[llvm] Release-mode ML InlineAdvisor

Summary:
This implementation uses a pre-trained model which is statically
compiled into a native function.

RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html

Reviewers: davidxl, jdoerfert, dblaikie

Subscribers: mgorny, eraman, hiraditya, arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81515
diff --git a/llvm/lib/Analysis/CMakeLists.txt b/llvm/lib/Analysis/CMakeLists.txt
index dc0f858..eaf9670 100644
--- a/llvm/lib/Analysis/CMakeLists.txt
+++ b/llvm/lib/Analysis/CMakeLists.txt
@@ -1,3 +1,18 @@
+set(CommonMLSources MLInlineAdvisor.cpp)
+set(ReleaseModeMLSources ReleaseModeModelRunner.cpp)
+
+if (DEFINED LLVM_HAVE_TF_AOT)
+  include(TensorFlowCompile)
+  tfcompile(models/inliner serve action InlinerSizeModel llvm::InlinerSizeModel)
+  list(APPEND ReleaseModeMLSources
+    $<TARGET_OBJECTS:tf_xla_runtime_objects>
+    ${GENERATED_OBJS}
+  )
+  set(MLPolicySources ${CommonMLSources} ${ReleaseModeMLSources})
+else()
+  set(LLVM_OPTIONAL_SOURCES ${CommonMLSources} ${ReleaseModeMLSources})
+endif()
+
 add_llvm_component_library(LLVMAnalysis
   AliasAnalysis.cpp
   AliasAnalysisEvaluator.cpp
@@ -102,6 +117,7 @@
   ValueTracking.cpp
   VectorUtils.cpp
   VFABIDemangling.cpp
+  ${MLPolicySources}
 
   ADDITIONAL_HEADER_DIRS
   ${LLVM_MAIN_INCLUDE_DIR}/llvm/Analysis
diff --git a/llvm/lib/Analysis/InlineAdvisor.cpp b/llvm/lib/Analysis/InlineAdvisor.cpp
index 04e562e..9a3e5fa 100644
--- a/llvm/lib/Analysis/InlineAdvisor.cpp
+++ b/llvm/lib/Analysis/InlineAdvisor.cpp
@@ -155,7 +155,9 @@
     // To be added subsequently under conditional compilation.
     break;
   case InliningAdvisorMode::Release:
-    // To be added subsequently under conditional compilation.
+#ifdef LLVM_HAVE_TF_AOT
+    Advisor = llvm::getReleaseModeAdvisor(M, MAM);
+#endif
     break;
   }
   return !!Advisor;
diff --git a/llvm/lib/Analysis/MLInlineAdvisor.cpp b/llvm/lib/Analysis/MLInlineAdvisor.cpp
new file mode 100644
index 0000000..45873f2
--- /dev/null
+++ b/llvm/lib/Analysis/MLInlineAdvisor.cpp
@@ -0,0 +1,301 @@
+//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interface between the inliner and a learned model.
+// It delegates model evaluation to either the AOT compiled model (the
+// 'release' mode) or a runtime-loaded model (the 'development' case).
+//
+//===----------------------------------------------------------------------===//
+#include <limits>
+#include <unordered_map>
+#include <unordered_set>
+
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/Analysis/InlineFeaturesAnalysis.h"
+#include "llvm/Analysis/MLInlineAdvisor.h"
+#include "llvm/Analysis/MLModelRunner.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Path.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "inline-ml"
+
+static cl::opt<float> SizeIncreaseThreshold(
+    "ml-advisor-size-increase-threshold", cl::Hidden,
+    cl::desc("Maximum factor by which expected native size may increase before "
+             "blocking any further inlining."),
+    cl::init(2.0));
+
+const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
+#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
+    INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
+#undef POPULATE_NAMES
+};
+
+const char *const llvm::DecisionName = "inlining_decision";
+const char *const llvm::DefaultDecisionName = "inlining_default";
+const char *const llvm::RewardName = "delta_size";
+
+CallBase *getInlinableCS(Instruction &I) {
+  if (auto *CS = dyn_cast<CallBase>(&I))
+    if (Function *Callee = CS->getCalledFunction()) {
+      if (!Callee->isDeclaration()) {
+        return CS;
+      }
+    }
+  return nullptr;
+}
+
+MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
+                                 std::unique_ptr<MLModelRunner> Runner)
+    : InlineAdvisor(
+          MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
+      M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)),
+      InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
+  assert(ModelRunner);
+
+  // Extract the 'call site height' feature - the position of a call site
+  // relative to the farthest statically reachable SCC node. We don't mutate
+  // this value while inlining happens. Empirically, this feature proved
+  // critical in behavioral cloning - i.e. training a model to mimic the manual
+  // heuristic's decisions - and, thus, equally important for training for
+  // improvement.
+  for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) {
+    const std::vector<CallGraphNode *> &CGNodes = *I;
+    unsigned Level = 0;
+    for (auto *CGNode : CGNodes) {
+      Function *F = CGNode->getFunction();
+      if (!F || F->isDeclaration())
+        continue;
+      for (auto &I : instructions(F)) {
+        if (auto *CS = getInlinableCS(I)) {
+          auto *Called = CS->getCalledFunction();
+          auto Pos = FunctionLevels.find(Called);
+          // In bottom up traversal, an inlinable callee is either in the
+          // same SCC, or to a function in a visited SCC. So not finding its
+          // level means we haven't visited it yet, meaning it's in this SCC.
+          if (Pos == FunctionLevels.end())
+            continue;
+          Level = std::max(Level, Pos->second + 1);
+        }
+      }
+    }
+    for (auto *CGNode : CGNodes) {
+      Function *F = CGNode->getFunction();
+      if (F && !F->isDeclaration())
+        FunctionLevels[F] = Level;
+    }
+  }
+}
+
+void MLInlineAdvisor::onPassEntry() {
+  // Function passes executed between InlinerPass runs may have changed the
+  // module-wide features.
+  NodeCount = 0;
+  EdgeCount = 0;
+  for (auto &F : M)
+    if (!F.isDeclaration()) {
+      ++NodeCount;
+      EdgeCount += getLocalCalls(F);
+    }
+}
+
+int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
+  return FAM.getResult<InlineFeaturesAnalysis>(F).DirectCallsToDefinedFunctions;
+}
+
+// Update the internal state of the advisor, and force invalidate feature
+// analysis. Currently, we maintain minimal (and very simple) global state - the
+// number of functions and the number of static calls. We also keep track of the
+// total IR size in this module, to stop misbehaving policies at a certain bloat
+// factor (SizeIncreaseThreshold)
+void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
+                                           bool CalleeWasDeleted) {
+  assert(!ForceStop);
+  Function *Caller = Advice.getCaller();
+  Function *Callee = Advice.getCallee();
+
+  // The caller features aren't valid anymore.
+  FAM.invalidate<InlineFeaturesAnalysis>(*Caller);
+  int64_t IRSizeAfter =
+      getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
+  CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
+  if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
+    ForceStop = true;
+
+  // We can delta-update module-wide features. We know the inlining only changed
+  // the caller, and maybe the callee (by deleting the latter).
+  // Nodes are simple to update.
+  // For edges, we 'forget' the edges that the caller and callee used to have
+  // before inlining, and add back what they currently have together.
+  int64_t NewCallerAndCalleeEdges =
+      FAM.getResult<InlineFeaturesAnalysis>(*Caller)
+          .DirectCallsToDefinedFunctions;
+
+  if (CalleeWasDeleted)
+    --NodeCount;
+  else
+    NewCallerAndCalleeEdges += FAM.getResult<InlineFeaturesAnalysis>(*Callee)
+                                   .DirectCallsToDefinedFunctions;
+  EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
+  assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
+}
+
+int64_t MLInlineAdvisor::getModuleIRSize() const {
+  int64_t Ret = 0;
+  for (auto &F : CG->getModule())
+    if (!F.isDeclaration())
+      Ret += getIRSize(F);
+  return Ret;
+}
+
+std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) {
+  auto &Caller = *CB.getCaller();
+  auto &Callee = *CB.getCalledFunction();
+
+  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
+    return FAM.getResult<AssumptionAnalysis>(F);
+  };
+  auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
+    return FAM.getResult<TargetLibraryAnalysis>(F);
+  };
+
+  auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
+  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
+
+  auto TrivialDecision =
+      llvm::getAttributeBasedInliningDecision(CB, &Callee, TIR, GetTLI);
+
+  // If this is a "never inline" case, there won't be any changes to internal
+  // state we need to track, so we can just return the base InlineAdvice, which
+  // will do nothing interesting.
+  // Same thing if this is a recursive case.
+  if ((TrivialDecision.hasValue() && !TrivialDecision->isSuccess()) ||
+      &Caller == &Callee)
+    return std::make_unique<InlineAdvice>(this, CB, ORE, false);
+
+  bool Mandatory = TrivialDecision.hasValue() && TrivialDecision->isSuccess();
+
+  // If we need to stop, we won't want to track anymore any state changes, so
+  // we just return the base InlineAdvice, which acts as a noop.
+  if (ForceStop) {
+    ORE.emit([&] {
+      return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
+             << "Won't attempt inlining because module size grew too much.";
+    });
+    return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
+  }
+
+  int CostEstimate = 0;
+  if (!Mandatory) {
+    auto IsCallSiteInlinable =
+        llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
+    if (!IsCallSiteInlinable) {
+      // We can't inline this for correctness reasons, so return the base
+      // InlineAdvice, as we don't care about tracking any state changes (which
+      // won't happen).
+      return std::make_unique<InlineAdvice>(this, CB, ORE, false);
+    }
+    CostEstimate = *IsCallSiteInlinable;
+  }
+
+  if (Mandatory)
+    return getMandatoryAdvice(CB, ORE);
+
+  auto NrCtantParams = 0;
+  for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
+    NrCtantParams += (isa<Constant>(*I));
+  }
+
+  auto &CallerBefore = FAM.getResult<InlineFeaturesAnalysis>(Caller);
+  auto &CalleeBefore = FAM.getResult<InlineFeaturesAnalysis>(Callee);
+
+  ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount,
+                          CalleeBefore.BasicBlockCount);
+  ModelRunner->setFeature(FeatureIndex::CallSiteHeight,
+                          FunctionLevels[&Caller]);
+  ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount);
+  ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams);
+  ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate);
+  ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount);
+  ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses);
+  ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks,
+                          CallerBefore.BlocksReachedFromConditionalInstruction);
+  ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount,
+                          CallerBefore.BasicBlockCount);
+  ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks,
+                          CalleeBefore.BlocksReachedFromConditionalInstruction);
+  ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses);
+  return getAdviceFromModel(CB, ORE);
+}
+
+std::unique_ptr<MLInlineAdvice>
+MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
+                                    OptimizationRemarkEmitter &ORE) {
+  return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run());
+}
+
+std::unique_ptr<MLInlineAdvice>
+MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
+                                    OptimizationRemarkEmitter &ORE) {
+  return std::make_unique<MLInlineAdvice>(this, CB, ORE, true);
+}
+
+void MLInlineAdvice::reportContextForRemark(
+    DiagnosticInfoOptimizationBase &OR) {
+  using namespace ore;
+  OR << NV("Callee", Callee->getName());
+  for (size_t I = 0; I < NumberOfFeatures; ++I)
+    OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I));
+  OR << NV("ShouldInline", isInliningRecommended());
+}
+
+void MLInlineAdvice::recordInliningImpl() {
+  ORE.emit([&]() {
+    OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
+    reportContextForRemark(R);
+    return R;
+  });
+  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
+}
+
+void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
+  ORE.emit([&]() {
+    OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
+                         Block);
+    reportContextForRemark(R);
+    return R;
+  });
+  getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
+}
+
+void MLInlineAdvice::recordUnsuccessfulInliningImpl(
+    const InlineResult &Result) {
+  ORE.emit([&]() {
+    OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
+                               DLoc, Block);
+    reportContextForRemark(R);
+    return R;
+  });
+}
+void MLInlineAdvice::recordUnattemptedInliningImpl() {
+  ORE.emit([&]() {
+    OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
+    reportContextForRemark(R);
+    return R;
+  });
+}
\ No newline at end of file
diff --git a/llvm/lib/Analysis/ReleaseModeModelRunner.cpp b/llvm/lib/Analysis/ReleaseModeModelRunner.cpp
new file mode 100644
index 0000000..4c0ffbc
--- /dev/null
+++ b/llvm/lib/Analysis/ReleaseModeModelRunner.cpp
@@ -0,0 +1,87 @@
+//===- ReleaseModeModelRunner.cpp - Fast, precompiled model runner  -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a model runner wrapping an AOT compiled ML model.
+// Only inference is supported.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InlineModelFeatureMaps.h"
+#include "llvm/Analysis/MLInlineAdvisor.h"
+
+// codegen-ed file
+#include "InlinerSizeModel.h" // NOLINT
+
+#include <memory>
+#include <vector>
+
+using namespace llvm;
+namespace {
+
+static const char *const FeedPrefix = "feed_";
+static const char *const FetchPrefix = "fetch_";
+
+/// MLModelRunner - production mode implementation. It uses a AOT-compiled
+/// SavedModel for efficient execution.
+class ReleaseModeModelRunner final : public MLModelRunner {
+public:
+  ReleaseModeModelRunner(LLVMContext &Ctx);
+  virtual ~ReleaseModeModelRunner() = default;
+
+  bool run() override;
+
+  void setFeature(FeatureIndex Index, int64_t Value) override;
+  int64_t getFeature(int Index) const override;
+
+private:
+  std::vector<int32_t> FeatureIndices;
+  int32_t ResultIndex = -1;
+  std::unique_ptr<llvm::InlinerSizeModel> CompiledModel;
+};
+} // namespace
+
+ReleaseModeModelRunner::ReleaseModeModelRunner(LLVMContext &Ctx)
+    : MLModelRunner(Ctx),
+      CompiledModel(std::make_unique<llvm::InlinerSizeModel>()) {
+  assert(CompiledModel && "The CompiledModel should be valid");
+
+  FeatureIndices.reserve(NumberOfFeatures);
+
+  for (size_t I = 0; I < NumberOfFeatures; ++I) {
+    const int Index =
+        CompiledModel->LookupArgIndex(FeedPrefix + FeatureNameMap[I]);
+    assert(Index >= 0 && "Cannot find Feature in inlining model");
+    FeatureIndices[I] = Index;
+  }
+
+  ResultIndex =
+      CompiledModel->LookupResultIndex(std::string(FetchPrefix) + DecisionName);
+  assert(ResultIndex >= 0 && "Cannot find DecisionName in inlining model");
+}
+
+int64_t ReleaseModeModelRunner::getFeature(int Index) const {
+  return *static_cast<int64_t *>(
+      CompiledModel->arg_data(FeatureIndices[Index]));
+}
+
+void ReleaseModeModelRunner::setFeature(FeatureIndex Index, int64_t Value) {
+  *static_cast<int64_t *>(CompiledModel->arg_data(
+      FeatureIndices[static_cast<size_t>(Index)])) = Value;
+}
+
+bool ReleaseModeModelRunner::run() {
+  CompiledModel->Run();
+  return static_cast<bool>(
+      *static_cast<int64_t *>(CompiledModel->result_data(ResultIndex)));
+}
+
+std::unique_ptr<InlineAdvisor>
+llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
+  auto AOTRunner = std::make_unique<ReleaseModeModelRunner>(M.getContext());
+  return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
+}
diff --git a/llvm/lib/Analysis/models/inliner/saved_model.pb b/llvm/lib/Analysis/models/inliner/saved_model.pb
new file mode 100644
index 0000000..5488989
--- /dev/null
+++ b/llvm/lib/Analysis/models/inliner/saved_model.pb
Binary files differ
diff --git a/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00002 b/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00002
new file mode 100644
index 0000000..58ebd0f
--- /dev/null
+++ b/llvm/lib/Analysis/models/inliner/variables/variables.data-00000-of-00002
Binary files differ
diff --git a/llvm/lib/Analysis/models/inliner/variables/variables.data-00001-of-00002 b/llvm/lib/Analysis/models/inliner/variables/variables.data-00001-of-00002
new file mode 100644
index 0000000..1f1f1b1
--- /dev/null
+++ b/llvm/lib/Analysis/models/inliner/variables/variables.data-00001-of-00002
Binary files differ
diff --git a/llvm/lib/Analysis/models/inliner/variables/variables.index b/llvm/lib/Analysis/models/inliner/variables/variables.index
new file mode 100644
index 0000000..318d5a2
--- /dev/null
+++ b/llvm/lib/Analysis/models/inliner/variables/variables.index
Binary files differ