[C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
diff --git a/llvm/lib/Transforms/Scalar/Reassociate.cpp b/llvm/lib/Transforms/Scalar/Reassociate.cpp
index 21a4d93..b6b4d97 100644
--- a/llvm/lib/Transforms/Scalar/Reassociate.cpp
+++ b/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -820,7 +820,7 @@
if (ExpressionChanged == I)
break;
ExpressionChanged->moveBefore(I);
- ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
+ ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
} while (1);
// Throw away any left over nodes from the original expression.
@@ -862,8 +862,7 @@
// Okay, we need to materialize a negated version of V with an instruction.
// Scan the use lists of V to see if we have one already.
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
- User *U = *UI;
+ for (User *U : V->users()) {
if (!BinaryOperator::isNeg(U)) continue;
// We found one! Now we have to make sure that the definition dominates
@@ -913,8 +912,8 @@
isReassociableOp(Sub->getOperand(1), Instruction::Sub))
return true;
if (Sub->hasOneUse() &&
- (isReassociableOp(Sub->use_back(), Instruction::Add) ||
- isReassociableOp(Sub->use_back(), Instruction::Sub)))
+ (isReassociableOp(Sub->user_back(), Instruction::Add) ||
+ isReassociableOp(Sub->user_back(), Instruction::Sub)))
return true;
return false;
@@ -1781,9 +1780,9 @@
// If this is a node in an expression tree, climb to the expression root
// and add that since that's where optimization actually happens.
unsigned Opcode = Op->getOpcode();
- while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
+ while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
Visited.insert(Op))
- Op = Op->use_back();
+ Op = Op->user_back();
RedoInsts.insert(Op);
}
}
@@ -1801,8 +1800,8 @@
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
(I->hasOneUse() &&
- (isReassociableOp(I->use_back(), Instruction::Mul) ||
- isReassociableOp(I->use_back(), Instruction::Add)))) {
+ (isReassociableOp(I->user_back(), Instruction::Mul) ||
+ isReassociableOp(I->user_back(), Instruction::Add)))) {
Instruction *NI = ConvertShiftToMul(I);
RedoInsts.insert(I);
MadeChange = true;
@@ -1855,7 +1854,7 @@
// and if this is not an inner node of a multiply tree.
if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
(!I->hasOneUse() ||
- !isReassociableOp(I->use_back(), Instruction::Mul))) {
+ !isReassociableOp(I->user_back(), Instruction::Mul))) {
Instruction *NI = LowerNegateToMultiply(I);
RedoInsts.insert(I);
MadeChange = true;
@@ -1871,13 +1870,13 @@
// If this is an interior node of a reassociable tree, ignore it until we
// get to the root of the tree, to avoid N^2 analysis.
unsigned Opcode = BO->getOpcode();
- if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
+ if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
return;
// If this is an add tree that is used by a sub instruction, ignore it
// until we process the subtract.
if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
- cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
+ cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
return;
ReassociateExpression(BO);
@@ -1929,7 +1928,7 @@
// In this case we reassociate to put the negation on the outside so that we
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
- cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
+ cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
isa<ConstantInt>(Ops.back().Op) &&
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
ValueEntry Tmp = Ops.pop_back_val();