PR23334: Perform semantic checking of lambda capture initialization in the right context.
Previously we'd try to perform checks on the captures from the middle of
parsing the lambda's body, at the point where we detected that a variable
needed to be captured. This was wrong in a number of subtle ways. In
PR23334, we couldn't correctly handle the list of potential odr-uses
resulting from the capture, and our attempt to recover from that resulted
in a use-after-free.
We now defer building the initialization expression until we leave the lambda
body and return to the enclosing context, where the initialization does the
right thing. This patch only covers lambda-expressions, but we should apply
the same change to blocks and captured statements too.
llvm-svn: 235921
diff --git a/clang/test/SemaCXX/cxx1y-generic-lambdas.cpp b/clang/test/SemaCXX/cxx1y-generic-lambdas.cpp
index 90ecf69..f4c67fb 100644
--- a/clang/test/SemaCXX/cxx1y-generic-lambdas.cpp
+++ b/clang/test/SemaCXX/cxx1y-generic-lambdas.cpp
@@ -899,8 +899,10 @@
int L2 = ([](auto i) { return i; })(2);
void fooG(T i = ([] (auto i) { return i; })(2)) { }
int BG : ([](auto i) { return i; })(3); //expected-error{{not an integral constant}}\
- //expected-note{{non-literal type}}
- int arrG[([](auto i) { return i; })(3)]; //expected-error{{must have a constant size}}
+ //expected-note{{non-literal type}}\
+ //expected-error{{inside of a constant expression}}
+ int arrG[([](auto i) { return i; })(3)]; //expected-error{{must have a constant size}} \
+ //expected-error{{inside of a constant expression}}
int (*fpG)(T) = [](auto i) { return i; };
void fooptrG(T (*fp)(char) = [](auto c) { return 0; }) { }
template<class U = char> int fooG2(T (*fp)(U) = [](auto a) { return 0; }) { return 0; }