[C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
diff --git a/llvm/lib/CodeGen/SjLjEHPrepare.cpp b/llvm/lib/CodeGen/SjLjEHPrepare.cpp
index e4ddb7b..dc7ca2b 100644
--- a/llvm/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/llvm/lib/CodeGen/SjLjEHPrepare.cpp
@@ -149,7 +149,7 @@
/// instruction with those returned by the personality function.
void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal,
Value *SelVal) {
- SmallVector<Value *, 8> UseWorkList(LPI->use_begin(), LPI->use_end());
+ SmallVector<Value *, 8> UseWorkList(LPI->user_begin(), LPI->user_end());
while (!UseWorkList.empty()) {
Value *Val = UseWorkList.pop_back_val();
ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val);
@@ -294,8 +294,8 @@
if (Inst->use_empty())
continue;
if (Inst->hasOneUse() &&
- cast<Instruction>(Inst->use_back())->getParent() == BB &&
- !isa<PHINode>(Inst->use_back()))
+ cast<Instruction>(Inst->user_back())->getParent() == BB &&
+ !isa<PHINode>(Inst->user_back()))
continue;
// If this is an alloca in the entry block, it's not a real register
@@ -306,11 +306,10 @@
// Avoid iterator invalidation by copying users to a temporary vector.
SmallVector<Instruction *, 16> Users;
- for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
- UI != E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
- if (User->getParent() != BB || isa<PHINode>(User))
- Users.push_back(User);
+ for (User *U : Inst->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (UI->getParent() != BB || isa<PHINode>(UI))
+ Users.push_back(UI);
}
// Find all of the blocks that this value is live in.