blob: 74fada5b45845f3e16ae582025a12f9ade90acd4 [file] [log] [blame]
Peter Collingbourne1398a322016-12-16 00:26:30 +00001//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass prepares a module containing type metadata for ThinLTO by splitting
11// it into regular and thin LTO parts if possible, and writing both parts to
12// a multi-module bitcode file. Modules that do not contain type metadata are
13// written unmodified as a single module.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/IPO.h"
18#include "llvm/Analysis/ModuleSummaryAnalysis.h"
19#include "llvm/Analysis/TypeMetadataUtils.h"
20#include "llvm/Bitcode/BitcodeWriter.h"
21#include "llvm/IR/Constants.h"
Peter Collingbourne28ffd322017-02-08 20:44:00 +000022#include "llvm/IR/DebugInfo.h"
Peter Collingbourne1398a322016-12-16 00:26:30 +000023#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/PassManager.h"
26#include "llvm/Pass.h"
27#include "llvm/Support/ScopedPrinter.h"
28#include "llvm/Transforms/Utils/Cloning.h"
29using namespace llvm;
30
31namespace {
32
33// Produce a unique identifier for this module by taking the MD5 sum of the
34// names of the module's strong external symbols. This identifier is
35// normally guaranteed to be unique, or the program would fail to link due to
36// multiply defined symbols.
37//
38// If the module has no strong external symbols (such a module may still have a
39// semantic effect if it performs global initialization), we cannot produce a
40// unique identifier for this module, so we return the empty string, which
41// causes the entire module to be written as a regular LTO module.
42std::string getModuleId(Module *M) {
43 MD5 Md5;
44 bool ExportsSymbols = false;
45 auto AddGlobal = [&](GlobalValue &GV) {
46 if (GV.isDeclaration() || GV.getName().startswith("llvm.") ||
47 !GV.hasExternalLinkage())
48 return;
49 ExportsSymbols = true;
50 Md5.update(GV.getName());
51 Md5.update(ArrayRef<uint8_t>{0});
52 };
53
54 for (auto &F : *M)
55 AddGlobal(F);
56 for (auto &GV : M->globals())
57 AddGlobal(GV);
58 for (auto &GA : M->aliases())
59 AddGlobal(GA);
60 for (auto &IF : M->ifuncs())
61 AddGlobal(IF);
62
63 if (!ExportsSymbols)
64 return "";
65
66 MD5::MD5Result R;
67 Md5.final(R);
68
69 SmallString<32> Str;
70 MD5::stringifyResult(R, Str);
71 return ("$" + Str).str();
72}
73
74// Promote each local-linkage entity defined by ExportM and used by ImportM by
75// changing visibility and appending the given ModuleId.
76void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId) {
77 auto PromoteInternal = [&](GlobalValue &ExportGV) {
78 if (!ExportGV.hasLocalLinkage())
79 return;
80
81 GlobalValue *ImportGV = ImportM.getNamedValue(ExportGV.getName());
82 if (!ImportGV || ImportGV->use_empty())
83 return;
84
85 std::string NewName = (ExportGV.getName() + ModuleId).str();
86
87 ExportGV.setName(NewName);
88 ExportGV.setLinkage(GlobalValue::ExternalLinkage);
89 ExportGV.setVisibility(GlobalValue::HiddenVisibility);
90
91 ImportGV->setName(NewName);
92 ImportGV->setVisibility(GlobalValue::HiddenVisibility);
93 };
94
95 for (auto &F : ExportM)
96 PromoteInternal(F);
97 for (auto &GV : ExportM.globals())
98 PromoteInternal(GV);
99 for (auto &GA : ExportM.aliases())
100 PromoteInternal(GA);
101 for (auto &IF : ExportM.ifuncs())
102 PromoteInternal(IF);
103}
104
105// Promote all internal (i.e. distinct) type ids used by the module by replacing
106// them with external type ids formed using the module id.
107//
108// Note that this needs to be done before we clone the module because each clone
109// will receive its own set of distinct metadata nodes.
110void promoteTypeIds(Module &M, StringRef ModuleId) {
111 DenseMap<Metadata *, Metadata *> LocalToGlobal;
112 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
113 Metadata *MD =
114 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
115
116 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
117 Metadata *&GlobalMD = LocalToGlobal[MD];
118 if (!GlobalMD) {
119 std::string NewName =
120 (to_string(LocalToGlobal.size()) + ModuleId).str();
121 GlobalMD = MDString::get(M.getContext(), NewName);
122 }
123
124 CI->setArgOperand(ArgNo,
125 MetadataAsValue::get(M.getContext(), GlobalMD));
126 }
127 };
128
129 if (Function *TypeTestFunc =
130 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
131 for (const Use &U : TypeTestFunc->uses()) {
132 auto CI = cast<CallInst>(U.getUser());
133 ExternalizeTypeId(CI, 1);
134 }
135 }
136
137 if (Function *TypeCheckedLoadFunc =
138 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
139 for (const Use &U : TypeCheckedLoadFunc->uses()) {
140 auto CI = cast<CallInst>(U.getUser());
141 ExternalizeTypeId(CI, 2);
142 }
143 }
144
145 for (GlobalObject &GO : M.global_objects()) {
146 SmallVector<MDNode *, 1> MDs;
147 GO.getMetadata(LLVMContext::MD_type, MDs);
148
149 GO.eraseMetadata(LLVMContext::MD_type);
150 for (auto MD : MDs) {
151 auto I = LocalToGlobal.find(MD->getOperand(1));
152 if (I == LocalToGlobal.end()) {
153 GO.addMetadata(LLVMContext::MD_type, *MD);
154 continue;
155 }
156 GO.addMetadata(
157 LLVMContext::MD_type,
158 *MDNode::get(M.getContext(),
159 ArrayRef<Metadata *>{MD->getOperand(0), I->second}));
160 }
161 }
162}
163
164// Drop unused globals, and drop type information from function declarations.
165// FIXME: If we made functions typeless then there would be no need to do this.
166void simplifyExternals(Module &M) {
167 FunctionType *EmptyFT =
168 FunctionType::get(Type::getVoidTy(M.getContext()), false);
169
170 for (auto I = M.begin(), E = M.end(); I != E;) {
171 Function &F = *I++;
172 if (F.isDeclaration() && F.use_empty()) {
173 F.eraseFromParent();
174 continue;
175 }
176
177 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT)
178 continue;
179
180 Function *NewF =
181 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
182 NewF->setVisibility(F.getVisibility());
183 NewF->takeName(&F);
184 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
185 F.eraseFromParent();
186 }
187
188 for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
189 GlobalVariable &GV = *I++;
190 if (GV.isDeclaration() && GV.use_empty()) {
191 GV.eraseFromParent();
192 continue;
193 }
194 }
195}
196
197void filterModule(
Benjamin Kramer061f4a52017-01-13 14:39:03 +0000198 Module *M, function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
Peter Collingbourne1398a322016-12-16 00:26:30 +0000199 for (Function &F : *M) {
200 if (ShouldKeepDefinition(&F))
201 continue;
202
203 F.deleteBody();
Peter Collingbourne20a00932017-01-18 20:03:02 +0000204 F.setComdat(nullptr);
Peter Collingbourne1398a322016-12-16 00:26:30 +0000205 F.clearMetadata();
206 }
207
208 for (GlobalVariable &GV : M->globals()) {
209 if (ShouldKeepDefinition(&GV))
210 continue;
211
212 GV.setInitializer(nullptr);
213 GV.setLinkage(GlobalValue::ExternalLinkage);
Peter Collingbourne20a00932017-01-18 20:03:02 +0000214 GV.setComdat(nullptr);
Peter Collingbourne1398a322016-12-16 00:26:30 +0000215 GV.clearMetadata();
216 }
217
218 for (Module::alias_iterator I = M->alias_begin(), E = M->alias_end();
219 I != E;) {
220 GlobalAlias *GA = &*I++;
221 if (ShouldKeepDefinition(GA))
222 continue;
223
224 GlobalObject *GO;
225 if (I->getValueType()->isFunctionTy())
226 GO = Function::Create(cast<FunctionType>(GA->getValueType()),
227 GlobalValue::ExternalLinkage, "", M);
228 else
229 GO = new GlobalVariable(
230 *M, GA->getValueType(), false, GlobalValue::ExternalLinkage,
231 (Constant *)nullptr, "", (GlobalVariable *)nullptr,
232 GA->getThreadLocalMode(), GA->getType()->getAddressSpace());
233 GO->takeName(GA);
234 GA->replaceAllUsesWith(GO);
235 GA->eraseFromParent();
236 }
237}
238
239// If it's possible to split M into regular and thin LTO parts, do so and write
240// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
241// regular LTO bitcode file to OS.
242void splitAndWriteThinLTOBitcode(raw_ostream &OS, Module &M) {
243 std::string ModuleId = getModuleId(&M);
244 if (ModuleId.empty()) {
245 // We couldn't generate a module ID for this module, just write it out as a
246 // regular LTO module.
247 WriteBitcodeToFile(&M, OS);
248 return;
249 }
250
251 promoteTypeIds(M, ModuleId);
252
253 auto IsInMergedM = [&](const GlobalValue *GV) {
254 auto *GVar = dyn_cast<GlobalVariable>(GV->getBaseObject());
255 if (!GVar)
256 return false;
257
258 SmallVector<MDNode *, 1> MDs;
259 GVar->getMetadata(LLVMContext::MD_type, MDs);
260 return !MDs.empty();
261 };
262
263 ValueToValueMapTy VMap;
264 std::unique_ptr<Module> MergedM(CloneModule(&M, VMap, IsInMergedM));
Peter Collingbourne28ffd322017-02-08 20:44:00 +0000265 StripDebugInfo(*MergedM);
Peter Collingbourne1398a322016-12-16 00:26:30 +0000266
267 filterModule(&M, [&](const GlobalValue *GV) { return !IsInMergedM(GV); });
268
269 promoteInternals(*MergedM, M, ModuleId);
270 promoteInternals(M, *MergedM, ModuleId);
271
272 simplifyExternals(*MergedM);
273
274 SmallVector<char, 0> Buffer;
275 BitcodeWriter W(Buffer);
276
277 // FIXME: Try to re-use BSI and PFI from the original module here.
278 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, nullptr);
279 W.writeModule(&M, /*ShouldPreserveUseListOrder=*/false, &Index,
280 /*GenerateHash=*/true);
281
282 W.writeModule(MergedM.get());
283
284 OS << Buffer;
285}
286
287// Returns whether this module needs to be split because it uses type metadata.
288bool requiresSplit(Module &M) {
289 SmallVector<MDNode *, 1> MDs;
290 for (auto &GO : M.global_objects()) {
291 GO.getMetadata(LLVMContext::MD_type, MDs);
292 if (!MDs.empty())
293 return true;
294 }
295
296 return false;
297}
298
299void writeThinLTOBitcode(raw_ostream &OS, Module &M,
300 const ModuleSummaryIndex *Index) {
301 // See if this module has any type metadata. If so, we need to split it.
302 if (requiresSplit(M))
303 return splitAndWriteThinLTOBitcode(OS, M);
304
305 // Otherwise we can just write it out as a regular module.
306 WriteBitcodeToFile(&M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
307 /*GenerateHash=*/true);
308}
309
310class WriteThinLTOBitcode : public ModulePass {
311 raw_ostream &OS; // raw_ostream to print on
312
313public:
314 static char ID; // Pass identification, replacement for typeid
315 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()) {
316 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
317 }
318
319 explicit WriteThinLTOBitcode(raw_ostream &o)
320 : ModulePass(ID), OS(o) {
321 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
322 }
323
324 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
325
326 bool runOnModule(Module &M) override {
327 const ModuleSummaryIndex *Index =
328 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
329 writeThinLTOBitcode(OS, M, Index);
330 return true;
331 }
332 void getAnalysisUsage(AnalysisUsage &AU) const override {
333 AU.setPreservesAll();
334 AU.addRequired<ModuleSummaryIndexWrapperPass>();
335 }
336};
337} // anonymous namespace
338
339char WriteThinLTOBitcode::ID = 0;
340INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
341 "Write ThinLTO Bitcode", false, true)
342INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
343INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
344 "Write ThinLTO Bitcode", false, true)
345
346ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str) {
347 return new WriteThinLTOBitcode(Str);
348}