Move support/tools/* back into utils
llvm-svn: 8875
diff --git a/llvm/utils/TableGen/InstrSelectorEmitter.cpp b/llvm/utils/TableGen/InstrSelectorEmitter.cpp
new file mode 100644
index 0000000..a3c535c
--- /dev/null
+++ b/llvm/utils/TableGen/InstrSelectorEmitter.cpp
@@ -0,0 +1,1287 @@
+//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
+//
+// This tablegen backend is responsible for emitting a description of the target
+// instruction set for the code generator.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstrSelectorEmitter.h"
+#include "CodeGenWrappers.h"
+#include "Record.h"
+#include "Support/Debug.h"
+#include "Support/StringExtras.h"
+#include <set>
+
+NodeType::ArgResultTypes NodeType::Translate(Record *R) {
+ const std::string &Name = R->getName();
+ if (Name == "DNVT_any") return Any;
+ if (Name == "DNVT_void") return Void;
+ if (Name == "DNVT_val" ) return Val;
+ if (Name == "DNVT_arg0") return Arg0;
+ if (Name == "DNVT_arg1") return Arg1;
+ if (Name == "DNVT_ptr" ) return Ptr;
+ if (Name == "DNVT_i8" ) return I8;
+ throw "Unknown DagNodeValType '" + Name + "'!";
+}
+
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+/// getValueRecord - Returns the value of this tree node as a record. For now
+/// we only allow DefInit's as our leaf values, so this is used.
+Record *TreePatternNode::getValueRecord() const {
+ DefInit *DI = dynamic_cast<DefInit*>(getValue());
+ assert(DI && "Instruction Selector does not yet support non-def leaves!");
+ return DI->getDef();
+}
+
+
+// updateNodeType - Set the node type of N to VT if VT contains information. If
+// N already contains a conflicting type, then throw an exception
+//
+bool TreePatternNode::updateNodeType(MVT::ValueType VT,
+ const std::string &RecName) {
+ if (VT == MVT::Other || getType() == VT) return false;
+ if (getType() == MVT::Other) {
+ setType(VT);
+ return true;
+ }
+
+ throw "Type inferfence contradiction found for pattern " + RecName;
+}
+
+/// InstantiateNonterminals - If this pattern refers to any nonterminals which
+/// are not themselves completely resolved, clone the nonterminal and resolve it
+/// with the using context we provide.
+///
+void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) {
+ if (!isLeaf()) {
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ getChild(i)->InstantiateNonterminals(ISE);
+ return;
+ }
+
+ // If this is a leaf, it might be a reference to a nonterminal! Check now.
+ Record *R = getValueRecord();
+ if (R->isSubClassOf("Nonterminal")) {
+ Pattern *NT = ISE.getPattern(R);
+ if (!NT->isResolved()) {
+ // We found an unresolved nonterminal reference. Ask the ISE to clone
+ // it for us, then update our reference to the fresh, new, resolved,
+ // nonterminal.
+
+ Value = new DefInit(ISE.InstantiateNonterminal(NT, getType()));
+ }
+ }
+}
+
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+ TreePatternNode *New;
+ if (isLeaf()) {
+ New = new TreePatternNode(Value);
+ } else {
+ std::vector<std::pair<TreePatternNode*, std::string> > CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(std::make_pair(getChild(i)->clone(),getChildName(i)));
+ New = new TreePatternNode(Operator, CChildren);
+ }
+ New->setType(Type);
+ return New;
+}
+
+std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) {
+ if (N.isLeaf())
+ return OS << N.getType() << ":" << *N.getValue();
+ OS << "(" << N.getType() << ":";
+ OS << N.getOperator()->getName();
+
+ if (N.getNumChildren() != 0) {
+ OS << " " << *N.getChild(0);
+ for (unsigned i = 1, e = N.getNumChildren(); i != e; ++i)
+ OS << ", " << *N.getChild(i);
+ }
+ return OS << ")";
+}
+
+void TreePatternNode::dump() const { std::cerr << *this; }
+
+//===----------------------------------------------------------------------===//
+// Pattern implementation
+//
+
+// Parse the specified DagInit into a TreePattern which we can use.
+//
+Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec,
+ InstrSelectorEmitter &ise)
+ : PTy(pty), ResultNode(0), TheRecord(TheRec), ISE(ise) {
+
+ // First, parse the pattern...
+ Tree = ParseTreePattern(RawPat);
+
+ // Run the type-inference engine...
+ InferAllTypes();
+
+ if (PTy == Instruction || PTy == Expander) {
+ // Check to make sure there is not any unset types in the tree pattern...
+ if (!isResolved()) {
+ std::cerr << "In pattern: " << *Tree << "\n";
+ error("Could not infer all types!");
+ }
+
+ // Check to see if we have a top-level (set) of a register.
+ if (Tree->getOperator()->getName() == "set") {
+ assert(Tree->getNumChildren() == 2 && "Set with != 2 arguments?");
+ if (!Tree->getChild(0)->isLeaf())
+ error("Arg #0 of set should be a register or register class!");
+ ResultNode = Tree->getChild(0);
+ ResultName = Tree->getChildName(0);
+ Tree = Tree->getChild(1);
+ }
+ }
+
+ calculateArgs(Tree, "");
+}
+
+void Pattern::error(const std::string &Msg) const {
+ std::string M = "In ";
+ switch (PTy) {
+ case Nonterminal: M += "nonterminal "; break;
+ case Instruction: M += "instruction "; break;
+ case Expander : M += "expander "; break;
+ }
+ throw M + TheRecord->getName() + ": " + Msg;
+}
+
+/// calculateArgs - Compute the list of all of the arguments to this pattern,
+/// which are the non-void leaf nodes in this pattern.
+///
+void Pattern::calculateArgs(TreePatternNode *N, const std::string &Name) {
+ if (N->isLeaf() || N->getNumChildren() == 0) {
+ if (N->getType() != MVT::isVoid)
+ Args.push_back(std::make_pair(N, Name));
+ } else {
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ calculateArgs(N->getChild(i), N->getChildName(i));
+ }
+}
+
+/// getIntrinsicType - Check to see if the specified record has an intrinsic
+/// type which should be applied to it. This infer the type of register
+/// references from the register file information, for example.
+///
+MVT::ValueType Pattern::getIntrinsicType(Record *R) const {
+ // Check to see if this is a register or a register class...
+ if (R->isSubClassOf("RegisterClass"))
+ return getValueType(R->getValueAsDef("RegType"));
+ else if (R->isSubClassOf("Nonterminal"))
+ return ISE.ReadNonterminal(R)->getTree()->getType();
+ else if (R->isSubClassOf("Register")) {
+ std::cerr << "WARNING: Explicit registers not handled yet!\n";
+ return MVT::Other;
+ }
+
+ error("Unknown value used: " + R->getName());
+ return MVT::Other;
+}
+
+TreePatternNode *Pattern::ParseTreePattern(DagInit *Dag) {
+ Record *Operator = Dag->getNodeType();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only valid for a leaf node!");
+
+ Init *Arg = Dag->getArg(0);
+ TreePatternNode *New;
+ if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+ New = new TreePatternNode(DI);
+ // If it's a regclass or something else known, set the type.
+ New->setType(getIntrinsicType(DI->getDef()));
+ } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ New = ParseTreePattern(DI);
+ } else {
+ Arg->dump();
+ error("Unknown leaf value for tree pattern!");
+ return 0;
+ }
+
+ // Apply the type cast...
+ New->updateNodeType(getValueType(Operator), TheRecord->getName());
+ return New;
+ }
+
+ if (!ISE.getNodeTypes().count(Operator))
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ std::vector<std::pair<TreePatternNode*, std::string> > Children;
+
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
+ Init *Arg = Dag->getArg(i);
+ if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ Children.push_back(std::make_pair(ParseTreePattern(DI),
+ Dag->getArgName(i)));
+ } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DefI->getDef();
+ // Direct reference to a leaf DagNode? Turn it into a DagNode if its own.
+ if (R->isSubClassOf("DagNode")) {
+ Dag->setArg(i, new DagInit(R,
+ std::vector<std::pair<Init*, std::string> >()));
+ --i; // Revisit this node...
+ } else {
+ Children.push_back(std::make_pair(new TreePatternNode(DefI),
+ Dag->getArgName(i)));
+ // If it's a regclass or something else known, set the type.
+ Children.back().first->setType(getIntrinsicType(R));
+ }
+ } else {
+ Arg->dump();
+ error("Unknown leaf value for tree pattern!");
+ }
+ }
+
+ return new TreePatternNode(Operator, Children);
+}
+
+void Pattern::InferAllTypes() {
+ bool MadeChange, AnyUnset;
+ do {
+ MadeChange = false;
+ AnyUnset = InferTypes(Tree, MadeChange);
+ } while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange));
+ Resolved = !AnyUnset;
+}
+
+
+// InferTypes - Perform type inference on the tree, returning true if there
+// are any remaining untyped nodes and setting MadeChange if any changes were
+// made.
+bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) {
+ if (N->isLeaf()) return N->getType() == MVT::Other;
+
+ bool AnyUnset = false;
+ Record *Operator = N->getOperator();
+ const NodeType &NT = ISE.getNodeType(Operator);
+
+ // Check to see if we can infer anything about the argument types from the
+ // return types...
+ if (N->getNumChildren() != NT.ArgTypes.size())
+ error("Incorrect number of children for " + Operator->getName() + " node!");
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ AnyUnset |= InferTypes(Child, MadeChange);
+
+ switch (NT.ArgTypes[i]) {
+ case NodeType::Any: break;
+ case NodeType::I8:
+ MadeChange |= Child->updateNodeType(MVT::i1, TheRecord->getName());
+ break;
+ case NodeType::Arg0:
+ MadeChange |= Child->updateNodeType(N->getChild(0)->getType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Arg1:
+ MadeChange |= Child->updateNodeType(N->getChild(1)->getType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Val:
+ if (Child->getType() == MVT::isVoid)
+ error("Inferred a void node in an illegal place!");
+ break;
+ case NodeType::Ptr:
+ MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Void:
+ MadeChange |= Child->updateNodeType(MVT::isVoid, TheRecord->getName());
+ break;
+ default: assert(0 && "Invalid argument ArgType!");
+ }
+ }
+
+ // See if we can infer anything about the return type now...
+ switch (NT.ResultType) {
+ case NodeType::Any: break;
+ case NodeType::Void:
+ MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName());
+ break;
+ case NodeType::I8:
+ MadeChange |= N->updateNodeType(MVT::i1, TheRecord->getName());
+ break;
+ case NodeType::Arg0:
+ MadeChange |= N->updateNodeType(N->getChild(0)->getType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Arg1:
+ MadeChange |= N->updateNodeType(N->getChild(1)->getType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Ptr:
+ MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(),
+ TheRecord->getName());
+ break;
+ case NodeType::Val:
+ if (N->getType() == MVT::isVoid)
+ error("Inferred a void node in an illegal place!");
+ break;
+ default:
+ assert(0 && "Unhandled type constraint!");
+ break;
+ }
+
+ return AnyUnset | N->getType() == MVT::Other;
+}
+
+/// clone - This method is used to make an exact copy of the current pattern,
+/// then change the "TheRecord" instance variable to the specified record.
+///
+Pattern *Pattern::clone(Record *R) const {
+ assert(PTy == Nonterminal && "Can only clone nonterminals");
+ return new Pattern(Tree->clone(), R, Resolved, ISE);
+}
+
+
+
+std::ostream &operator<<(std::ostream &OS, const Pattern &P) {
+ switch (P.getPatternType()) {
+ case Pattern::Nonterminal: OS << "Nonterminal pattern "; break;
+ case Pattern::Instruction: OS << "Instruction pattern "; break;
+ case Pattern::Expander: OS << "Expander pattern "; break;
+ }
+
+ OS << P.getRecord()->getName() << ":\t";
+
+ if (Record *Result = P.getResult())
+ OS << Result->getName() << " = ";
+ OS << *P.getTree();
+
+ if (!P.isResolved())
+ OS << " [not completely resolved]";
+ return OS;
+}
+
+void Pattern::dump() const { std::cerr << *this; }
+
+
+
+/// getSlotName - If this is a leaf node, return the slot name that the operand
+/// will update.
+std::string Pattern::getSlotName() const {
+ if (getPatternType() == Pattern::Nonterminal) {
+ // Just use the nonterminal name, which will already include the type if
+ // it has been cloned.
+ return getRecord()->getName();
+ } else {
+ std::string SlotName;
+ if (getResult())
+ SlotName = getResult()->getName()+"_";
+ else
+ SlotName = "Void_";
+ return SlotName + getName(getTree()->getType());
+ }
+}
+
+/// getSlotName - If this is a leaf node, return the slot name that the
+/// operand will update.
+std::string Pattern::getSlotName(Record *R) {
+ if (R->isSubClassOf("Nonterminal")) {
+ // Just use the nonterminal name, which will already include the type if
+ // it has been cloned.
+ return R->getName();
+ } else if (R->isSubClassOf("RegisterClass")) {
+ MVT::ValueType Ty = getValueType(R->getValueAsDef("RegType"));
+ return R->getName() + "_" + getName(Ty);
+ } else {
+ assert(0 && "Don't know how to get a slot name for this!");
+ }
+ return "";
+}
+
+//===----------------------------------------------------------------------===//
+// PatternOrganizer implementation
+//
+
+/// addPattern - Add the specified pattern to the appropriate location in the
+/// collection.
+void PatternOrganizer::addPattern(Pattern *P) {
+ NodesForSlot &Nodes = AllPatterns[P->getSlotName()];
+ if (!P->getTree()->isLeaf())
+ Nodes[P->getTree()->getOperator()].push_back(P);
+ else {
+ // Right now we only support DefInit's with node types...
+ Nodes[P->getTree()->getValueRecord()].push_back(P);
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// InstrSelectorEmitter implementation
+//
+
+/// ReadNodeTypes - Read in all of the node types in the current RecordKeeper,
+/// turning them into the more accessible NodeTypes data structure.
+///
+void InstrSelectorEmitter::ReadNodeTypes() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode");
+ DEBUG(std::cerr << "Getting node types: ");
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ Record *Node = Nodes[i];
+
+ // Translate the return type...
+ NodeType::ArgResultTypes RetTy =
+ NodeType::Translate(Node->getValueAsDef("RetType"));
+
+ // Translate the arguments...
+ ListInit *Args = Node->getValueAsListInit("ArgTypes");
+ std::vector<NodeType::ArgResultTypes> ArgTypes;
+
+ for (unsigned a = 0, e = Args->getSize(); a != e; ++a) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a)))
+ ArgTypes.push_back(NodeType::Translate(DI->getDef()));
+ else
+ throw "In node " + Node->getName() + ", argument is not a Def!";
+
+ if (a == 0 && ArgTypes.back() == NodeType::Arg0)
+ throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!";
+ if (a == 1 && ArgTypes.back() == NodeType::Arg1)
+ throw "In node " + Node->getName() + ", arg 1 cannot have type 'arg1'!";
+ }
+ if ((RetTy == NodeType::Arg0 && Args->getSize() == 0) ||
+ (RetTy == NodeType::Arg1 && Args->getSize() < 2))
+ throw "In node " + Node->getName() +
+ ", invalid return type for node with this many operands!";
+
+ // Add the node type mapping now...
+ NodeTypes[Node] = NodeType(RetTy, ArgTypes);
+ DEBUG(std::cerr << Node->getName() << ", ");
+ }
+ DEBUG(std::cerr << "DONE!\n");
+}
+
+Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) {
+ Pattern *&P = Patterns[R];
+ if (P) return P; // Don't reread it!
+
+ DagInit *DI = R->getValueAsDag("Pattern");
+ P = new Pattern(Pattern::Nonterminal, DI, R, *this);
+ DEBUG(std::cerr << "Parsed " << *P << "\n");
+ return P;
+}
+
+
+// ReadNonTerminals - Read in all nonterminals and incorporate them into our
+// pattern database.
+void InstrSelectorEmitter::ReadNonterminals() {
+ std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal");
+ for (unsigned i = 0, e = NTs.size(); i != e; ++i)
+ ReadNonterminal(NTs[i]);
+}
+
+
+/// ReadInstructionPatterns - Read in all subclasses of Instruction, and process
+/// those with a useful Pattern field.
+///
+void InstrSelectorEmitter::ReadInstructionPatterns() {
+ std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
+ Record *Inst = Insts[i];
+ if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) {
+ Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this);
+ DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n");
+ }
+ }
+}
+
+/// ReadExpanderPatterns - Read in all expander patterns...
+///
+void InstrSelectorEmitter::ReadExpanderPatterns() {
+ std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander");
+ for (unsigned i = 0, e = Expanders.size(); i != e; ++i) {
+ Record *Expander = Expanders[i];
+ DagInit *DI = Expander->getValueAsDag("Pattern");
+ Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this);
+ DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n");
+ }
+}
+
+
+// InstantiateNonterminals - Instantiate any unresolved nonterminals with
+// information from the context that they are used in.
+//
+void InstrSelectorEmitter::InstantiateNonterminals() {
+ DEBUG(std::cerr << "Instantiating nonterminals:\n");
+ for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
+ E = Patterns.end(); I != E; ++I)
+ if (I->second->isResolved())
+ I->second->InstantiateNonterminals();
+}
+
+/// InstantiateNonterminal - This method takes the nonterminal specified by
+/// NT, which should not be completely resolved, clones it, applies ResultTy
+/// to its root, then runs the type inference stuff on it. This should
+/// produce a newly resolved nonterminal, which we make a record for and
+/// return. To be extra fancy and efficient, this only makes one clone for
+/// each type it is instantiated with.
+Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT,
+ MVT::ValueType ResultTy) {
+ assert(!NT->isResolved() && "Nonterminal is already resolved!");
+
+ // Check to see if we have already instantiated this pair...
+ Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)];
+ if (Slot) return Slot;
+
+ Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy));
+
+ // Copy over the superclasses...
+ const std::vector<Record*> &SCs = NT->getRecord()->getSuperClasses();
+ for (unsigned i = 0, e = SCs.size(); i != e; ++i)
+ New->addSuperClass(SCs[i]);
+
+ DEBUG(std::cerr << " Nonterminal '" << NT->getRecord()->getName()
+ << "' for type '" << getName(ResultTy) << "', producing '"
+ << New->getName() << "'\n");
+
+ // Copy the pattern...
+ Pattern *NewPat = NT->clone(New);
+
+ // Apply the type to the root...
+ NewPat->getTree()->updateNodeType(ResultTy, New->getName());
+
+ // Infer types...
+ NewPat->InferAllTypes();
+
+ // Make sure everything is good to go now...
+ if (!NewPat->isResolved())
+ NewPat->error("Instantiating nonterminal did not resolve all types!");
+
+ // Add the pattern to the patterns map, add the record to the RecordKeeper,
+ // return the new record.
+ Patterns[New] = NewPat;
+ Records.addDef(New);
+ return Slot = New;
+}
+
+// CalculateComputableValues - Fill in the ComputableValues map through
+// analysis of the patterns we are playing with.
+void InstrSelectorEmitter::CalculateComputableValues() {
+ // Loop over all of the patterns, adding them to the ComputableValues map
+ for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
+ E = Patterns.end(); I != E; ++I)
+ if (I->second->isResolved()) {
+ // We don't want to add patterns like R32 = R32. This is a hack working
+ // around a special case of a general problem, but for now we explicitly
+ // forbid these patterns. They can never match anyway.
+ Pattern *P = I->second;
+ if (!P->getResult() || !P->getTree()->isLeaf() ||
+ P->getResult() != P->getTree()->getValueRecord())
+ ComputableValues.addPattern(P);
+ }
+}
+
+#if 0
+// MoveIdenticalPatterns - Given a tree pattern 'P', move all of the tree
+// patterns which have the same top-level structure as P from the 'From' list to
+// the 'To' list.
+static void MoveIdenticalPatterns(TreePatternNode *P,
+ std::vector<std::pair<Pattern*, TreePatternNode*> > &From,
+ std::vector<std::pair<Pattern*, TreePatternNode*> > &To) {
+ assert(!P->isLeaf() && "All leaves are identical!");
+
+ const std::vector<TreePatternNode*> &PChildren = P->getChildren();
+ for (unsigned i = 0; i != From.size(); ++i) {
+ TreePatternNode *N = From[i].second;
+ assert(P->getOperator() == N->getOperator() &&"Differing operators?");
+ assert(PChildren.size() == N->getChildren().size() &&
+ "Nodes with different arity??");
+ bool isDifferent = false;
+ for (unsigned c = 0, e = PChildren.size(); c != e; ++c) {
+ TreePatternNode *PC = PChildren[c];
+ TreePatternNode *NC = N->getChild(c);
+ if (PC->isLeaf() != NC->isLeaf()) {
+ isDifferent = true;
+ break;
+ }
+
+ if (!PC->isLeaf()) {
+ if (PC->getOperator() != NC->getOperator()) {
+ isDifferent = true;
+ break;
+ }
+ } else { // It's a leaf!
+ if (PC->getValueRecord() != NC->getValueRecord()) {
+ isDifferent = true;
+ break;
+ }
+ }
+ }
+ // If it's the same as the reference one, move it over now...
+ if (!isDifferent) {
+ To.push_back(std::make_pair(From[i].first, N));
+ From.erase(From.begin()+i);
+ --i; // Don't skip an entry...
+ }
+ }
+}
+#endif
+
+static std::string getNodeName(Record *R) {
+ RecordVal *RV = R->getValue("EnumName");
+ if (RV)
+ if (Init *I = RV->getValue())
+ if (StringInit *SI = dynamic_cast<StringInit*>(I))
+ return SI->getValue();
+ return R->getName();
+}
+
+
+static void EmitPatternPredicates(TreePatternNode *Tree,
+ const std::string &VarName, std::ostream &OS){
+ OS << " && " << VarName << "->getNodeType() == ISD::"
+ << getNodeName(Tree->getOperator());
+
+ for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c)
+ if (!Tree->getChild(c)->isLeaf())
+ EmitPatternPredicates(Tree->getChild(c),
+ VarName + "->getUse(" + utostr(c)+")", OS);
+}
+
+static void EmitPatternCosts(TreePatternNode *Tree, const std::string &VarName,
+ std::ostream &OS) {
+ for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c)
+ if (Tree->getChild(c)->isLeaf()) {
+ OS << " + Match_"
+ << Pattern::getSlotName(Tree->getChild(c)->getValueRecord()) << "("
+ << VarName << "->getUse(" << c << "))";
+ } else {
+ EmitPatternCosts(Tree->getChild(c),
+ VarName + "->getUse(" + utostr(c) + ")", OS);
+ }
+}
+
+
+// EmitMatchCosters - Given a list of patterns, which all have the same root
+// pattern operator, emit an efficient decision tree to decide which one to
+// pick. This is structured this way to avoid reevaluations of non-obvious
+// subexpressions.
+void InstrSelectorEmitter::EmitMatchCosters(std::ostream &OS,
+ const std::vector<std::pair<Pattern*, TreePatternNode*> > &Patterns,
+ const std::string &VarPrefix,
+ unsigned IndentAmt) {
+ assert(!Patterns.empty() && "No patterns to emit matchers for!");
+ std::string Indent(IndentAmt, ' ');
+
+ // Load all of the operands of the root node into scalars for fast access
+ const NodeType &ONT = getNodeType(Patterns[0].second->getOperator());
+ for (unsigned i = 0, e = ONT.ArgTypes.size(); i != e; ++i)
+ OS << Indent << "SelectionDAGNode *" << VarPrefix << "_Op" << i
+ << " = N->getUse(" << i << ");\n";
+
+ // Compute the costs of computing the various nonterminals/registers, which
+ // are directly used at this level.
+ OS << "\n" << Indent << "// Operand matching costs...\n";
+ std::set<std::string> ComputedValues; // Avoid duplicate computations...
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ TreePatternNode *NParent = Patterns[i].second;
+ for (unsigned c = 0, e = NParent->getNumChildren(); c != e; ++c) {
+ TreePatternNode *N = NParent->getChild(c);
+ if (N->isLeaf()) {
+ Record *VR = N->getValueRecord();
+ const std::string &LeafName = VR->getName();
+ std::string OpName = VarPrefix + "_Op" + utostr(c);
+ std::string ValName = OpName + "_" + LeafName + "_Cost";
+ if (!ComputedValues.count(ValName)) {
+ OS << Indent << "unsigned " << ValName << " = Match_"
+ << Pattern::getSlotName(VR) << "(" << OpName << ");\n";
+ ComputedValues.insert(ValName);
+ }
+ }
+ }
+ }
+ OS << "\n";
+
+
+ std::string LocCostName = VarPrefix + "_Cost";
+ OS << Indent << "unsigned " << LocCostName << "Min = ~0U >> 1;\n"
+ << Indent << "unsigned " << VarPrefix << "_PatternMin = NoMatchPattern;\n";
+
+#if 0
+ // Separate out all of the patterns into groups based on what their top-level
+ // signature looks like...
+ std::vector<std::pair<Pattern*, TreePatternNode*> > PatternsLeft(Patterns);
+ while (!PatternsLeft.empty()) {
+ // Process all of the patterns that have the same signature as the last
+ // element...
+ std::vector<std::pair<Pattern*, TreePatternNode*> > Group;
+ MoveIdenticalPatterns(PatternsLeft.back().second, PatternsLeft, Group);
+ assert(!Group.empty() && "Didn't at least pick the source pattern?");
+
+#if 0
+ OS << "PROCESSING GROUP:\n";
+ for (unsigned i = 0, e = Group.size(); i != e; ++i)
+ OS << " " << *Group[i].first << "\n";
+ OS << "\n\n";
+#endif
+
+ OS << Indent << "{ // ";
+
+ if (Group.size() != 1) {
+ OS << Group.size() << " size group...\n";
+ OS << Indent << " unsigned " << VarPrefix << "_Pattern = NoMatch;\n";
+ } else {
+ OS << *Group[0].first << "\n";
+ OS << Indent << " unsigned " << VarPrefix << "_Pattern = "
+ << Group[0].first->getRecord()->getName() << "_Pattern;\n";
+ }
+
+ OS << Indent << " unsigned " << LocCostName << " = ";
+ if (Group.size() == 1)
+ OS << "1;\n"; // Add inst cost if at individual rec
+ else
+ OS << "0;\n";
+
+ // Loop over all of the operands, adding in their costs...
+ TreePatternNode *N = Group[0].second;
+ const std::vector<TreePatternNode*> &Children = N->getChildren();
+
+ // If necessary, emit conditionals to check for the appropriate tree
+ // structure here...
+ for (unsigned i = 0, e = Children.size(); i != e; ++i) {
+ TreePatternNode *C = Children[i];
+ if (C->isLeaf()) {
+ // We already calculated the cost for this leaf, add it in now...
+ OS << Indent << " " << LocCostName << " += "
+ << VarPrefix << "_Op" << utostr(i) << "_"
+ << C->getValueRecord()->getName() << "_Cost;\n";
+ } else {
+ // If it's not a leaf, we have to check to make sure that the current
+ // node has the appropriate structure, then recurse into it...
+ OS << Indent << " if (" << VarPrefix << "_Op" << i
+ << "->getNodeType() == ISD::" << getNodeName(C->getOperator())
+ << ") {\n";
+ std::vector<std::pair<Pattern*, TreePatternNode*> > SubPatterns;
+ for (unsigned n = 0, e = Group.size(); n != e; ++n)
+ SubPatterns.push_back(std::make_pair(Group[n].first,
+ Group[n].second->getChild(i)));
+ EmitMatchCosters(OS, SubPatterns, VarPrefix+"_Op"+utostr(i),
+ IndentAmt + 4);
+ OS << Indent << " }\n";
+ }
+ }
+
+ // If the cost for this match is less than the minimum computed cost so far,
+ // update the minimum cost and selected pattern.
+ OS << Indent << " if (" << LocCostName << " < " << LocCostName << "Min) { "
+ << LocCostName << "Min = " << LocCostName << "; " << VarPrefix
+ << "_PatternMin = " << VarPrefix << "_Pattern; }\n";
+
+ OS << Indent << "}\n";
+ }
+#endif
+
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ Pattern *P = Patterns[i].first;
+ TreePatternNode *PTree = P->getTree();
+ unsigned PatternCost = 1;
+
+ // Check to see if there are any non-leaf elements in the pattern. If so,
+ // we need to emit a predicate for this match.
+ bool AnyNonLeaf = false;
+ for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
+ if (!PTree->getChild(c)->isLeaf()) {
+ AnyNonLeaf = true;
+ break;
+ }
+
+ if (!AnyNonLeaf) { // No predicate necessary, just output a scope...
+ OS << " {// " << *P << "\n";
+ } else {
+ // We need to emit a predicate to make sure the tree pattern matches, do
+ // so now...
+ OS << " if (1";
+ for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
+ if (!PTree->getChild(c)->isLeaf())
+ EmitPatternPredicates(PTree->getChild(c),
+ VarPrefix + "_Op" + utostr(c), OS);
+
+ OS << ") {\n // " << *P << "\n";
+ }
+
+ OS << " unsigned PatCost = " << PatternCost;
+
+ for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
+ if (PTree->getChild(c)->isLeaf()) {
+ OS << " + " << VarPrefix << "_Op" << c << "_"
+ << PTree->getChild(c)->getValueRecord()->getName() << "_Cost";
+ } else {
+ EmitPatternCosts(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS);
+ }
+ OS << ";\n";
+ OS << " if (PatCost < MinCost) { MinCost = PatCost; Pattern = "
+ << P->getRecord()->getName() << "_Pattern; }\n"
+ << " }\n";
+ }
+}
+
+static void ReduceAllOperands(TreePatternNode *N, const std::string &Name,
+ std::vector<std::pair<TreePatternNode*, std::string> > &Operands,
+ std::ostream &OS) {
+ if (N->isLeaf()) {
+ // If this is a leaf, register or nonterminal reference...
+ std::string SlotName = Pattern::getSlotName(N->getValueRecord());
+ OS << " ReducedValue_" << SlotName << " *" << Name << "Val = Reduce_"
+ << SlotName << "(" << Name << ", MBB);\n";
+ Operands.push_back(std::make_pair(N, Name+"Val"));
+ } else if (N->getNumChildren() == 0) {
+ // This is a reference to a leaf tree node, like an immediate or frame
+ // index.
+ if (N->getType() != MVT::isVoid) {
+ std::string SlotName =
+ getNodeName(N->getOperator()) + "_" + getName(N->getType());
+ OS << " ReducedValue_" << SlotName << " *" << Name << "Val = "
+ << Name << "->getValue<ReducedValue_" << SlotName << ">(ISD::"
+ << SlotName << "_Slot);\n";
+ Operands.push_back(std::make_pair(N, Name+"Val"));
+ }
+ } else {
+ // Otherwise this is an interior node...
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ std::string ChildName = Name + "_Op" + utostr(i);
+ OS << " SelectionDAGNode *" << ChildName << " = " << Name
+ << "->getUse(" << i << ");\n";
+ ReduceAllOperands(N->getChild(i), ChildName, Operands, OS);
+ }
+ }
+}
+
+/// PrintExpanderOperand - Print out Arg as part of the instruction emission
+/// process for the expander pattern P. This argument may be referencing some
+/// values defined in P, or may just be physical register references or
+/// something like that. If PrintArg is true, we are printing out arguments to
+/// the BuildMI call. If it is false, we are printing the result register
+/// name.
+void InstrSelectorEmitter::PrintExpanderOperand(Init *Arg,
+ const std::string &NameVar,
+ TreePatternNode *ArgDeclNode,
+ Pattern *P, bool PrintArg,
+ std::ostream &OS) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+ Record *Arg = DI->getDef();
+ if (!ArgDeclNode->isLeaf() && ArgDeclNode->getNumChildren() != 0)
+ P->error("Expected leaf node as argument!");
+ Record *ArgDecl = ArgDeclNode->isLeaf() ? ArgDeclNode->getValueRecord() :
+ ArgDeclNode->getOperator();
+ if (Arg->isSubClassOf("Register")) {
+ // This is a physical register reference... make sure that the instruction
+ // requested a register!
+ if (!ArgDecl->isSubClassOf("RegisterClass"))
+ P->error("Argument mismatch for instruction pattern!");
+
+ // FIXME: This should check to see if the register is in the specified
+ // register class!
+ if (PrintArg) OS << ".addReg(";
+ OS << getQualifiedName(Arg);
+ if (PrintArg) OS << ")";
+ return;
+ } else if (Arg->isSubClassOf("RegisterClass")) {
+ // If this is a symbolic register class reference, we must be using a
+ // named value.
+ if (NameVar.empty()) P->error("Did not specify WHICH register to pass!");
+ if (Arg != ArgDecl) P->error("Instruction pattern mismatch!");
+
+ if (PrintArg) OS << ".addReg(";
+ OS << NameVar;
+ if (PrintArg) OS << ")";
+ return;
+ } else if (Arg->getName() == "frameidx") {
+ if (!PrintArg) P->error("Cannot define a new frameidx value!");
+ OS << ".addFrameIndex(" << NameVar << ")";
+ return;
+ } else if (Arg->getName() == "basicblock") {
+ if (!PrintArg) P->error("Cannot define a new basicblock value!");
+ OS << ".addMBB(" << NameVar << ")";
+ return;
+ }
+ P->error("Unknown operand type '" + Arg->getName() + "' to expander!");
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ if (!NameVar.empty())
+ P->error("Illegal to specify a name for a constant initializer arg!");
+
+ // Hack this check to allow R32 values with 0 as the initializer for memory
+ // references... FIXME!
+ if (ArgDeclNode->isLeaf() && II->getValue() == 0 &&
+ ArgDeclNode->getValueRecord()->getName() == "R32") {
+ OS << ".addReg(0)";
+ } else {
+ if (ArgDeclNode->isLeaf() || ArgDeclNode->getOperator()->getName()!="imm")
+ P->error("Illegal immediate int value '" + itostr(II->getValue()) +
+ "' operand!");
+ OS << ".addZImm(" << II->getValue() << ")";
+ }
+ return;
+ }
+ P->error("Unknown operand type to expander!");
+}
+
+static std::string getArgName(Pattern *P, const std::string &ArgName,
+ const std::vector<std::pair<TreePatternNode*, std::string> > &Operands) {
+ assert(P->getNumArgs() == Operands.size() &&"Argument computation mismatch!");
+ if (ArgName.empty()) return "";
+
+ for (unsigned i = 0, e = P->getNumArgs(); i != e; ++i)
+ if (P->getArgName(i) == ArgName)
+ return Operands[i].second + "->Val";
+
+ if (ArgName == P->getResultName())
+ return "NewReg";
+ P->error("Pattern does not define a value named $" + ArgName + "!");
+ return "";
+}
+
+
+void InstrSelectorEmitter::run(std::ostream &OS) {
+ // Type-check all of the node types to ensure we "understand" them.
+ ReadNodeTypes();
+
+ // Read in all of the nonterminals, instructions, and expanders...
+ ReadNonterminals();
+ ReadInstructionPatterns();
+ ReadExpanderPatterns();
+
+ // Instantiate any unresolved nonterminals with information from the context
+ // that they are used in.
+ InstantiateNonterminals();
+
+ // Clear InstantiatedNTs, we don't need it anymore...
+ InstantiatedNTs.clear();
+
+ DEBUG(std::cerr << "Patterns acquired:\n");
+ for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
+ E = Patterns.end(); I != E; ++I)
+ if (I->second->isResolved())
+ DEBUG(std::cerr << " " << *I->second << "\n");
+
+ CalculateComputableValues();
+
+ EmitSourceFileHeader("Instruction Selector for the " + Target.getName() +
+ " target", OS);
+ OS << "#include \"llvm/CodeGen/MachineInstrBuilder.h\"\n";
+
+ // Output the slot number enums...
+ OS << "\nenum { // Slot numbers...\n"
+ << " LastBuiltinSlot = ISD::NumBuiltinSlots-1, // Start numbering here\n";
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I)
+ OS << " " << I->first << "_Slot,\n";
+ OS << " NumSlots\n};\n\n// Reduction value typedefs...\n";
+
+ // Output the reduction value typedefs...
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I) {
+
+ OS << "typedef ReducedValue<unsigned, " << I->first
+ << "_Slot> ReducedValue_" << I->first << ";\n";
+ }
+
+ // Output the pattern enums...
+ OS << "\n\n"
+ << "enum { // Patterns...\n"
+ << " NotComputed = 0,\n"
+ << " NoMatchPattern, \n";
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I) {
+ OS << " // " << I->first << " patterns...\n";
+ for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
+ E = I->second.end(); J != E; ++J)
+ for (unsigned i = 0, e = J->second.size(); i != e; ++i)
+ OS << " " << J->second[i]->getRecord()->getName() << "_Pattern,\n";
+ }
+ OS << "};\n\n";
+
+ //===--------------------------------------------------------------------===//
+ // Emit the class definition...
+ //
+ OS << "namespace {\n"
+ << " class " << Target.getName() << "ISel {\n"
+ << " SelectionDAG &DAG;\n"
+ << " public:\n"
+ << " X86ISel(SelectionDAG &D) : DAG(D) {}\n"
+ << " void generateCode();\n"
+ << " private:\n"
+ << " unsigned makeAnotherReg(const TargetRegisterClass *RC) {\n"
+ << " return DAG.getMachineFunction().getSSARegMap()->createVirt"
+ "ualRegister(RC);\n"
+ << " }\n\n"
+ << " // DAG matching methods for classes... all of these methods"
+ " return the cost\n"
+ << " // of producing a value of the specified class and type, which"
+ " also gets\n"
+ << " // added to the DAG node.\n";
+
+ // Output all of the matching prototypes for slots...
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I)
+ OS << " unsigned Match_" << I->first << "(SelectionDAGNode *N);\n";
+ OS << "\n // DAG matching methods for DAG nodes...\n";
+
+ // Output all of the matching prototypes for slot/node pairs
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I)
+ for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
+ E = I->second.end(); J != E; ++J)
+ OS << " unsigned Match_" << I->first << "_" << getNodeName(J->first)
+ << "(SelectionDAGNode *N);\n";
+
+ // Output all of the dag reduction methods prototypes...
+ OS << "\n // DAG reduction methods...\n";
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I)
+ OS << " ReducedValue_" << I->first << " *Reduce_" << I->first
+ << "(SelectionDAGNode *N,\n" << std::string(27+2*I->first.size(), ' ')
+ << "MachineBasicBlock *MBB);\n";
+ OS << " };\n}\n\n";
+
+ // Emit the generateCode entry-point...
+ OS << "void X86ISel::generateCode() {\n"
+ << " SelectionDAGNode *Root = DAG.getRoot();\n"
+ << " assert(Root->getValueType() == MVT::isVoid && "
+ "\"Root of DAG produces value??\");\n\n"
+ << " std::cerr << \"\\n\";\n"
+ << " unsigned Cost = Match_Void_void(Root);\n"
+ << " if (Cost >= ~0U >> 1) {\n"
+ << " std::cerr << \"Match failed!\\n\";\n"
+ << " Root->dump();\n"
+ << " abort();\n"
+ << " }\n\n"
+ << " std::cerr << \"Total DAG Cost: \" << Cost << \"\\n\\n\";\n\n"
+ << " Reduce_Void_void(Root, 0);\n"
+ << "}\n\n"
+ << "//===" << std::string(70, '-') << "===//\n"
+ << "// Matching methods...\n"
+ << "//\n\n";
+
+ //===--------------------------------------------------------------------===//
+ // Emit all of the matcher methods...
+ //
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I) {
+ const std::string &SlotName = I->first;
+ OS << "unsigned " << Target.getName() << "ISel::Match_" << SlotName
+ << "(SelectionDAGNode *N) {\n"
+ << " assert(N->getValueType() == MVT::"
+ << getEnumName((*I->second.begin()).second[0]->getTree()->getType())
+ << ");\n" << " // If we already have a cost available for " << SlotName
+ << " use it!\n"
+ << " if (N->getPatternFor(" << SlotName << "_Slot))\n"
+ << " return N->getCostFor(" << SlotName << "_Slot);\n\n"
+ << " unsigned Cost;\n"
+ << " switch (N->getNodeType()) {\n"
+ << " default: Cost = ~0U >> 1; // Match failed\n"
+ << " N->setPatternCostFor(" << SlotName << "_Slot, NoMatchPattern, Cost, NumSlots);\n"
+ << " break;\n";
+
+ for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
+ E = I->second.end(); J != E; ++J)
+ if (!J->first->isSubClassOf("Nonterminal"))
+ OS << " case ISD::" << getNodeName(J->first) << ":\tCost = Match_"
+ << SlotName << "_" << getNodeName(J->first) << "(N); break;\n";
+ OS << " }\n"; // End of the switch statement
+
+ // Emit any patterns which have a nonterminal leaf as the RHS. These may
+ // match multiple root nodes, so they cannot be handled with the switch...
+ for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
+ E = I->second.end(); J != E; ++J)
+ if (J->first->isSubClassOf("Nonterminal")) {
+ OS << " unsigned " << J->first->getName() << "_Cost = Match_"
+ << getNodeName(J->first) << "(N);\n"
+ << " if (" << getNodeName(J->first) << "_Cost < Cost) Cost = "
+ << getNodeName(J->first) << "_Cost;\n";
+ }
+
+ OS << " return Cost;\n}\n\n";
+
+ for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
+ E = I->second.end(); J != E; ++J) {
+ Record *Operator = J->first;
+ bool isNonterm = Operator->isSubClassOf("Nonterminal");
+ if (!isNonterm) {
+ OS << "unsigned " << Target.getName() << "ISel::Match_";
+ if (!isNonterm) OS << SlotName << "_";
+ OS << getNodeName(Operator) << "(SelectionDAGNode *N) {\n"
+ << " unsigned Pattern = NoMatchPattern;\n"
+ << " unsigned MinCost = ~0U >> 1;\n";
+
+ std::vector<std::pair<Pattern*, TreePatternNode*> > Patterns;
+ for (unsigned i = 0, e = J->second.size(); i != e; ++i)
+ Patterns.push_back(std::make_pair(J->second[i],
+ J->second[i]->getTree()));
+ EmitMatchCosters(OS, Patterns, "N", 2);
+
+ OS << "\n N->setPatternCostFor(" << SlotName
+ << "_Slot, Pattern, MinCost, NumSlots);\n"
+ << " return MinCost;\n"
+ << "}\n";
+ }
+ }
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Emit all of the reducer methods...
+ //
+ OS << "\n\n//===" << std::string(70, '-') << "===//\n"
+ << "// Reducer methods...\n"
+ << "//\n";
+
+ for (PatternOrganizer::iterator I = ComputableValues.begin(),
+ E = ComputableValues.end(); I != E; ++I) {
+ const std::string &SlotName = I->first;
+ OS << "ReducedValue_" << SlotName << " *" << Target.getName()
+ << "ISel::Reduce_" << SlotName
+ << "(SelectionDAGNode *N, MachineBasicBlock *MBB) {\n"
+ << " ReducedValue_" << SlotName << " *Val = N->hasValue<ReducedValue_"
+ << SlotName << ">(" << SlotName << "_Slot);\n"
+ << " if (Val) return Val;\n"
+ << " if (N->getBB()) MBB = N->getBB();\n\n"
+ << " switch (N->getPatternFor(" << SlotName << "_Slot)) {\n";
+
+ // Loop over all of the patterns that can produce a value for this slot...
+ PatternOrganizer::NodesForSlot &NodesForSlot = I->second;
+ for (PatternOrganizer::NodesForSlot::iterator J = NodesForSlot.begin(),
+ E = NodesForSlot.end(); J != E; ++J)
+ for (unsigned i = 0, e = J->second.size(); i != e; ++i) {
+ Pattern *P = J->second[i];
+ OS << " case " << P->getRecord()->getName() << "_Pattern: {\n"
+ << " // " << *P << "\n";
+ // Loop over the operands, reducing them...
+ std::vector<std::pair<TreePatternNode*, std::string> > Operands;
+ ReduceAllOperands(P->getTree(), "N", Operands, OS);
+
+ // Now that we have reduced all of our operands, and have the values
+ // that reduction produces, perform the reduction action for this
+ // pattern.
+ std::string Result;
+
+ // If the pattern produces a register result, generate a new register
+ // now.
+ if (Record *R = P->getResult()) {
+ assert(R->isSubClassOf("RegisterClass") &&
+ "Only handle register class results so far!");
+ OS << " unsigned NewReg = makeAnotherReg(" << Target.getName()
+ << "::" << R->getName() << "RegisterClass);\n";
+ Result = "NewReg";
+ DEBUG(OS << " std::cerr << \"%reg\" << NewReg << \" =\t\";\n");
+ } else {
+ DEBUG(OS << " std::cerr << \"\t\t\";\n");
+ Result = "0";
+ }
+
+ // Print out the pattern that matched...
+ DEBUG(OS << " std::cerr << \" " << P->getRecord()->getName() <<'"');
+ DEBUG(for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ if (Operands[i].first->isLeaf()) {
+ Record *RV = Operands[i].first->getValueRecord();
+ assert(RV->isSubClassOf("RegisterClass") &&
+ "Only handles registers here so far!");
+ OS << " << \" %reg\" << " << Operands[i].second
+ << "->Val";
+ } else {
+ OS << " << ' ' << " << Operands[i].second
+ << "->Val";
+ });
+ DEBUG(OS << " << \"\\n\";\n");
+
+ // Generate the reduction code appropriate to the particular type of
+ // pattern that this is...
+ switch (P->getPatternType()) {
+ case Pattern::Instruction:
+ // Instruction patterns just emit a single MachineInstr, using BuildMI
+ OS << " BuildMI(MBB, " << Target.getName() << "::"
+ << P->getRecord()->getName() << ", " << Operands.size();
+ if (P->getResult()) OS << ", NewReg";
+ OS << ")";
+
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
+ TreePatternNode *Op = Operands[i].first;
+ if (Op->isLeaf()) {
+ Record *RV = Op->getValueRecord();
+ assert(RV->isSubClassOf("RegisterClass") &&
+ "Only handles registers here so far!");
+ OS << ".addReg(" << Operands[i].second << "->Val)";
+ } else if (Op->getOperator()->getName() == "imm") {
+ OS << ".addZImm(" << Operands[i].second << "->Val)";
+ } else if (Op->getOperator()->getName() == "basicblock") {
+ OS << ".addMBB(" << Operands[i].second << "->Val)";
+ } else {
+ assert(0 && "Unknown value type!");
+ }
+ }
+ OS << ";\n";
+ break;
+ case Pattern::Expander: {
+ // Expander patterns emit one machine instr for each instruction in
+ // the list of instructions expanded to.
+ ListInit *Insts = P->getRecord()->getValueAsListInit("Result");
+ for (unsigned IN = 0, e = Insts->getSize(); IN != e; ++IN) {
+ DagInit *DIInst = dynamic_cast<DagInit*>(Insts->getElement(IN));
+ if (!DIInst) P->error("Result list must contain instructions!");
+ Record *InstRec = DIInst->getNodeType();
+ Pattern *InstPat = getPattern(InstRec);
+ if (!InstPat || InstPat->getPatternType() != Pattern::Instruction)
+ P->error("Instruction list must contain Instruction patterns!");
+
+ bool hasResult = InstPat->getResult() != 0;
+ if (InstPat->getNumArgs() != DIInst->getNumArgs()-hasResult) {
+ P->error("Incorrect number of arguments specified for inst '" +
+ InstPat->getRecord()->getName() + "' in result list!");
+ }
+
+ // Start emission of the instruction...
+ OS << " BuildMI(MBB, " << Target.getName() << "::"
+ << InstRec->getName() << ", "
+ << DIInst->getNumArgs()-hasResult;
+ // Emit register result if necessary..
+ if (hasResult) {
+ std::string ArgNameVal =
+ getArgName(P, DIInst->getArgName(0), Operands);
+ PrintExpanderOperand(DIInst->getArg(0), ArgNameVal,
+ InstPat->getResultNode(), P, false,
+ OS << ", ");
+ }
+ OS << ")";
+
+ for (unsigned i = hasResult, e = DIInst->getNumArgs(); i != e; ++i){
+ std::string ArgNameVal =
+ getArgName(P, DIInst->getArgName(i), Operands);
+
+ PrintExpanderOperand(DIInst->getArg(i), ArgNameVal,
+ InstPat->getArg(i-hasResult), P, true, OS);
+ }
+
+ OS << ";\n";
+ }
+ break;
+ }
+ default:
+ assert(0 && "Reduction of this type of pattern not implemented!");
+ }
+
+ OS << " Val = new ReducedValue_" << SlotName << "(" << Result<<");\n"
+ << " break;\n"
+ << " }\n";
+ }
+
+
+ OS << " default: assert(0 && \"Unknown " << SlotName << " pattern!\");\n"
+ << " }\n\n N->addValue(Val); // Do not ever recalculate this\n"
+ << " return Val;\n}\n\n";
+ }
+}
+