentally assumes flat address spaces. | 
|  | //   - MachineOperand offset can *only* result from legalization and | 
|  | //     cannot affect queries other than the trivial case of overlap | 
|  | //     checking. | 
|  | //   - These offsets never wrap and never step outside | 
|  | //     of allocated objects. | 
|  | //   - There should never be any negative offsets here. | 
|  | // | 
|  | // FIXME: Modify API to hide this math from "user" | 
|  | // Even before we go to AA we can reason locally about some | 
|  | // memory objects. It can save compile time, and possibly catch some | 
|  | // corner cases not currently covered. | 
|  |  | 
|  | int64_t OffsetA = MMOa->getOffset(); | 
|  | int64_t OffsetB = MMOb->getOffset(); | 
|  | int64_t MinOffset = std::min(OffsetA, OffsetB); | 
|  |  | 
|  | uint64_t WidthA = MMOa->getSize(); | 
|  | uint64_t WidthB = MMOb->getSize(); | 
|  | bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; | 
|  | bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; | 
|  |  | 
|  | const Value *ValA = MMOa->getValue(); | 
|  | const Value *ValB = MMOb->getValue(); | 
|  | bool SameVal = (ValA && ValB && (ValA == ValB)); | 
|  | if (!SameVal) { | 
|  | const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); | 
|  | const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); | 
|  | if (PSVa && ValB && !PSVa->mayAlias(&MFI)) | 
|  | return false; | 
|  | if (PSVb && ValA && !PSVb->mayAlias(&MFI)) | 
|  | return false; | 
|  | if (PSVa && PSVb && (PSVa == PSVb)) | 
|  | SameVal = true; | 
|  | } | 
|  |  | 
|  | if (SameVal) { | 
|  | if (!KnownWidthA || !KnownWidthB) | 
|  | return true; | 
|  | int64_t MaxOffset = std::max(OffsetA, OffsetB); | 
|  | int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; | 
|  | return (MinOffset + LowWidth > MaxOffset); | 
|  | } | 
|  |  | 
|  | if (!AA) | 
|  | return true; | 
|  |  | 
|  | if (!ValA || !ValB) | 
|  | return true; | 
|  |  | 
|  | assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); | 
|  | assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); | 
|  |  | 
|  | int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset | 
|  | : MemoryLocation::UnknownSize; | 
|  | int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset | 
|  | : MemoryLocation::UnknownSize; | 
|  |  | 
|  | AliasResult AAResult = AA->alias( | 
|  | MemoryLocation(ValA, OverlapA, | 
|  | UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), | 
|  | MemoryLocation(ValB, OverlapB, | 
|  | UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); | 
|  |  | 
|  | return (AAResult != NoAlias); | 
|  | } | 
|  |  | 
|  | /// hasOrderedMemoryRef - Return true if this instruction may have an ordered | 
|  | /// or volatile memory reference, or if the information describing the memory | 
|  | /// reference is not available. Return false if it is known to have no ordered | 
|  | /// memory references. | 
|  | bool MachineInstr::hasOrderedMemoryRef() const { | 
|  | // An instruction known never to access memory won't have a volatile access. | 
|  | if (!mayStore() && | 
|  | !mayLoad() && | 
|  | !isCall() && | 
|  | !hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, if the instruction has no memory reference information, | 
|  | // conservatively assume it wasn't preserved. | 
|  | if (memoperands_empty()) | 
|  | return true; | 
|  |  | 
|  | // Check if any of our memory operands are ordered. | 
|  | return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { | 
|  | return !MMO->isUnordered(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// isDereferenceableInvariantLoad - Return true if this instruction will never | 
|  | /// trap and is loading from a location whose value is invariant across a run of | 
|  | /// this function. | 
|  | bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { | 
|  | // If the instruction doesn't load at all, it isn't an invariant load. | 
|  | if (!mayLoad()) | 
|  | return false; | 
|  |  | 
|  | // If the instruction has lost its memoperands, conservatively assume that | 
|  | // it may not be an invariant load. | 
|  | if (memoperands_empty()) | 
|  | return false; | 
|  |  | 
|  | const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); | 
|  |  | 
|  | for (MachineMemOperand *MMO : memoperands()) { | 
|  | if (!MMO->isUnordered()) | 
|  | // If the memory operand has ordering side effects, we can't move the | 
|  | // instruction.  Such an instruction is technically an invariant load, | 
|  | // but the caller code would need updated to expect that. | 
|  | return false; | 
|  | if (MMO->isStore()) return false; | 
|  | if (MMO->isInvariant() && MMO->isDereferenceable()) | 
|  | continue; | 
|  |  | 
|  | // A load from a constant PseudoSourceValue is invariant. | 
|  | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) | 
|  | if (PSV->isConstant(&MFI)) | 
|  | continue; | 
|  |  | 
|  | if (const Value *V = MMO->getValue()) { | 
|  | // If we have an AliasAnalysis, ask it whether the memory is constant. | 
|  | if (AA && | 
|  | AA->pointsToConstantMemory( | 
|  | MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise assume conservatively. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Everything checks out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isConstantValuePHI - If the specified instruction is a PHI that always | 
|  | /// merges together the same virtual register, return the register, otherwise | 
|  | /// return 0. | 
|  | unsigned MachineInstr::isConstantValuePHI() const { | 
|  | if (!isPHI()) | 
|  | return 0; | 
|  | assert(getNumOperands() >= 3 && | 
|  | "It's illegal to have a PHI without source operands"); | 
|  |  | 
|  | Register Reg = getOperand(1).getReg(); | 
|  | for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) | 
|  | if (getOperand(i).getReg() != Reg) | 
|  | return 0; | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::hasUnmodeledSideEffects() const { | 
|  | if (hasProperty(MCID::UnmodeledSideEffects)) | 
|  | return true; | 
|  | if (isInlineAsm()) { | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::isLoadFoldBarrier() const { | 
|  | return mayStore() || isCall() || hasUnmodeledSideEffects(); | 
|  | } | 
|  |  | 
|  | /// allDefsAreDead - Return true if all the defs of this instruction are dead. | 
|  | /// | 
|  | bool MachineInstr::allDefsAreDead() const { | 
|  | for (const MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || MO.isUse()) | 
|  | continue; | 
|  | if (!MO.isDead()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// copyImplicitOps - Copy implicit register operands from specified | 
|  | /// instruction to this instruction. | 
|  | void MachineInstr::copyImplicitOps(MachineFunction &MF, | 
|  | const MachineInstr &MI) { | 
|  | for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); | 
|  | i != e; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) | 
|  | addOperand(MF, MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineInstr::hasComplexRegisterTies() const { | 
|  | const MCInstrDesc &MCID = getDesc(); | 
|  | for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { | 
|  | const auto &Operand = getOperand(I); | 
|  | if (!Operand.isReg() || Operand.isDef()) | 
|  | // Ignore the defined registers as MCID marks only the uses as tied. | 
|  | continue; | 
|  | int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); | 
|  | int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; | 
|  | if (ExpectedTiedIdx != TiedIdx) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, | 
|  | const MachineRegisterInfo &MRI) const { | 
|  | const MachineOperand &Op = getOperand(OpIdx); | 
|  | if (!Op.isReg()) | 
|  | return LLT{}; | 
|  |  | 
|  | if (isVariadic() || OpIdx >= getNumExplicitOperands()) | 
|  | return MRI.getType(Op.getReg()); | 
|  |  | 
|  | auto &OpInfo = getDesc().OpInfo[OpIdx]; | 
|  | if (!OpInfo.isGenericType()) | 
|  | return MRI.getType(Op.getReg()); | 
|  |  | 
|  | if (PrintedTypes[OpInfo.getGenericTypeIndex()]) | 
|  | return LLT{}; | 
|  |  | 
|  | LLT TypeToPrint = MRI.getType(Op.getReg()); | 
|  | // Don't mark the type index printed if it wasn't actually printed: maybe | 
|  | // another operand with the same type index has an actual type attached: | 
|  | if (TypeToPrint.isValid()) | 
|  | PrintedTypes.set(OpInfo.getGenericTypeIndex()); | 
|  | return TypeToPrint; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MachineInstr::dump() const { | 
|  | dbgs() << "  "; | 
|  | print(dbgs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, | 
|  | bool SkipDebugLoc, bool AddNewLine, | 
|  | const TargetInstrInfo *TII) const { | 
|  | const Module *M = nullptr; | 
|  | const Function *F = nullptr; | 
|  | if (const MachineFunction *MF = getMFIfAvailable(*this)) { | 
|  | F = &MF->getFunction(); | 
|  | M = F->getParent(); | 
|  | if (!TII) | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | } | 
|  |  | 
|  | ModuleSlotTracker MST(M); | 
|  | if (F) | 
|  | MST.incorporateFunction(*F); | 
|  | print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); | 
|  | } | 
|  |  | 
|  | void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, | 
|  | bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, | 
|  | bool AddNewLine, const TargetInstrInfo *TII) const { | 
|  | // We can be a bit tidier if we know the MachineFunction. | 
|  | const MachineFunction *MF = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | const MachineRegisterInfo *MRI = nullptr; | 
|  | const TargetIntrinsicInfo *IntrinsicInfo = nullptr; | 
|  | tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); | 
|  |  | 
|  | if (isCFIInstruction()) | 
|  | assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); | 
|  |  | 
|  | SmallBitVector PrintedTypes(8); | 
|  | bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); | 
|  | auto getTiedOperandIdx = [&](unsigned OpIdx) { | 
|  | if (!ShouldPrintRegisterTies) | 
|  | return 0U; | 
|  | const MachineOperand &MO = getOperand(OpIdx); | 
|  | if (MO.isReg() && MO.isTied() && !MO.isDef()) | 
|  | return findTiedOperandIdx(OpIdx); | 
|  | return 0U; | 
|  | }; | 
|  | unsigned StartOp = 0; | 
|  | unsigned e = getNumOperands(); | 
|  |  | 
|  | // Print explicitly defined operands on the left of an assignment syntax. | 
|  | while (StartOp < e) { | 
|  | const MachineOperand &MO = getOperand(StartOp); | 
|  | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) | 
|  | break; | 
|  |  | 
|  | if (StartOp != 0) | 
|  | OS << ", "; | 
|  |  | 
|  | LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; | 
|  | unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); | 
|  | MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, | 
|  | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); | 
|  | ++StartOp; | 
|  | } | 
|  |  | 
|  | if (StartOp != 0) | 
|  | OS << " = "; | 
|  |  | 
|  | if (getFlag(MachineInstr::FrameSetup)) | 
|  | OS << "frame-setup "; | 
|  | if (getFlag(MachineInstr::FrameDestroy)) | 
|  | OS << "frame-destroy "; | 
|  | if (getFlag(MachineInstr::FmNoNans)) | 
|  | OS << "nnan "; | 
|  | if (getFlag(MachineInstr::FmNoInfs)) | 
|  | OS << "ninf "; | 
|  | if (getFlag(MachineInstr::FmNsz)) | 
|  | OS << "nsz "; | 
|  | if (getFlag(MachineInstr::FmArcp)) | 
|  | OS << "arcp "; | 
|  | if (getFlag(MachineInstr::FmContract)) | 
|  | OS << "contract "; | 
|  | if (getFlag(MachineInstr::FmAfn)) | 
|  | OS << "afn "; | 
|  | if (getFlag(MachineInstr::FmReassoc)) | 
|  | OS << "reassoc "; | 
|  | if (getFlag(MachineInstr::NoUWrap)) | 
|  | OS << "nuw "; | 
|  | if (getFlag(MachineInstr::NoSWrap)) | 
|  | OS << "nsw "; | 
|  | if (getFlag(MachineInstr::IsExact)) | 
|  | OS << "exact "; | 
|  | if (getFlag(MachineInstr::NoFPExcept)) | 
|  | OS << "nofpexcept "; | 
|  |  | 
|  | // Print the opcode name. | 
|  | if (TII) | 
|  | OS << TII->getName(getOpcode()); | 
|  | else | 
|  | OS << "UNKNOWN"; | 
|  |  | 
|  | if (SkipOpers) | 
|  | return; | 
|  |  | 
|  | // Print the rest of the operands. | 
|  | bool FirstOp = true; | 
|  | unsigned AsmDescOp = ~0u; | 
|  | unsigned AsmOpCount = 0; | 
|  |  | 
|  | if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { | 
|  | // Print asm string. | 
|  | OS << " "; | 
|  | const unsigned OpIdx = InlineAsm::MIOp_AsmString; | 
|  | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; | 
|  | unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); | 
|  | getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, | 
|  | ShouldPrintRegisterTies, TiedOperandIdx, TRI, | 
|  | IntrinsicInfo); | 
|  |  | 
|  | // Print HasSideEffects, MayLoad, MayStore, IsAlignStack | 
|  | unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); | 
|  | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) | 
|  | OS << " [sideeffect]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_MayLoad) | 
|  | OS << " [mayload]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_MayStore) | 
|  | OS << " [maystore]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_IsConvergent) | 
|  | OS << " [isconvergent]"; | 
|  | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) | 
|  | OS << " [alignstack]"; | 
|  | if (getInlineAsmDialect() == InlineAsm::AD_ATT) | 
|  | OS << " [attdialect]"; | 
|  | if (getInlineAsmDialect() == InlineAsm::AD_Intel) | 
|  | OS << " [inteldialect]"; | 
|  |  | 
|  | StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; | 
|  | FirstOp = false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = getOperand(i); | 
|  |  | 
|  | if (FirstOp) FirstOp = false; else OS << ","; | 
|  | OS << " "; | 
|  |  | 
|  | if (isDebugValue() && MO.isMetadata()) { | 
|  | // Pretty print DBG_VALUE instructions. | 
|  | auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); | 
|  | if (DIV && !DIV->getName().empty()) | 
|  | OS << "!\"" << DIV->getName() << '\"'; | 
|  | else { | 
|  | LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; | 
|  | unsigned TiedOperandIdx = getTiedOperandIdx(i); | 
|  | MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, | 
|  | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); | 
|  | } | 
|  | } else if (isDebugLabel() && MO.isMetadata()) { | 
|  | // Pretty print DBG_LABEL instructions. | 
|  | auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); | 
|  | if (DIL && !DIL->getName().empty()) | 
|  | OS << "\"" << DIL->getName() << '\"'; | 
|  | else { | 
|  | LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; | 
|  | unsigned TiedOperandIdx = getTiedOperandIdx(i); | 
|  | MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, | 
|  | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); | 
|  | } | 
|  | } else if (i == AsmDescOp && MO.isImm()) { | 
|  | // Pretty print the inline asm operand descriptor. | 
|  | OS << '$' << AsmOpCount++; | 
|  | unsigned Flag = MO.getImm(); | 
|  | switch (InlineAsm::getKind(Flag)) { | 
|  | case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break; | 
|  | case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break; | 
|  | case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; | 
|  | case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break; | 
|  | case InlineAsm::Kind_Imm:                OS << ":[imm"; break; | 
|  | case InlineAsm::Kind_Mem:                OS << ":[mem"; break; | 
|  | default: OS << ":[??" << InlineAsm::getKind(Flag); break; | 
|  | } | 
|  |  | 
|  | unsigned RCID = 0; | 
|  | if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && | 
|  | InlineAsm::hasRegClassConstraint(Flag, RCID)) { | 
|  | if (TRI) { | 
|  | OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); | 
|  | } else | 
|  | OS << ":RC" << RCID; | 
|  | } | 
|  |  | 
|  | if (InlineAsm::isMemKind(Flag)) { | 
|  | unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); | 
|  | switch (MCID) { | 
|  | case InlineAsm::Constraint_es: OS << ":es"; break; | 
|  | case InlineAsm::Constraint_i:  OS << ":i"; break; | 
|  | case InlineAsm::Constraint_m:  OS << ":m"; break; | 
|  | case InlineAsm::Constraint_o:  OS << ":o"; break; | 
|  | case InlineAsm::Constraint_v:  OS << ":v"; break; | 
|  | case InlineAsm::Constraint_Q:  OS << ":Q"; break; | 
|  | case InlineAsm::Constraint_R:  OS << ":R"; break; | 
|  | case InlineAsm::Constraint_S:  OS << ":S"; break; | 
|  | case InlineAsm::Constraint_T:  OS << ":T"; break; | 
|  | case InlineAsm::Constraint_Um: OS << ":Um"; break; | 
|  | case InlineAsm::Constraint_Un: OS << ":Un"; break; | 
|  | case InlineAsm::Constraint_Uq: OS << ":Uq"; break; | 
|  | case InlineAsm::Constraint_Us: OS << ":Us"; break; | 
|  | case InlineAsm::Constraint_Ut: OS << ":Ut"; break; | 
|  | case InlineAsm::Constraint_Uv: OS << ":Uv"; break; | 
|  | case InlineAsm::Constraint_Uy: OS << ":Uy"; break; | 
|  | case InlineAsm::Constraint_X:  OS << ":X"; break; | 
|  | case InlineAsm::Constraint_Z:  OS << ":Z"; break; | 
|  | case InlineAsm::Constraint_ZC: OS << ":ZC"; break; | 
|  | case InlineAsm::Constraint_Zy: OS << ":Zy"; break; | 
|  | default: OS << ":?"; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned TiedTo = 0; | 
|  | if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) | 
|  | OS << " tiedto:$" << TiedTo; | 
|  |  | 
|  | OS << ']'; | 
|  |  | 
|  | // Compute the index of the next operand descriptor. | 
|  | AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); | 
|  | } else { | 
|  | LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; | 
|  | unsigned TiedOperandIdx = getTiedOperandIdx(i); | 
|  | if (MO.isImm() && isOperandSubregIdx(i)) | 
|  | MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); | 
|  | else | 
|  | MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, | 
|  | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print any optional symbols attached to this instruction as-if they were | 
|  | // operands. | 
|  | if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { | 
|  | if (!FirstOp) { | 
|  | FirstOp = false; | 
|  | OS << ','; | 
|  | } | 
|  | OS << " pre-instr-symbol "; | 
|  | MachineOperand::printSymbol(OS, *PreInstrSymbol); | 
|  | } | 
|  | if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { | 
|  | if (!FirstOp) { | 
|  | FirstOp = false; | 
|  | OS << ','; | 
|  | } | 
|  | OS << " post-instr-symbol "; | 
|  | MachineOperand::printSymbol(OS, *PostInstrSymbol); | 
|  | } | 
|  | if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { | 
|  | if (!FirstOp) { | 
|  | FirstOp = false; | 
|  | OS << ','; | 
|  | } | 
|  | OS << " heap-alloc-marker "; | 
|  | HeapAllocMarker->printAsOperand(OS, MST); | 
|  | } | 
|  |  | 
|  | if (!SkipDebugLoc) { | 
|  | if (const DebugLoc &DL = getDebugLoc()) { | 
|  | if (!FirstOp) | 
|  | OS << ','; | 
|  | OS << " debug-location "; | 
|  | DL->printAsOperand(OS, MST); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!memoperands_empty()) { | 
|  | SmallVector<StringRef, 0> SSNs; | 
|  | const LLVMContext *Context = nullptr; | 
|  | std::unique_ptr<LLVMContext> CtxPtr; | 
|  | const MachineFrameInfo *MFI = nullptr; | 
|  | if (const MachineFunction *MF = getMFIfAvailable(*this)) { | 
|  | MFI = &MF->getFrameInfo(); | 
|  | Context = &MF->getFunction().getContext(); | 
|  | } else { | 
|  | CtxPtr = std::make_unique<LLVMContext>(); | 
|  | Context = CtxPtr.get(); | 
|  | } | 
|  |  | 
|  | OS << " :: "; | 
|  | bool NeedComma = false; | 
|  | for (const MachineMemOperand *Op : memoperands()) { | 
|  | if (NeedComma) | 
|  | OS << ", "; | 
|  | Op->print(OS, MST, SSNs, *Context, MFI, TII); | 
|  | NeedComma = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SkipDebugLoc) | 
|  | return; | 
|  |  | 
|  | bool HaveSemi = false; | 
|  |  | 
|  | // Print debug location information. | 
|  | if (const DebugLoc &DL = getDebugLoc()) { | 
|  | if (!HaveSemi) { | 
|  | OS << ';'; | 
|  | HaveSemi = true; | 
|  | } | 
|  | OS << ' '; | 
|  | DL.print(OS); | 
|  | } | 
|  |  | 
|  | // Print extra comments for DEBUG_VALUE. | 
|  | if (isDebugValue() && getOperand(e - 2).isMetadata()) { | 
|  | if (!HaveSemi) { | 
|  | OS << ";"; | 
|  | HaveSemi = true; | 
|  | } | 
|  | auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); | 
|  | OS << " line no:" <<  DV->getLine(); | 
|  | if (auto *InlinedAt = debugLoc->getInlinedAt()) { | 
|  | DebugLoc InlinedAtDL(InlinedAt); | 
|  | if (InlinedAtDL && MF) { | 
|  | OS << " inlined @[ "; | 
|  | InlinedAtDL.print(OS); | 
|  | OS << " ]"; | 
|  | } | 
|  | } | 
|  | if (isIndirectDebugValue()) | 
|  | OS << " indirect"; | 
|  | } | 
|  | // TODO: DBG_LABEL | 
|  |  | 
|  | if (AddNewLine) | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | bool MachineInstr::addRegisterKilled(Register IncomingReg, | 
|  | const TargetRegisterInfo *RegInfo, | 
|  | bool AddIfNotFound) { | 
|  | bool isPhysReg = Register::isPhysicalRegister(IncomingReg); | 
|  | bool hasAliases = isPhysReg && | 
|  | MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); | 
|  | bool Found = false; | 
|  | SmallVector<unsigned,4> DeadOps; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) | 
|  | continue; | 
|  |  | 
|  | // DEBUG_VALUE nodes do not contribute to code generation and should | 
|  | // always be ignored. Failure to do so may result in trying to modify | 
|  | // KILL flags on DEBUG_VALUE nodes. | 
|  | if (MO.isDebug()) | 
|  | continue; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  |  | 
|  | if (Reg == IncomingReg) { | 
|  | if (!Found) { | 
|  | if (MO.isKill()) | 
|  | // The register is already marked kill. | 
|  | return true; | 
|  | if (isPhysReg && isRegTiedToDefOperand(i)) | 
|  | // Two-address uses of physregs must not be marked kill. | 
|  | return true; | 
|  | MO.setIsKill(); | 
|  | Found = true; | 
|  | } | 
|  | } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { | 
|  | // A super-register kill already exists. | 
|  | if (RegInfo->isSuperRegister(IncomingReg, Reg)) | 
|  | return true; | 
|  | if (RegInfo->isSubRegister(IncomingReg, Reg)) | 
|  | DeadOps.push_back(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Trim unneeded kill operands. | 
|  | while (!DeadOps.empty()) { | 
|  | unsigned OpIdx = DeadOps.back(); | 
|  | if (getOperand(OpIdx).isImplicit() && | 
|  | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) | 
|  | RemoveOperand(OpIdx); | 
|  | else | 
|  | getOperand(OpIdx).setIsKill(false); | 
|  | DeadOps.pop_back(); | 
|  | } | 
|  |  | 
|  | // If not found, this means an alias of one of the operands is killed. Add a | 
|  | // new implicit operand if required. | 
|  | if (!Found && AddIfNotFound) { | 
|  | addOperand(MachineOperand::CreateReg(IncomingReg, | 
|  | false /*IsDef*/, | 
|  | true  /*IsImp*/, | 
|  | true  /*IsKill*/)); | 
|  | return true; | 
|  | } | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | void MachineInstr::clearRegisterKills(Register Reg, | 
|  | const TargetRegisterInfo *RegInfo) { | 
|  | if (!Register::isPhysicalRegister(Reg)) | 
|  | RegInfo = nullptr; | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isUse() || !MO.isKill()) | 
|  | continue; | 
|  | Register OpReg = MO.getReg(); | 
|  | if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineInstr::addRegisterDead(Register Reg, | 
|  | const TargetRegisterInfo *RegInfo, | 
|  | bool AddIfNotFound) { | 
|  | bool isPhysReg = Register::isPhysicalRegister(Reg); | 
|  | bool hasAliases = isPhysReg && | 
|  | MCRegAliasIterator(Reg, RegInfo, false).isValid(); | 
|  | bool Found = false; | 
|  | SmallVector<unsigned,4> DeadOps; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  |  | 
|  | if (MOReg == Reg) { | 
|  | MO.setIsDead(); | 
|  | Found = true; | 
|  | } else if (hasAliases && MO.isDead() && | 
|  | Register::isPhysicalRegister(MOReg)) { | 
|  | // There exists a super-register that's marked dead. | 
|  | if (RegInfo->isSuperRegister(Reg, MOReg)) | 
|  | return true; | 
|  | if (RegInfo->isSubRegister(Reg, MOReg)) | 
|  | DeadOps.push_back(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Trim unneeded dead operands. | 
|  | while (!DeadOps.empty()) { | 
|  | unsigned OpIdx = DeadOps.back(); | 
|  | if (getOperand(OpIdx).isImplicit() && | 
|  | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) | 
|  | RemoveOperand(OpIdx); | 
|  | else | 
|  | getOperand(OpIdx).setIsDead(false); | 
|  | DeadOps.pop_back(); | 
|  | } | 
|  |  | 
|  | // If not found, this means an alias of one of the operands is dead. Add a | 
|  | // new implicit operand if required. | 
|  | if (Found || !AddIfNotFound) | 
|  | return Found; | 
|  |  | 
|  | addOperand(MachineOperand::CreateReg(Reg, | 
|  | true  /*IsDef*/, | 
|  | true  /*IsImp*/, | 
|  | false /*IsKill*/, | 
|  | true  /*IsDead*/)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachineInstr::clearRegisterDeads(Register Reg) { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) | 
|  | continue; | 
|  | MO.setIsDead(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) | 
|  | continue; | 
|  | MO.setIsUndef(IsUndef); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::addRegisterDefined(Register Reg, | 
|  | const TargetRegisterInfo *RegInfo) { | 
|  | if (Register::isPhysicalRegister(Reg)) { | 
|  | MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); | 
|  | if (MO) | 
|  | return; | 
|  | } else { | 
|  | for (const MachineOperand &MO : operands()) { | 
|  | if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && | 
|  | MO.getSubReg() == 0) | 
|  | return; | 
|  | } | 
|  | } | 
|  | addOperand(MachineOperand::CreateReg(Reg, | 
|  | true  /*IsDef*/, | 
|  | true  /*IsImp*/)); | 
|  | } | 
|  |  | 
|  | void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | bool HasRegMask = false; | 
|  | for (MachineOperand &MO : operands()) { | 
|  | if (MO.isRegMask()) { | 
|  | HasRegMask = true; | 
|  | continue; | 
|  | } | 
|  | if (!MO.isReg() || !MO.isDef()) continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg.isPhysical()) | 
|  | continue; | 
|  | // If there are no uses, including partial uses, the def is dead. | 
|  | if (llvm::none_of(UsedRegs, | 
|  | [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) | 
|  | MO.setIsDead(); | 
|  | } | 
|  |  | 
|  | // This is a call with a register mask operand. | 
|  | // Mask clobbers are always dead, so add defs for the non-dead defines. | 
|  | if (HasRegMask) | 
|  | for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); | 
|  | I != E; ++I) | 
|  | addRegisterDefined(*I, &TRI); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { | 
|  | // Build up a buffer of hash code components. | 
|  | SmallVector<size_t, 16> HashComponents; | 
|  | HashComponents.reserve(MI->getNumOperands() + 1); | 
|  | HashComponents.push_back(MI->getOpcode()); | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) | 
|  | continue;  // Skip virtual register defs. | 
|  |  | 
|  | HashComponents.push_back(hash_value(MO)); | 
|  | } | 
|  | return hash_combine_range(HashComponents.begin(), HashComponents.end()); | 
|  | } | 
|  |  | 
|  | void MachineInstr::emitError(StringRef Msg) const { | 
|  | // Find the source location cookie. | 
|  | unsigned LocCookie = 0; | 
|  | const MDNode *LocMD = nullptr; | 
|  | for (unsigned i = getNumOperands(); i != 0; --i) { | 
|  | if (getOperand(i-1).isMetadata() && | 
|  | (LocMD = getOperand(i-1).getMetadata()) && | 
|  | LocMD->getNumOperands() != 0) { | 
|  | if (const ConstantInt *CI = | 
|  | mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { | 
|  | LocCookie = CI->getZExtValue(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const MachineBasicBlock *MBB = getParent()) | 
|  | if (const MachineFunction *MF = MBB->getParent()) | 
|  | return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); | 
|  | report_fatal_error(Msg); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, | 
|  | const MCInstrDesc &MCID, bool IsIndirect, | 
|  | Register Reg, const MDNode *Variable, | 
|  | const MDNode *Expr) { | 
|  | assert(isa<DILocalVariable>(Variable) && "not a variable"); | 
|  | assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); | 
|  | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); | 
|  | if (IsIndirect) | 
|  | MIB.addImm(0U); | 
|  | else | 
|  | MIB.addReg(0U, RegState::Debug); | 
|  | return MIB.addMetadata(Variable).addMetadata(Expr); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, | 
|  | const MCInstrDesc &MCID, bool IsIndirect, | 
|  | MachineOperand &MO, const MDNode *Variable, | 
|  | const MDNode *Expr) { | 
|  | assert(isa<DILocalVariable>(Variable) && "not a variable"); | 
|  | assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); | 
|  | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (MO.isReg()) | 
|  | return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); | 
|  |  | 
|  | auto MIB = BuildMI(MF, DL, MCID).add(MO); | 
|  | if (IsIndirect) | 
|  | MIB.addImm(0U); | 
|  | else | 
|  | MIB.addReg(0U, RegState::Debug); | 
|  | return MIB.addMetadata(Variable).addMetadata(Expr); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, const MCInstrDesc &MCID, | 
|  | bool IsIndirect, Register Reg, | 
|  | const MDNode *Variable, const MDNode *Expr) { | 
|  | MachineFunction &MF = *BB.getParent(); | 
|  | MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); | 
|  | BB.insert(I, MI); | 
|  | return MachineInstrBuilder(MF, MI); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, const MCInstrDesc &MCID, | 
|  | bool IsIndirect, MachineOperand &MO, | 
|  | const MDNode *Variable, const MDNode *Expr) { | 
|  | MachineFunction &MF = *BB.getParent(); | 
|  | MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); | 
|  | BB.insert(I, MI); | 
|  | return MachineInstrBuilder(MF, *MI); | 
|  | } | 
|  |  | 
|  | /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. | 
|  | /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. | 
|  | static const DIExpression *computeExprForSpill(const MachineInstr &MI) { | 
|  | assert(MI.getOperand(0).isReg() && "can't spill non-register"); | 
|  | assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && | 
|  | "Expected inlined-at fields to agree"); | 
|  |  | 
|  | const DIExpression *Expr = MI.getDebugExpression(); | 
|  | if (MI.isIndirectDebugValue()) { | 
|  | assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); | 
|  | Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); | 
|  | } | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const MachineInstr &Orig, | 
|  | int FrameIndex) { | 
|  | const DIExpression *Expr = computeExprForSpill(Orig); | 
|  | return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) | 
|  | .addFrameIndex(FrameIndex) | 
|  | .addImm(0U) | 
|  | .addMetadata(Orig.getDebugVariable()) | 
|  | .addMetadata(Expr); | 
|  | } | 
|  |  | 
|  | void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { | 
|  | const DIExpression *Expr = computeExprForSpill(Orig); | 
|  | Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); | 
|  | Orig.getOperand(1).ChangeToImmediate(0U); | 
|  | Orig.getOperand(3).setMetadata(Expr); | 
|  | } | 
|  |  | 
|  | void MachineInstr::collectDebugValues( | 
|  | SmallVectorImpl<MachineInstr *> &DbgValues) { | 
|  | MachineInstr &MI = *this; | 
|  | if (!MI.getOperand(0).isReg()) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock::iterator DI = MI; ++DI; | 
|  | for (MachineBasicBlock::iterator DE = MI.getParent()->end(); | 
|  | DI != DE; ++DI) { | 
|  | if (!DI->isDebugValue()) | 
|  | return; | 
|  | if (DI->getOperand(0).isReg() && | 
|  | DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) | 
|  | DbgValues.push_back(&*DI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MachineInstr::changeDebugValuesDefReg(Register Reg) { | 
|  | // Collect matching debug values. | 
|  | SmallVector<MachineInstr *, 2> DbgValues; | 
|  |  | 
|  | if (!getOperand(0).isReg()) | 
|  | return; | 
|  |  | 
|  | unsigned DefReg = getOperand(0).getReg(); | 
|  | auto *MRI = getRegInfo(); | 
|  | for (auto &MO : MRI->use_operands(DefReg)) { | 
|  | auto *DI = MO.getParent(); | 
|  | if (!DI->isDebugValue()) | 
|  | continue; | 
|  | if (DI->getOperand(0).isReg() && | 
|  | DI->getOperand(0).getReg() == DefReg){ | 
|  | DbgValues.push_back(DI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Propagate Reg to debug value instructions. | 
|  | for (auto *DBI : DbgValues) | 
|  | DBI->getOperand(0).setReg(Reg); | 
|  | } | 
|  |  | 
|  | using MMOList = SmallVector<const MachineMemOperand *, 2>; | 
|  |  | 
|  | static unsigned getSpillSlotSize(MMOList &Accesses, | 
|  | const MachineFrameInfo &MFI) { | 
|  | unsigned Size = 0; | 
|  | for (auto A : Accesses) | 
|  | if (MFI.isSpillSlotObjectIndex( | 
|  | cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) | 
|  | ->getFrameIndex())) | 
|  | Size += A->getSize(); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | Optional<unsigned> | 
|  | MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { | 
|  | int FI; | 
|  | if (TII->isStoreToStackSlotPostFE(*this, FI)) { | 
|  | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); | 
|  | if (MFI.isSpillSlotObjectIndex(FI)) | 
|  | return (*memoperands_begin())->getSize(); | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Optional<unsigned> | 
|  | MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { | 
|  | MMOList Accesses; | 
|  | if (TII->hasStoreToStackSlot(*this, Accesses)) | 
|  | return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Optional<unsigned> | 
|  | MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { | 
|  | int FI; | 
|  | if (TII->isLoadFromStackSlotPostFE(*this, FI)) { | 
|  | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); | 
|  | if (MFI.isSpillSlotObjectIndex(FI)) | 
|  | return (*memoperands_begin())->getSize(); | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Optional<unsigned> | 
|  | MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { | 
|  | MMOList Accesses; | 
|  | if (TII->hasLoadFromStackSlot(*this, Accesses)) | 
|  | return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); | 
|  | return None; | 
|  | } |