blob: 23dfe4b5b5f4fb7b1d586b8ddbf8ce74281ac2bc [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001/*===-- X86DisassemblerDecoderCommon.h - Disassembler decoder -----*- C -*-===*
Sean Callanan04cc3072009-12-19 02:59:52 +00002 *
3 * The LLVM Compiler Infrastructure
4 *
5 * This file is distributed under the University of Illinois Open Source
6 * License. See LICENSE.TXT for details.
7 *
8 *===----------------------------------------------------------------------===*
9 *
10 * This file is part of the X86 Disassembler.
11 * It contains common definitions used by both the disassembler and the table
12 * generator.
13 * Documentation for the disassembler can be found in X86Disassembler.h.
14 *
15 *===----------------------------------------------------------------------===*/
16
17/*
18 * This header file provides those definitions that need to be shared between
19 * the decoder and the table generator in a C-friendly manner.
20 */
21
22#ifndef X86DISASSEMBLERDECODERCOMMON_H
23#define X86DISASSEMBLERDECODERCOMMON_H
24
Michael J. Spencer447762d2010-11-29 18:16:10 +000025#include "llvm/Support/DataTypes.h"
Sean Callanan04cc3072009-12-19 02:59:52 +000026
27#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers
28#define CONTEXTS_SYM x86DisassemblerContexts
29#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes
30#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes
31#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes
32#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes
Joerg Sonnenbergerfc4789d2011-04-04 16:58:13 +000033#define THREEBYTEA6_SYM x86DisassemblerThreeByteA6Opcodes
34#define THREEBYTEA7_SYM x86DisassemblerThreeByteA7Opcodes
Sean Callanan04cc3072009-12-19 02:59:52 +000035
36#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers"
37#define CONTEXTS_STR "x86DisassemblerContexts"
38#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes"
39#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes"
40#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes"
41#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes"
Joerg Sonnenbergerfc4789d2011-04-04 16:58:13 +000042#define THREEBYTEA6_STR "x86DisassemblerThreeByteA6Opcodes"
43#define THREEBYTEA7_STR "x86DisassemblerThreeByteA7Opcodes"
Sean Callanan04cc3072009-12-19 02:59:52 +000044
45/*
46 * Attributes of an instruction that must be known before the opcode can be
47 * processed correctly. Most of these indicate the presence of particular
48 * prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
49 */
50#define ATTRIBUTE_BITS \
51 ENUM_ENTRY(ATTR_NONE, 0x00) \
52 ENUM_ENTRY(ATTR_64BIT, 0x01) \
53 ENUM_ENTRY(ATTR_XS, 0x02) \
54 ENUM_ENTRY(ATTR_XD, 0x04) \
55 ENUM_ENTRY(ATTR_REXW, 0x08) \
Sean Callananc3fd5232011-03-15 01:23:15 +000056 ENUM_ENTRY(ATTR_OPSIZE, 0x10) \
Craig Topper6491c802012-02-27 01:54:29 +000057 ENUM_ENTRY(ATTR_ADSIZE, 0x20) \
58 ENUM_ENTRY(ATTR_VEX, 0x40) \
59 ENUM_ENTRY(ATTR_VEXL, 0x80)
Sean Callanan04cc3072009-12-19 02:59:52 +000060
61#define ENUM_ENTRY(n, v) n = v,
62enum attributeBits {
63 ATTRIBUTE_BITS
64 ATTR_max
65};
66#undef ENUM_ENTRY
67
68/*
69 * Combinations of the above attributes that are relevant to instruction
70 * decode. Although other combinations are possible, they can be reduced to
71 * these without affecting the ultimately decoded instruction.
72 */
73
74/* Class name Rank Rationale for rank assignment */
75#define INSTRUCTION_CONTEXTS \
76 ENUM_ENTRY(IC, 0, "says nothing about the instruction") \
77 ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \
78 "64-bit mode but no more") \
79 ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \
80 "operands change width") \
Craig Topper6491c802012-02-27 01:54:29 +000081 ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
82 "operands change width") \
Sean Callanan04cc3072009-12-19 02:59:52 +000083 ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
84 "but not the operands") \
85 ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
86 "but not the operands") \
Craig Topper88cb33e2011-10-01 19:54:56 +000087 ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \
88 "operands change width") \
Craig Toppera6978522011-10-11 04:34:23 +000089 ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
90 "operands change width") \
Sean Callanan04cc3072009-12-19 02:59:52 +000091 ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\
92 "change width; overrides IC_OPSIZE") \
93 ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
Craig Topper6491c802012-02-27 01:54:29 +000094 ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
Sean Callanan04cc3072009-12-19 02:59:52 +000095 ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \
96 "secondary") \
97 ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \
Craig Topper88cb33e2011-10-01 19:54:56 +000098 ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
Craig Toppera6978522011-10-11 04:34:23 +000099 ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000100 ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \
101 "opcode") \
102 ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \
103 "IC_64BIT_REXW_XS") \
104 ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \
105 "else because this changes most " \
Sean Callananc3fd5232011-03-15 01:23:15 +0000106 "operands' meaning") \
107 ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
108 ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \
109 ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \
110 ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \
111 ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \
112 ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \
113 ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \
114 ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \
115 ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \
116 ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\
Craig Topperf18c8962011-10-04 06:30:42 +0000117 ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\
Craig Topperf01f1b52011-11-06 23:04:08 +0000118 ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \
119 ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize")
Sean Callananc3fd5232011-03-15 01:23:15 +0000120
Sean Callanan04cc3072009-12-19 02:59:52 +0000121
Craig Topper5f33d902012-07-31 04:38:27 +0000122#define ENUM_ENTRY(n, r, d) n,
Sean Callanan04cc3072009-12-19 02:59:52 +0000123typedef enum {
124 INSTRUCTION_CONTEXTS
125 IC_max
126} InstructionContext;
127#undef ENUM_ENTRY
128
129/*
130 * Opcode types, which determine which decode table to use, both in the Intel
131 * manual and also for the decoder.
132 */
133typedef enum {
134 ONEBYTE = 0,
135 TWOBYTE = 1,
136 THREEBYTE_38 = 2,
Joerg Sonnenbergerfc4789d2011-04-04 16:58:13 +0000137 THREEBYTE_3A = 3,
138 THREEBYTE_A6 = 4,
139 THREEBYTE_A7 = 5
Sean Callanan04cc3072009-12-19 02:59:52 +0000140} OpcodeType;
141
142/*
143 * The following structs are used for the hierarchical decode table. After
144 * determining the instruction's class (i.e., which IC_* constant applies to
145 * it), the decoder reads the opcode. Some instructions require specific
146 * values of the ModR/M byte, so the ModR/M byte indexes into the final table.
147 *
148 * If a ModR/M byte is not required, "required" is left unset, and the values
149 * for each instructionID are identical.
150 */
Craig Topper5f33d902012-07-31 04:38:27 +0000151
Sean Callanan04cc3072009-12-19 02:59:52 +0000152typedef uint16_t InstrUID;
153
154/*
Craig Topper5f33d902012-07-31 04:38:27 +0000155 * ModRMDecisionType - describes the type of ModR/M decision, allowing the
Sean Callanan04cc3072009-12-19 02:59:52 +0000156 * consumer to determine the number of entries in it.
157 *
158 * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
159 * instruction is the same.
160 * MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode
161 * corresponds to one instruction; otherwise, it corresponds to
162 * a different instruction.
Craig Topper963305b2012-09-13 05:45:42 +0000163 * MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
164 * divided by 8 is used to select instruction; otherwise, each
165 * value of the ModR/M byte could correspond to a different
166 * instruction.
Craig Toppera0cd9702012-02-09 08:58:07 +0000167 * MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
168 corresponds to instructions that use reg field as opcode
Sean Callanan04cc3072009-12-19 02:59:52 +0000169 * MODRM_FULL - Potentially, each value of the ModR/M byte could correspond
170 * to a different instruction.
171 */
172
173#define MODRMTYPES \
174 ENUM_ENTRY(MODRM_ONEENTRY) \
175 ENUM_ENTRY(MODRM_SPLITRM) \
Craig Topper963305b2012-09-13 05:45:42 +0000176 ENUM_ENTRY(MODRM_SPLITMISC) \
Craig Toppera0cd9702012-02-09 08:58:07 +0000177 ENUM_ENTRY(MODRM_SPLITREG) \
Sean Callanan04cc3072009-12-19 02:59:52 +0000178 ENUM_ENTRY(MODRM_FULL)
179
Craig Topper5f33d902012-07-31 04:38:27 +0000180#define ENUM_ENTRY(n) n,
Sean Callanan04cc3072009-12-19 02:59:52 +0000181typedef enum {
182 MODRMTYPES
183 MODRM_max
184} ModRMDecisionType;
185#undef ENUM_ENTRY
186
187/*
Craig Topper5f33d902012-07-31 04:38:27 +0000188 * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which
Sean Callanan04cc3072009-12-19 02:59:52 +0000189 * instruction each possible value of the ModR/M byte corresponds to. Once
190 * this information is known, we have narrowed down to a single instruction.
191 */
192struct ModRMDecision {
193 uint8_t modrm_type;
Craig Topper5f33d902012-07-31 04:38:27 +0000194
Sean Callanan04cc3072009-12-19 02:59:52 +0000195 /* The macro below must be defined wherever this file is included. */
196 INSTRUCTION_IDS
197};
198
199/*
200 * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
201 * given a particular opcode.
202 */
203struct OpcodeDecision {
204 struct ModRMDecision modRMDecisions[256];
205};
206
207/*
208 * ContextDecision - Specifies which opcode->instruction tables to look at given
209 * a particular context (set of attributes). Since there are many possible
210 * contexts, the decoder first uses CONTEXTS_SYM to determine which context
211 * applies given a specific set of attributes. Hence there are only IC_max
212 * entries in this table, rather than 2^(ATTR_max).
213 */
214struct ContextDecision {
215 struct OpcodeDecision opcodeDecisions[IC_max];
216};
217
Craig Topper5f33d902012-07-31 04:38:27 +0000218/*
Sean Callanan04cc3072009-12-19 02:59:52 +0000219 * Physical encodings of instruction operands.
220 */
221
222#define ENCODINGS \
223 ENUM_ENTRY(ENCODING_NONE, "") \
224 ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \
225 ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \
Sean Callananc3fd5232011-03-15 01:23:15 +0000226 ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000227 ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \
228 ENUM_ENTRY(ENCODING_CW, "2-byte") \
229 ENUM_ENTRY(ENCODING_CD, "4-byte") \
230 ENUM_ENTRY(ENCODING_CP, "6-byte") \
231 ENUM_ENTRY(ENCODING_CO, "8-byte") \
232 ENUM_ENTRY(ENCODING_CT, "10-byte") \
233 ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \
234 ENUM_ENTRY(ENCODING_IW, "2-byte") \
235 ENUM_ENTRY(ENCODING_ID, "4-byte") \
236 ENUM_ENTRY(ENCODING_IO, "8-byte") \
237 ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \
238 "the opcode byte") \
239 ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \
240 ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \
241 ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \
242 ENUM_ENTRY(ENCODING_I, "Position on floating-point stack added to the " \
243 "opcode byte") \
244 \
245 ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \
246 ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \
247 ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \
248 "opcode byte") \
249 ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \
250 "in type")
251
Craig Topper5f33d902012-07-31 04:38:27 +0000252#define ENUM_ENTRY(n, d) n,
Sean Callanan04cc3072009-12-19 02:59:52 +0000253 typedef enum {
254 ENCODINGS
255 ENCODING_max
256 } OperandEncoding;
257#undef ENUM_ENTRY
258
Craig Topper5f33d902012-07-31 04:38:27 +0000259/*
Sean Callanan04cc3072009-12-19 02:59:52 +0000260 * Semantic interpretations of instruction operands.
261 */
262
263#define TYPES \
264 ENUM_ENTRY(TYPE_NONE, "") \
265 ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \
266 ENUM_ENTRY(TYPE_REL16, "2-byte") \
267 ENUM_ENTRY(TYPE_REL32, "4-byte") \
268 ENUM_ENTRY(TYPE_REL64, "8-byte") \
269 ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \
270 ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \
271 ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \
272 ENUM_ENTRY(TYPE_R8, "1-byte register operand") \
273 ENUM_ENTRY(TYPE_R16, "2-byte") \
274 ENUM_ENTRY(TYPE_R32, "4-byte") \
275 ENUM_ENTRY(TYPE_R64, "8-byte") \
276 ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \
277 ENUM_ENTRY(TYPE_IMM16, "2-byte") \
278 ENUM_ENTRY(TYPE_IMM32, "4-byte") \
279 ENUM_ENTRY(TYPE_IMM64, "8-byte") \
Sean Callanan1efe6612010-04-07 21:42:19 +0000280 ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \
Craig Topper7629d632012-04-03 05:20:24 +0000281 ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000282 ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \
283 ENUM_ENTRY(TYPE_RM16, "2-byte") \
284 ENUM_ENTRY(TYPE_RM32, "4-byte") \
285 ENUM_ENTRY(TYPE_RM64, "8-byte") \
286 ENUM_ENTRY(TYPE_M, "Memory operand") \
287 ENUM_ENTRY(TYPE_M8, "1-byte") \
288 ENUM_ENTRY(TYPE_M16, "2-byte") \
289 ENUM_ENTRY(TYPE_M32, "4-byte") \
290 ENUM_ENTRY(TYPE_M64, "8-byte") \
Sean Callanan36eab802009-12-22 21:12:55 +0000291 ENUM_ENTRY(TYPE_LEA, "Effective address") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000292 ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \
Chris Lattnerf60062f2010-09-29 02:57:56 +0000293 ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000294 ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \
295 ENUM_ENTRY(TYPE_M1632, "2+4-byte") \
296 ENUM_ENTRY(TYPE_M1664, "2+8-byte") \
297 ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \
298 ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \
299 ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \
300 ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \
301 ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \
302 "base)") \
303 ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \
304 ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \
305 ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \
306 ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \
307 "2 = SS, 3 = DS, 4 = FS, 5 = GS") \
308 ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \
309 ENUM_ENTRY(TYPE_M64FP, "64-bit") \
310 ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \
311 ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \
312 "floating-point instructions") \
313 ENUM_ENTRY(TYPE_M32INT, "4-byte") \
314 ENUM_ENTRY(TYPE_M64INT, "8-byte") \
315 ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
316 ENUM_ENTRY(TYPE_MM, "MMX register operand") \
317 ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \
318 ENUM_ENTRY(TYPE_MM64, "8-byte") \
319 ENUM_ENTRY(TYPE_XMM, "XMM register operand") \
320 ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \
321 ENUM_ENTRY(TYPE_XMM64, "8-byte") \
322 ENUM_ENTRY(TYPE_XMM128, "16-byte") \
Sean Callananc3fd5232011-03-15 01:23:15 +0000323 ENUM_ENTRY(TYPE_XMM256, "32-byte") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000324 ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \
325 ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \
326 ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \
Sean Callanane7e1cf92010-05-06 20:59:00 +0000327 ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \
Sean Callanan04cc3072009-12-19 02:59:52 +0000328 \
329 ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \
330 ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \
331 ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \
332 ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \
333 ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \
334 ENUM_ENTRY(TYPE_DUP1, "operand 1") \
335 ENUM_ENTRY(TYPE_DUP2, "operand 2") \
336 ENUM_ENTRY(TYPE_DUP3, "operand 3") \
337 ENUM_ENTRY(TYPE_DUP4, "operand 4") \
338 ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state")
339
Craig Topper5f33d902012-07-31 04:38:27 +0000340#define ENUM_ENTRY(n, d) n,
Sean Callanan04cc3072009-12-19 02:59:52 +0000341typedef enum {
342 TYPES
343 TYPE_max
344} OperandType;
345#undef ENUM_ENTRY
346
Craig Topper5f33d902012-07-31 04:38:27 +0000347/*
Sean Callanan04cc3072009-12-19 02:59:52 +0000348 * OperandSpecifier - The specification for how to extract and interpret one
349 * operand.
350 */
351struct OperandSpecifier {
Craig Topper6dedbae2012-03-04 02:16:41 +0000352 uint8_t encoding;
353 uint8_t type;
Sean Callanan04cc3072009-12-19 02:59:52 +0000354};
355
356/*
357 * Indicates where the opcode modifier (if any) is to be found. Extended
358 * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
359 */
360
361#define MODIFIER_TYPES \
362 ENUM_ENTRY(MODIFIER_NONE) \
363 ENUM_ENTRY(MODIFIER_OPCODE) \
364 ENUM_ENTRY(MODIFIER_MODRM)
365
366#define ENUM_ENTRY(n) n,
367typedef enum {
368 MODIFIER_TYPES
369 MODIFIER_max
370} ModifierType;
371#undef ENUM_ENTRY
372
373#define X86_MAX_OPERANDS 5
374
375/*
376 * The specification for how to extract and interpret a full instruction and
377 * its operands.
378 */
379struct InstructionSpecifier {
Craig Topper6dedbae2012-03-04 02:16:41 +0000380 uint8_t modifierType;
Sean Callanan04cc3072009-12-19 02:59:52 +0000381 uint8_t modifierBase;
Craig Topper5f33d902012-07-31 04:38:27 +0000382
Sean Callanan04cc3072009-12-19 02:59:52 +0000383 /* The macro below must be defined wherever this file is included. */
384 INSTRUCTION_SPECIFIER_FIELDS
385};
386
387/*
388 * Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
389 * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
390 * respectively.
391 */
392typedef enum {
393 MODE_16BIT,
394 MODE_32BIT,
395 MODE_64BIT
396} DisassemblerMode;
397
398#endif