WholeProgramDevirt: introduce.

This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:

- Single implementation devirtualization: if a virtual call has a single
  possible callee, replace all calls with a direct call to that callee.

- Virtual constant propagation: if the virtual function's return type is an
  integer <=64 bits and all possible callees are readnone, for each class and
  each list of constant arguments: evaluate the function, store the return
  value alongside the virtual table, and rewrite each virtual call as a load
  from the virtual table.

- Uniform return value optimization: if the conditions for virtual constant
  propagation hold and each function returns the same constant value, replace
  each virtual call with that constant.

- Unique return value optimization for i1 return values: if the conditions
  for virtual constant propagation hold and a single vtable's function
  returns 0, or a single vtable's function returns 1, replace each virtual
  call with a comparison of the vptr against that vtable's address.

Differential Revision: http://reviews.llvm.org/D16795

llvm-svn: 260312
diff --git a/llvm/lib/Transforms/IPO/CMakeLists.txt b/llvm/lib/Transforms/IPO/CMakeLists.txt
index 351b88f..367b395 100644
--- a/llvm/lib/Transforms/IPO/CMakeLists.txt
+++ b/llvm/lib/Transforms/IPO/CMakeLists.txt
@@ -27,6 +27,7 @@
   SampleProfile.cpp
   StripDeadPrototypes.cpp
   StripSymbols.cpp
+  WholeProgramDevirt.cpp
 
   ADDITIONAL_HEADER_DIRS
   ${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms
diff --git a/llvm/lib/Transforms/IPO/IPO.cpp b/llvm/lib/Transforms/IPO/IPO.cpp
index 89629cf..dbbe602 100644
--- a/llvm/lib/Transforms/IPO/IPO.cpp
+++ b/llvm/lib/Transforms/IPO/IPO.cpp
@@ -53,6 +53,7 @@
   initializeEliminateAvailableExternallyPass(Registry);
   initializeSampleProfileLoaderPass(Registry);
   initializeFunctionImportPassPass(Registry);
+  initializeWholeProgramDevirtPass(Registry);
 }
 
 void LLVMInitializeIPO(LLVMPassRegistryRef R) {
diff --git a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
index 4798d4e..18d321b 100644
--- a/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -651,6 +651,16 @@
   PM.add(createJumpThreadingPass());
 }
 
+void PassManagerBuilder::addEarlyLTOOptimizationPasses(
+    legacy::PassManagerBase &PM) {
+  // Remove unused virtual tables to improve the quality of code generated by
+  // whole-program devirtualization and bitset lowering.
+  PM.add(createGlobalDCEPass());
+
+  // Apply whole-program devirtualization and virtual constant propagation.
+  PM.add(createWholeProgramDevirtPass());
+}
+
 void PassManagerBuilder::addLateLTOOptimizationPasses(
     legacy::PassManagerBase &PM) {
   // Delete basic blocks, which optimization passes may have killed.
@@ -675,6 +685,9 @@
   if (VerifyInput)
     PM.add(createVerifierPass());
 
+  if (OptLevel != 0)
+    addEarlyLTOOptimizationPasses(PM);
+
   if (OptLevel > 1)
     addLTOOptimizationPasses(PM);
 
diff --git a/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp b/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
new file mode 100644
index 0000000..92f119b
--- /dev/null
+++ b/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
@@ -0,0 +1,724 @@
+//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements whole program optimization of virtual calls in cases
+// where we know (via bitset information) that the list of callee is fixed. This
+// includes the following:
+// - Single implementation devirtualization: if a virtual call has a single
+//   possible callee, replace all calls with a direct call to that callee.
+// - Virtual constant propagation: if the virtual function's return type is an
+//   integer <=64 bits and all possible callees are readnone, for each class and
+//   each list of constant arguments: evaluate the function, store the return
+//   value alongside the virtual table, and rewrite each virtual call as a load
+//   from the virtual table.
+// - Uniform return value optimization: if the conditions for virtual constant
+//   propagation hold and each function returns the same constant value, replace
+//   each virtual call with that constant.
+// - Unique return value optimization for i1 return values: if the conditions
+//   for virtual constant propagation hold and a single vtable's function
+//   returns 0, or a single vtable's function returns 1, replace each virtual
+//   call with a comparison of the vptr against that vtable's address.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Evaluator.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+#include <set>
+
+using namespace llvm;
+using namespace wholeprogramdevirt;
+
+#define DEBUG_TYPE "wholeprogramdevirt"
+
+// Find the minimum offset that we may store a value of size Size bits at. If
+// IsAfter is set, look for an offset before the object, otherwise look for an
+// offset after the object.
+uint64_t
+wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
+                                     bool IsAfter, uint64_t Size) {
+  // Find a minimum offset taking into account only vtable sizes.
+  uint64_t MinByte = 0;
+  for (const VirtualCallTarget &Target : Targets) {
+    if (IsAfter)
+      MinByte = std::max(MinByte, Target.minAfterBytes());
+    else
+      MinByte = std::max(MinByte, Target.minBeforeBytes());
+  }
+
+  // Build a vector of arrays of bytes covering, for each target, a slice of the
+  // used region (see AccumBitVector::BytesUsed in
+  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
+  // this aligns the used regions to start at MinByte.
+  //
+  // In this example, A, B and C are vtables, # is a byte already allocated for
+  // a virtual function pointer, AAAA... (etc.) are the used regions for the
+  // vtables and Offset(X) is the value computed for the Offset variable below
+  // for X.
+  //
+  //                    Offset(A)
+  //                    |       |
+  //                            |MinByte
+  // A: ################AAAAAAAA|AAAAAAAA
+  // B: ########BBBBBBBBBBBBBBBB|BBBB
+  // C: ########################|CCCCCCCCCCCCCCCC
+  //            |   Offset(B)   |
+  //
+  // This code produces the slices of A, B and C that appear after the divider
+  // at MinByte.
+  std::vector<ArrayRef<uint8_t>> Used;
+  for (const VirtualCallTarget &Target : Targets) {
+    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
+                                       : Target.BS->Bits->Before.BytesUsed;
+    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
+                              : MinByte - Target.minBeforeBytes();
+
+    // Disregard used regions that are smaller than Offset. These are
+    // effectively all-free regions that do not need to be checked.
+    if (VTUsed.size() > Offset)
+      Used.push_back(VTUsed.slice(Offset));
+  }
+
+  if (Size == 1) {
+    // Find a free bit in each member of Used.
+    for (unsigned I = 0;; ++I) {
+      uint8_t BitsUsed = 0;
+      for (auto &&B : Used)
+        if (I < B.size())
+          BitsUsed |= B[I];
+      if (BitsUsed != 0xff)
+        return (MinByte + I) * 8 +
+               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
+    }
+  } else {
+    // Find a free (Size/8) byte region in each member of Used.
+    // FIXME: see if alignment helps.
+    for (unsigned I = 0;; ++I) {
+      for (auto &&B : Used) {
+        unsigned Byte = 0;
+        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
+          if (B[I + Byte])
+            goto NextI;
+          ++Byte;
+        }
+      }
+      return (MinByte + I) * 8;
+    NextI:;
+    }
+  }
+}
+
+void wholeprogramdevirt::setBeforeReturnValues(
+    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
+    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+  if (BitWidth == 1)
+    OffsetByte = -(AllocBefore / 8 + 1);
+  else
+    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
+  OffsetBit = AllocBefore % 8;
+
+  for (VirtualCallTarget &Target : Targets) {
+    if (BitWidth == 1)
+      Target.setBeforeBit(AllocBefore);
+    else
+      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
+  }
+}
+
+void wholeprogramdevirt::setAfterReturnValues(
+    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
+    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+  if (BitWidth == 1)
+    OffsetByte = AllocAfter / 8;
+  else
+    OffsetByte = (AllocAfter + 7) / 8;
+  OffsetBit = AllocAfter % 8;
+
+  for (VirtualCallTarget &Target : Targets) {
+    if (BitWidth == 1)
+      Target.setAfterBit(AllocAfter);
+    else
+      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
+  }
+}
+
+VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
+    : Fn(Fn), BS(BS),
+      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
+
+namespace {
+
+// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
+// tables, and the ByteOffset is the offset in bytes from the address point to
+// the virtual function pointer.
+struct VTableSlot {
+  Metadata *BitSetID;
+  uint64_t ByteOffset;
+};
+
+}
+
+template <> struct DenseMapInfo<VTableSlot> {
+  static VTableSlot getEmptyKey() {
+    return {DenseMapInfo<Metadata *>::getEmptyKey(),
+            DenseMapInfo<uint64_t>::getEmptyKey()};
+  }
+  static VTableSlot getTombstoneKey() {
+    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
+            DenseMapInfo<uint64_t>::getTombstoneKey()};
+  }
+  static unsigned getHashValue(const VTableSlot &I) {
+    return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
+           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
+  }
+  static bool isEqual(const VTableSlot &LHS,
+                      const VTableSlot &RHS) {
+    return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
+  }
+};
+
+namespace {
+
+// A virtual call site. VTable is the loaded virtual table pointer, and CS is
+// the indirect virtual call.
+struct VirtualCallSite {
+  Value *VTable;
+  CallSite CS;
+
+  void replaceAndErase(Value *New) {
+    CS->replaceAllUsesWith(New);
+    if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+      BranchInst::Create(II->getNormalDest(), CS.getInstruction());
+      II->getUnwindDest()->removePredecessor(II->getParent());
+    }
+    CS->eraseFromParent();
+  }
+};
+
+struct DevirtModule {
+  Module &M;
+  IntegerType *Int8Ty;
+  PointerType *Int8PtrTy;
+  IntegerType *Int32Ty;
+
+  MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
+
+  DevirtModule(Module &M)
+      : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
+        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
+        Int32Ty(Type::getInt32Ty(M.getContext())) {}
+  void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
+                                     uint64_t Offset, Value *VTable);
+  void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
+                                 Value *VTable);
+
+  void buildBitSets(std::vector<VTableBits> &Bits,
+                    DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
+  bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
+                                 const std::set<BitSetInfo> &BitSetInfos,
+                                 uint64_t ByteOffset);
+  bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
+                           MutableArrayRef<VirtualCallSite> CallSites);
+  bool tryEvaluateFunctionsWithArgs(
+      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+      ArrayRef<ConstantInt *> Args);
+  bool tryUniformRetValOpt(IntegerType *RetType,
+                           ArrayRef<VirtualCallTarget> TargetsForSlot,
+                           MutableArrayRef<VirtualCallSite> CallSites);
+  bool tryUniqueRetValOpt(unsigned BitWidth,
+                          ArrayRef<VirtualCallTarget> TargetsForSlot,
+                          MutableArrayRef<VirtualCallSite> CallSites);
+  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+                           ArrayRef<VirtualCallSite> CallSites);
+
+  void rebuildGlobal(VTableBits &B);
+
+  bool run();
+};
+
+struct WholeProgramDevirt : public ModulePass {
+  static char ID;
+  WholeProgramDevirt() : ModulePass(ID) {
+    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
+  }
+  bool runOnModule(Module &M) { return DevirtModule(M).run(); }
+};
+
+} // anonymous namespace
+
+INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
+                "Whole program devirtualization", false, false)
+char WholeProgramDevirt::ID = 0;
+
+ModulePass *llvm::createWholeProgramDevirtPass() {
+  return new WholeProgramDevirt;
+}
+
+// Search for virtual calls that call FPtr and add them to CallSlots.
+void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
+                                             uint64_t Offset, Value *VTable) {
+  for (const Use &U : FPtr->uses()) {
+    Value *User = U.getUser();
+    if (isa<BitCastInst>(User)) {
+      findCallsAtConstantOffset(BitSet, User, Offset, VTable);
+    } else if (auto CI = dyn_cast<CallInst>(User)) {
+      CallSlots[{BitSet, Offset}].push_back({VTable, CI});
+    } else if (auto II = dyn_cast<InvokeInst>(User)) {
+      CallSlots[{BitSet, Offset}].push_back({VTable, II});
+    }
+  }
+}
+
+// Search for virtual calls that load from VPtr and add them to CallSlots.
+void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
+                                                 uint64_t Offset,
+                                                 Value *VTable) {
+  for (const Use &U : VPtr->uses()) {
+    Value *User = U.getUser();
+    if (isa<BitCastInst>(User)) {
+      findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
+    } else if (isa<LoadInst>(User)) {
+      findCallsAtConstantOffset(BitSet, User, Offset, VTable);
+    } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
+      // Take into account the GEP offset.
+      if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
+        SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
+        uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
+            GEP->getSourceElementType(), Indices);
+        findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
+      }
+    }
+  }
+}
+
+void DevirtModule::buildBitSets(
+    std::vector<VTableBits> &Bits,
+    DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
+  NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
+  if (!BitSetNM)
+    return;
+
+  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
+  Bits.reserve(BitSetNM->getNumOperands());
+  for (auto Op : BitSetNM->operands()) {
+    auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
+    if (!OpConstMD)
+      continue;
+    auto BitSetID = Op->getOperand(0).get();
+
+    Constant *OpConst = OpConstMD->getValue();
+    if (auto GA = dyn_cast<GlobalAlias>(OpConst))
+      OpConst = GA->getAliasee();
+    auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
+    if (!OpGlobal)
+      continue;
+
+    uint64_t Offset =
+        cast<ConstantInt>(
+            cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
+            ->getZExtValue();
+
+    VTableBits *&BitsPtr = GVToBits[OpGlobal];
+    if (!BitsPtr) {
+      Bits.emplace_back();
+      Bits.back().GV = OpGlobal;
+      Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
+          OpGlobal->getInitializer()->getType());
+      BitsPtr = &Bits.back();
+    }
+    BitSets[BitSetID].insert({BitsPtr, Offset});
+  }
+}
+
+bool DevirtModule::tryFindVirtualCallTargets(
+    std::vector<VirtualCallTarget> &TargetsForSlot,
+    const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
+  for (const BitSetInfo &BS : BitSetInfos) {
+    if (!BS.Bits->GV->isConstant())
+      return false;
+
+    auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
+    if (!Init)
+      return false;
+    ArrayType *VTableTy = Init->getType();
+
+    uint64_t ElemSize =
+        M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
+    uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
+    if (GlobalSlotOffset % ElemSize != 0)
+      return false;
+
+    unsigned Op = GlobalSlotOffset / ElemSize;
+    if (Op >= Init->getNumOperands())
+      return false;
+
+    auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
+    if (!Fn)
+      return false;
+
+    // We can disregard __cxa_pure_virtual as a possible call target, as
+    // calls to pure virtuals are UB.
+    if (Fn->getName() == "__cxa_pure_virtual")
+      continue;
+
+    TargetsForSlot.push_back({Fn, &BS});
+  }
+
+  // Give up if we couldn't find any targets.
+  return !TargetsForSlot.empty();
+}
+
+bool DevirtModule::trySingleImplDevirt(
+    ArrayRef<VirtualCallTarget> TargetsForSlot,
+    MutableArrayRef<VirtualCallSite> CallSites) {
+  // See if the program contains a single implementation of this virtual
+  // function.
+  Function *TheFn = TargetsForSlot[0].Fn;
+  for (auto &&Target : TargetsForSlot)
+    if (TheFn != Target.Fn)
+      return false;
+
+  // If so, update each call site to call that implementation directly.
+  for (auto &&VCallSite : CallSites) {
+    VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
+        TheFn, VCallSite.CS.getCalledValue()->getType()));
+  }
+  return true;
+}
+
+bool DevirtModule::tryEvaluateFunctionsWithArgs(
+    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+    ArrayRef<ConstantInt *> Args) {
+  // Evaluate each function and store the result in each target's RetVal
+  // field.
+  for (VirtualCallTarget &Target : TargetsForSlot) {
+    if (Target.Fn->arg_size() != Args.size() + 1)
+      return false;
+    for (unsigned I = 0; I != Args.size(); ++I)
+      if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
+          Args[I]->getType())
+        return false;
+
+    Evaluator Eval(M.getDataLayout(), nullptr);
+    SmallVector<Constant *, 2> EvalArgs;
+    EvalArgs.push_back(
+        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
+    EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
+    Constant *RetVal;
+    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
+        !isa<ConstantInt>(RetVal))
+      return false;
+    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
+  }
+  return true;
+}
+
+bool DevirtModule::tryUniformRetValOpt(
+    IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
+    MutableArrayRef<VirtualCallSite> CallSites) {
+  // Uniform return value optimization. If all functions return the same
+  // constant, replace all calls with that constant.
+  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
+  for (const VirtualCallTarget &Target : TargetsForSlot)
+    if (Target.RetVal != TheRetVal)
+      return false;
+
+  auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
+  for (auto Call : CallSites)
+    Call.replaceAndErase(TheRetValConst);
+  return true;
+}
+
+bool DevirtModule::tryUniqueRetValOpt(
+    unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
+    MutableArrayRef<VirtualCallSite> CallSites) {
+  // IsOne controls whether we look for a 0 or a 1.
+  auto tryUniqueRetValOptFor = [&](bool IsOne) {
+    const BitSetInfo *UniqueBitSet = 0;
+    for (const VirtualCallTarget &Target : TargetsForSlot) {
+      if (Target.RetVal == IsOne ? 1 : 0) {
+        if (UniqueBitSet)
+          return false;
+        UniqueBitSet = Target.BS;
+      }
+    }
+
+    // We should have found a unique bit set or bailed out by now. We already
+    // checked for a uniform return value in tryUniformRetValOpt.
+    assert(UniqueBitSet);
+
+    // Replace each call with the comparison.
+    for (auto &&Call : CallSites) {
+      IRBuilder<> B(Call.CS.getInstruction());
+      Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
+      OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
+      Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
+                                Call.VTable, OneAddr);
+      Call.replaceAndErase(Cmp);
+    }
+    return true;
+  };
+
+  if (BitWidth == 1) {
+    if (tryUniqueRetValOptFor(true))
+      return true;
+    if (tryUniqueRetValOptFor(false))
+      return true;
+  }
+  return false;
+}
+
+bool DevirtModule::tryVirtualConstProp(
+    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+    ArrayRef<VirtualCallSite> CallSites) {
+  // This only works if the function returns an integer.
+  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
+  if (!RetType)
+    return false;
+  unsigned BitWidth = RetType->getBitWidth();
+  if (BitWidth > 64)
+    return false;
+
+  // Make sure that each function does not access memory, takes at least one
+  // argument, does not use its first argument (which we assume is 'this'),
+  // and has the same return type.
+  for (VirtualCallTarget &Target : TargetsForSlot) {
+    if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
+        !Target.Fn->arg_begin()->use_empty() ||
+        Target.Fn->getReturnType() != RetType)
+      return false;
+  }
+
+  // Group call sites by the list of constant arguments they pass.
+  // The comparator ensures deterministic ordering.
+  struct ByAPIntValue {
+    bool operator()(const std::vector<ConstantInt *> &A,
+                    const std::vector<ConstantInt *> &B) const {
+      return std::lexicographical_compare(
+          A.begin(), A.end(), B.begin(), B.end(),
+          [](ConstantInt *AI, ConstantInt *BI) {
+            return AI->getValue().ult(BI->getValue());
+          });
+    }
+  };
+  std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
+           ByAPIntValue>
+      VCallSitesByConstantArg;
+  for (auto &&VCallSite : CallSites) {
+    std::vector<ConstantInt *> Args;
+    if (VCallSite.CS.getType() != RetType)
+      continue;
+    for (auto &&Arg :
+         make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
+      if (!isa<ConstantInt>(Arg))
+        break;
+      Args.push_back(cast<ConstantInt>(&Arg));
+    }
+    if (Args.size() + 1 != VCallSite.CS.arg_size())
+      continue;
+
+    VCallSitesByConstantArg[Args].push_back(VCallSite);
+  }
+
+  for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
+    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
+      continue;
+
+    if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
+      continue;
+
+    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
+      continue;
+
+    // Find an allocation offset in bits in all vtables in the bitset.
+    uint64_t AllocBefore =
+        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
+    uint64_t AllocAfter =
+        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
+
+    // Calculate the total amount of padding needed to store a value at both
+    // ends of the object.
+    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
+    for (auto &&Target : TargetsForSlot) {
+      TotalPaddingBefore += std::max<int64_t>(
+          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
+      TotalPaddingAfter += std::max<int64_t>(
+          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
+    }
+
+    // If the amount of padding is too large, give up.
+    // FIXME: do something smarter here.
+    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
+      continue;
+
+    // Calculate the offset to the value as a (possibly negative) byte offset
+    // and (if applicable) a bit offset, and store the values in the targets.
+    int64_t OffsetByte;
+    uint64_t OffsetBit;
+    if (TotalPaddingBefore <= TotalPaddingAfter)
+      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
+                            OffsetBit);
+    else
+      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
+                           OffsetBit);
+
+    // Rewrite each call to a load from OffsetByte/OffsetBit.
+    for (auto Call : CSByConstantArg.second) {
+      IRBuilder<> B(Call.CS.getInstruction());
+      Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
+      if (BitWidth == 1) {
+        Value *Bits = B.CreateLoad(Addr);
+        Value *Bit = ConstantInt::get(Int8Ty, 1 << OffsetBit);
+        Value *BitsAndBit = B.CreateAnd(Bits, Bit);
+        auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
+        Call.replaceAndErase(IsBitSet);
+      } else {
+        Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
+        Value *Val = B.CreateLoad(RetType, ValAddr);
+        Call.replaceAndErase(Val);
+      }
+    }
+  }
+  return true;
+}
+
+void DevirtModule::rebuildGlobal(VTableBits &B) {
+  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
+    return;
+
+  // Align each byte array to pointer width.
+  unsigned PointerSize = M.getDataLayout().getPointerSize();
+  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
+  B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
+
+  // Before was stored in reverse order; flip it now.
+  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
+    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
+
+  // Build an anonymous global containing the before bytes, followed by the
+  // original initializer, followed by the after bytes.
+  auto NewInit = ConstantStruct::getAnon(
+      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
+       B.GV->getInitializer(),
+       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
+  auto NewGV =
+      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
+                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
+  NewGV->setSection(B.GV->getSection());
+  NewGV->setComdat(B.GV->getComdat());
+
+  // Build an alias named after the original global, pointing at the second
+  // element (the original initializer).
+  auto Alias = GlobalAlias::create(
+      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
+      ConstantExpr::getGetElementPtr(
+          NewInit->getType(), NewGV,
+          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
+                               ConstantInt::get(Int32Ty, 1)}),
+      &M);
+  Alias->setVisibility(B.GV->getVisibility());
+  Alias->takeName(B.GV);
+
+  B.GV->replaceAllUsesWith(Alias);
+  B.GV->eraseFromParent();
+}
+
+bool DevirtModule::run() {
+  Function *BitSetTestFunc =
+      M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
+  if (!BitSetTestFunc || BitSetTestFunc->use_empty())
+    return false;
+
+  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
+  if (!AssumeFunc || AssumeFunc->use_empty())
+    return false;
+
+  // Find all virtual calls via a virtual table pointer %p under an assumption
+  // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
+  // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
+  // (effectively the identity of the virtual function) and store to CallSlots.
+  DenseSet<Value *> SeenPtrs;
+  for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
+       I != E;) {
+    auto CI = dyn_cast<CallInst>(I->getUser());
+    ++I;
+    if (!CI)
+      continue;
+
+    // Find llvm.assume intrinsics for this llvm.bitset.test call.
+    SmallVector<CallInst *, 1> Assumes;
+    for (const Use &CIU : CI->uses()) {
+      auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
+      if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
+        Assumes.push_back(AssumeCI);
+    }
+
+    // If we found any, search for virtual calls based on %p and add them to
+    // CallSlots.
+    if (!Assumes.empty()) {
+      Metadata *BitSet =
+          cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
+      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
+      if (SeenPtrs.insert(Ptr).second)
+        findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
+    }
+
+    // We no longer need the assumes or the bitset test.
+    for (auto Assume : Assumes)
+      Assume->eraseFromParent();
+    // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
+    // may use the vtable argument later.
+    if (CI->use_empty())
+      CI->eraseFromParent();
+  }
+
+  // Rebuild llvm.bitsets metadata into a map for easy lookup.
+  std::vector<VTableBits> Bits;
+  DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
+  buildBitSets(Bits, BitSets);
+  if (BitSets.empty())
+    return true;
+
+  // For each (bitset, offset) pair:
+  bool DidVirtualConstProp = false;
+  for (auto &S : CallSlots) {
+    // Search each of the vtables in the bitset for the virtual function
+    // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
+    std::vector<VirtualCallTarget> TargetsForSlot;
+    if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
+                                   S.first.ByteOffset))
+      continue;
+
+    if (trySingleImplDevirt(TargetsForSlot, S.second))
+      continue;
+
+    DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
+  }
+
+  // Rebuild each global we touched as part of virtual constant propagation to
+  // include the before and after bytes.
+  if (DidVirtualConstProp)
+    for (VTableBits &B : Bits)
+      rebuildGlobal(B);
+
+  return true;
+}